Supplementary Data for

Impact of template backbone heterogeneity on RNA polymerase II transcription

Liang Xu¹, Wei Wang¹, Lu Zhang², Jenny Chong¹, Xuhui Huang², and Dong Wang^{1,*}

¹ Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, La Jolla, California, 92093-0625, United States.

² Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

*To whom correspondence should be addressed. Tel: 858 822 5561; Fax: 858 822 1953; Email: <u>dongwang@ucsd.edu</u>

Supplementary Figures

Figure S1. The ATP incorporation by pol II at the 3'-5' dT template (left) is faster than that at 2'-5' rU template (right) at 1 μ M concentration. The scaffolds are shown in Figure S2. Time points are 0, 10s, 30s, 1 min, 2 min, 5 min and 10 min.

5' CTGCTTATCGGTAG NTS 3' GTAGCTCTCCTXGCAGACGAATAGCCATC Template 5' AUCGAGAGGA RNA Primer X = 3'-5' dT or 2'-5' rU or 2'-5' rU

Figure S2. Scaffolds used in single turnover in vitro transcription experiments. NTS stands for non-template strand.

Figure S3. Representative kinetic fitting curves for ATP and UTP incorporation by pol II.

Figure S4. No obvious TFIIS-stimulated RNA transcript cleavage was observed for pol II complex containing 10mer RNA primer. The scaffolds used for TFIIS-mediated cleavage are shown in Figure S2.

Figure S5. TFIIS-mediated cleavage products by pol II containing 11mer primer. The 10mer product corresponds to the pre-translocation cleavage product in this condition, and the 9mer product corresponds to the backtracked cleavage product.

Figure S6. Analysis of TFIIS-mediated pol II cleavage patterns with different backbone heterogeneities. Left: 10mer cleavage products from the pol II complex at pre-translocation state (11mer to 10 mer); right: 9mer cleavage products from the pol II complex at backtracked state (11mer to 9 mer).

Figure S7. Modeling of structure of pol II elongation complex with a 2'-5' phosphodiester linkage connecting i+1 and i+2 nucleobases. In this backtracked model, the 3'-OH of 2'-5' RNA can potentially form hydrogen bond with the K332 residue of Rpb 1 in the switch II region of RNA pol II. This hydrogen bond may stabilize the backtracked conformation in the 2'-5' RNA template, and it may cause the increased backtrack percentage as we experimentally observed in Figure 5.

Supplementary Tables

Template backbone	k _{pol} (min⁻¹)	К _{d, арр} (µМ)	k _{pol} /K _{d, app} (μM⁻¹·min⁻¹)	Relative efficiency	
3′-5′ dT	750 ± 210	90 ± 20	8.3 ± 3.0	1.0 ± 0.3	
2′-5′ dT	17 ± 1	530 ± 60	0.032 ± 0.004	0.0039 ± 0.0005	
3´-5´ rU	31 ± 1	21 ± 2	1.5 ± 0.1	0.18 ± 0.01	
2′-5′ rU	0.25 ±	900 1 70	0 00028 + 0 00001	0.000034 ±	
	0.01	090 ± 70	0.00020 ± 0.00001	0.000002	

Table S1. Kinetic data of AMP incorporation opposite four template backbone variants by pol II.

Table S2. Kinetic data of UM	P misincorporation opposite for a second se second second sec	our template backbone	variants by pol II.
------------------------------	---	-----------------------	---------------------

Template	k (min ⁻¹)	$K_{d, app}$	k _{pol} /K _{d, app}	Relative	
backbone	K _{pol} (min)	(µM)	(µM ⁻¹ ⋅min ⁻¹)	efficiency	
3′-5′ dT	0.015 ± 0.003	800 ± 60	$(1.9 \pm 0.4) \times 10^{-5}$	1 ± 0.2	
2′ 5′ dT	0 13 + 0 01	3700 ±	$(3.5 \pm 0.7) \times 10^{-5}$	1.8 ± 0.5	
2 -5 UT	0.13 ± 0.01	700	$(3.5 \pm 0.7) \times 10$		
2′ 5′ rl l	0 0 2 2 + 0 0 0 2	1600 ±	$(1.4 \pm 0.3) \times 10^{-5}$	0.74 ± 0.22	
3-510	0.023 ± 0.002	300	$(1.4 \pm 0.3) \times 10$		
2′ 5′ rl l	0.0085 ±	1600 ±	$(0.53 \pm 0.01) \times 10^{-5}$	0.28 ± 0.06	
2-510	0.0006	300	$(0.53 \pm 0.01) \times 10$	0.28 ± 0.00	

Table S3.	TFIIS-mediated	RNA	transcript	cleavage	rates	for	pol I	with	different	template	backbone
variants.											

Template	Cleavage	Relative
backbone	(min⁻¹)	efficiency
3′-5′ dT	0.69 ± 0.13	1.0 ± 0.2
2′-5′ dT	11 ± 1	15 ± 3
3′-5′ rU	4.4 ± 0.8	6.3 ± 1.6
2′-5′ rU	14 ± 1	20 ± 4