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Identification of differential and highly variable genes in cancer samples

The differentially expressed genes were identified by comparing the expression
profiles between cancer samples and normal samples. For the expression data detected
by the microarray technologies, the differentially expressed genes were identified
using the SAM algorithm at FDR<0.05 and fold change>1.5. For the expression data
detected by the high-through sequencing technology, we performed the differential
expression analysis using R package DESeq at FDR<0.05 and fold change>1.5. The
degree of expression variation was calculated by median absolute deviations (MAD),
and the highly variable genes were considered as the genes within the top of 70%.
Only genes that were differentially expressed and highly variable were used to build
regulatory networks.

Partial least squares (PLS)

PLS finds the latent variables to fit the linear regression model between response

variables exp, and input variables includingCNg , meth, , TF; (j=1,2...J) and
miRNA, (k=1,2,...,K) by projecting the response variables and input variables to a
new H dimension space.

X =TP'+e

Y=Th+f
where X represents a NxM matrix referring to N samples and M input variables, T
represents a NxH matrix of X projection scores containing H latent variables (T,
n=l...... h), P represents the HXM orthogonal loading matrix of X, Y represents
expression values of Gi in the N samples, b represents the regression coefficients of T,
and e and f represent the random errors. The object of PLS is to maximize the
covariance COV(Y,Tn). Then, based on the T, we estimated the regression coefficients

of Xon.



The data flow of CMDD when applied on GBM

CMDD was applied to the multi-dimensional datasets of 121 GBM samples including
DNA mutation, copy number, methylation, gene expression, and miRNA expression
profiles. By combining the DNA mutation and copy number data, 119 genes were
observed to alter in at least 10 GBM samples, with 42 showing significant difference
of gene expression ( t-test, FDR<0.05) as the candidate genes. Based on the GBM
samples and 10 normal samples, 5083 differentially expressed genes were obtained
using SAM (Fold change>1.5 and FDR<0.05), in which 4708 genes with high
expression variation across GBM samples were selected to construct the dysregulated
network. For each candidate gene, a dysregulated network was built (Supplementary
Table S1). We found that different candidate genes induced the different numbers of
dysregulated relationships from 589 to 1981, referring to 491 to 1364 genes.
Considering the functional associations between the candidate genes and genes in the
dysregulated networks, we selected genes that were within two-step distance from

candidate genes in protein interaction networks as the dysregulated genes.
Analysis of expression correlation of dysregulated genes induced by core genes

To evaluate dysregulated genes induced by the module, we compared the expression
correlation among the dysregulated genes with those of randomly selected genes. For
each core gene, the randomly selected genes had the same size as its dysregulated
genes. The random genes were selected as follows: Firstly, we randomly selected 17
genes in protein interaction network, and collected the neighbors of these 17 genes as
a control gene set. Then, the random genes were randomly selected from the control

gene set. The above procedures were repeated 100 times, and 100 random gene sets



were obtained. We found that that dysregulated genes induced by genes in the module
tend to show significantly higher expression correlations compared to randomly

selected genes (Supplementary Figure S4).
Detecting novel core genes in GBM

Some genes in the core module were rarely reported previously to be associated with
GBM. In the core module, both METTL1 and CTDSP2, with the highest degree of 13
were connected with 7 known GBM associated genes (Supplementary Figure S1).
CTDSP2 has been reported to play important roles in neuronal differentiation,
neurogenesis and G1/S transition (1). The expression of METTL1 can partially
promote cell growth (2). However, little was known about their roles in GBM.
Functions and pathways enriched by the dysregulated genes of METTL1 exhibited
high overlap with those of 7 known GBM associated genes (P=6.4x10"!° for pathways
and P=1.2x10""8 for functions Supplementary Figure S2A). Furthermore, the cancer
associated functions and pathways affected by METTL1 were frequently enriched by

dysregulated genes of 7 known genes, such as “cell differentiation”, “cell cycle” and

“Glioma” pathway (Supplementary Figure S2B).

We noted that many dysregulated genes affected by METTL1 have been reported to
play key roles in cancers (Supplementary Figure S2C). For instance, caspase3, which
is encoded by the dysregulated gene CASP3, can cleave and active protease to initiate
apoptosis by extrinsic and intrinsic pathways in response to apoptotic stimuli (3). The
dysregulated interaction between miR-138 and CASP3 in our finding can be partially
explained by a previous report that miR-138 can influence CASP3 expression (4).
MAPK1 (5), CDKNZ2A (6), AKT1 (7) and BRCAL(8), were well-known to influence a
variety of tumor biological behaviors, suggesting a potential role of METTL1 in

tumorigenesis.

To determine whether the alteration and expression of METTL1 are associated with
survival, the GBM patients were divided into two groups (METTL1 alteration vs

METTL1 non-alteration). We found that the patients with METTLL1 alteration had poor



prognosis (P=0.015, log-rank test, Supplementary Figure S2D). Based on the
expression of METTL1, we grouped the patients into a high-risk group (expression in
top 25%), a low-risk group (expression in bottom 25%) and a moderate-risk (the
remainder of the patients). There was a significant difference in overall survival for
the 3 groups (P=0.0015, log-rank test, Supplementary Figure S2E). High expression
of METTL1 was associated with poor survival. An independent dataset GSE4412 (9)
showed consistently significant survival difference for the 3 groups (P=0.03, log-rank

test, Supplementary Figure S2F).

Similar results were obtained for CTDSP2. We found that the functions and
pathways significantly enriched by the dysregulated genes of CTDSP2 were also
frequently overlapped by those of 7 known GBM associated genes (Supplementary
Figure S3A), such as cell cycle, Jak-STAT signaling pathway and MAPK signaling
pathway (Supplementary Figure S3B). Meanwhile, we found that many of the
dysregulated genes affected by CTDSP2 have been reported to play key roles in
cancers (Supplementary Figure S3C). For example, CCNDL1 is a crucial regulator for
G1 to S phase transition in cell cycle(10), and CTDSP2 might indirectly contribute to
cell cycle disorder through dysregulation of transcription factors STATSB and ATF-2
on the CCND1 expression(11). Furthermore, we analyzed whether the genetic
alteration and expression of CTDSP2 are associated with GBM survival. The results
showed that the patients with CTDSP2 alteration had poor prognosis (P=0.07,
log-rank test, Supplementary Figure S3D), and high expression of CTDSP2 was also
associated with poor survival (P=0.025, log-rank test, Supplementary Figure S3E).
Moreover, an independent dataset GSE4412 further showed consistent prognostic

effect of CTDSP2 (P=0.09, log-rank test, Supplementary Figure S3F).

These findings suggested that METTL1 and CTDSP2 were the potential novel
genes whose genetic alterations may contribute to the development of GBM. They
could indirectly participate in pathogenesis by inducing dysregulation of crucial
response genes.
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Supplementary Figure Legends

Supplementary Figure S1

The degree of member genes in the core module. Red bar represent the number of connections of
genes with known GBM-associated member gene, while gray bar represent the degree with the

rest member genes.

Supplementary Figure S2

The association of METTL1 with GBM. (A) The overlap of pathways (top) and functions (bottom)
affected by METTL1 and 7 GBM genes through dysregulated genes. (B) The cancer associated

pathways and functions enriched by the dysregulated genes of METTLI1 are frequently affected by
7 known GBM associated genes. (C) The dysregulated network of METTL1. Dysregulated genes

are colored byblue. (D) Kaplan—Meier estimates of overall survival for TCGA GBM patients with

or without METTI1 alteration. (E) Kaplan—Meier estimates of overall survival using METTL1

expression in TCGA data sets. (F) Kaplan—Meier estimates of overall survival using METTLI1

expression in GSE4412 data sets.

Supplementary Figure S3

The association of CTDSP2 with GBM. (A) The overlap of pathways (top) and functions (bottom)

affected by CTDSP2 and 7 GBM genes through dysregulated genes. (B) The cancer associated
pathways enriched by the dysregulated genes of CTDSP2 are frequently affected by 7 known
GBM associated genes. (C) The dysregulated network of CTDSP2. Dysregulated genes are
colored by blue. (D) Kaplan—Meier estimates of overall survival for TCGA GBM patients with or
without CTDSP2 alteration. (E) Kaplan—Meier estimates of overall survival using CTDSP2

expression in TCGA data sets. (F) Kaplan—Meier estimates of overall survival using CTDSP2

expression in GSE4412 data sets.

Supplementary Figure S4

The cumulative distribution of expression correlation coefficients of dysregulated genes (red) for
17 genes in the module compared with that of 100 random selected gene sets with same size

(gray), which were connected to 17 randomly selected genes in the protein interaction network
( Kolmogorov-Smirnov test) .

Supplementary Figure S5



The overlap between functions annotated by member genes (left) and functions enriched by their
dysregulated genes (right) (hyper-geometric test).

Supplementary Figure S6

The number of dysregulated genes with degree above 7 in the comprehensive network. Bars with
dark gray show the number of cancer associated genes that appear in OMIM, CGC or GAD.
Supplementary Figure S7

Kaplan—Meier estimates of overall survival are shown for GBM patients in TCGA using the
expression of ESR1. The chocolate curve and cyan curve represent ESR1 higher expression (top
50%) and lower expression (bottom 50%), respectively.

Supplementary Figure S8

The detailed dysregulation of dysregulated genes induced by genes in the module in the biological
process of “glial cell differentiation”; apoptotic signaling pathway” and "MAPK cascade”.
Supplementary Figure S9

Comprehensive analysis of core modules in OV. (A) The core gene modules in OV. (B) The
biological functions and pathways significantly enriched by the core modules. (C) Comprehensive
dysregulated network induced by core modules. (D) Contributions of different regulators in the
dysregulated network affected by member genes.

Supplementary Figure S10

Comprehensive analysis of core modules in HNSC. (A) The core gene modules in HNSC. (B) The
biological functions and pathways significantly enriched by the core modules. (C) Comprehensive
dysregulated network induced by core modules. (D) Contributions of different regulators in the
dysregulated network affected by member genes. (E) Some survival associated clique modules in
HNSC.

Supplementary Figure S11

Comprehensive analysis of core modules in LUAD. (A) The core gene modules in LUAD. (B)
The biological functions and pathways significantly enriched by the core modules. (C)
Comprehensive dysregulated network induced by core modules. (D) Contributions of different
regulators in the dysregulated network affected by member genes. (E) Some survival associated
clique modules in LUAD.

Supplementary Figure S12



Comprehensive analysis of core modules in CESC. (A) The core gene modules in CESC. (B) The
biological functions and pathways significantly enriched by the core modules. (C) Comprehensive
dysregulated network induced by core modules. (D) Contributions of different regulators in the
dysregulated network affected by member genes. (E) Some survival associated clique modules in
CESC.

Supplementary Figure S13

Comprehensive analysis of core modules in BRCA. (A) The core gene modules in BRCA. (B) The
biological functions and pathways significantly enriched by the core modules. (C) Comprehensive
dysregulated network induced by core modules. (D) Contributions of different regulators in the
dysregulated network affected by member genes. (E) Some survival associated clique modules in
BRCA.

Supplementary Figure S14

Comprehensive analysis of core modules in PRAD. (A) The core gene modules in PRAD. (B) The
biological functions and pathways significantly enriched by the core modules. (C) Comprehensive
dysregulated network induced by core modules. (D) Contributions of different regulators in the
dysregulated network affected by member genes.

Supplementary Figure S15

Some survival associated clique modules in OV. (A) The survival association of four modules in
OV (B) The combined prognostic effect of alterations of genes in the two modules, respectively.
One module contained PUDF60, SOX18, CCDC88A, MED4 and THOC7, the other contained
LDHB, MRPS22 and ATP5C1.

Supplementary Figure S16

A clique module (ARNT, NFE2L2, BARDI1, SUBI1, ATF2, PTEN and TOPBP1) contained genes
with different prognostic effect in HNSC. (A) Two subgroups identified by applying unsupervised
hierarchical clustering to HNSC samples with alterations of at least one gene in the module. Red
represents subgroupl and blue subgroup2. (B) Two subgroups showed different prognosis. (C)
Two subgroups and HNSC samples without any alteration of the module (Non-alteration group)
showed different prognosis. (D) Survival analysis between subgroupl and Non-alteration group.
(E) Survival analysis between subgroup2 and Non-alteration group.

Supplementary Figure S17



A clique module (TAF9, HOXB7, EEF1D and RXRB) contained genes with different prognostic
effect in OV. (A) Two subgroups identified by applying unsupervised hierarchical clustering to
OV samples with alterations of at least one gene in the module. Red represents subgroupl and
blue subgroup2. (B) Two subgroups showed different prognosis. (C) Two subgroups and OV
samples without any alteration of the module (Non-alteration group) showed different prognosis.
(D) Survival analysis between subgroupl and Non-alteration group. (E) Survival analysis between
subgroup2 and Non-alteration group.

Supplementary Figure S18

A clique module (MED21, MYC, ZHX1, KPNA2 and USF2) contained genes with different
prognostic effect in LUAD. (A) Two subgroups identified by applying unsupervised hierarchical
clustering to LUAD samples with alterations of at least one gene in the module. Red represents
subgroupl and blue subgroup2. (B) Two subgroups showed different prognosis. (C) Two
subgroups and LUAD samples without any alteration of the module (Non-alteration group)
showed different prognosis. (D) Survival analysis between subgroupl and Non-alteration group.
(E) Survival analysis between subgroup2 and Non-alteration group.

Supplementary Figure S19

Comparisons of the core modules and their dysregulated genes among seven types of cancer.
Supplementary Figure S20

Comparison of EGFR-associated regulatory networks between multi-omics data and 9 different
combinations. (A) The heatmap of regulatory network identified by multi-omics data. (B) The
number of regulatory relationships identified from multi-omics data and 9 different combinations.
(C) The overlap of regulated genes in regulatory networks between multi-omics data and other
different combinations.

Supplementary Figure S21

Comparison of core modules identified by multi-omics data and 9 different combinations with
only two or three types of data. (A) The heatmap of member genes identified from multi-omics

data and 9 different combinations. (B) The modules identified from 4 different combinations.
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The number of dysregulated genes
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Supplementary Table S1 The information of dysregulated networks for candidate genes

Gene Gene Tf Mir Interaction CnvGene MethGene TfGene MirGene
name num num num num num num num num
AVIL 1231 114 38 1664 489 144 972 59
B4AGALNT1 1300 110 48 1735 531 155 982 67
CCT6A 1194 102 44 1584 497 151 876 60
CDK4 1207 114 36 1621 473 144 950 54
CDKN2A 620 89 17 799 233 59 489 18
CDKN2B 551 86 21 719 205 57 433 24
CHCHD2 1193 102 44 1583 497 150 876 60
CHIC2 1276 108 47 1718 560 166 920 72
CTDSP2 1265 113 41 1700 518 138 975 69
CYP27B1 1209 107 39 1600 480 140 912 68
DCTNZ2 1351 111 49 1812 576 152 1010 74
DDIT3 1364 117 52 1827 579 165 1012 71
DTX3 1348 111 49 1811 576 153 1008 74
EGFR 778 103 13 1055 230 74 737 14
ELAVL2 945 94 34 1248 347 118 734 49
GBAS 1118 104 38 1479 458 130 833 58
GLI1 1353 117 51 1828 578 160 1007 83
KIF5A 1350 111 49 1812 576 153 1009 74
KIT 1288 111 45 1709 568 175 897 69
KLHL9 903 95 33 1161 364 116 622 59
LANCL2 638 91 23 793 229 82 442 40
MBD6 1309 109 51 1745 564 164 942 75
MDM4 1355 121 46 1854 537 185 1067 65
METTL1 1210 107 39 1600 480 141 911 68
METTL21B 1217 115 38 1641 480 141 960 60
MLLT3 1263 112 45 1708 463 160 1016 69
MRPS17 1119 104 38 1478 458 131 831 58
MTAP 491 72 21 589 172 56 333 28
NF1 1312 107 44 1790 526 166 1041 57
0S9 1238 110 43 1654 491 141 951 71
PDGFRA 1311 115 42 1772 561 181 972 58
PHKG1 1193 102 44 1582 496 150 876 60
PIK3C2B 1345 117 45 1841 537 186 1050 68
PIP4K2C 1340 113 54 1784 561 153 994 76
PSPH 1114 104 32 1501 451 137 859 54
PTEN 661 84 29 862 171 90 562 39
RB1 1229 108 40 1628 519 153 884 72
RYR3 1440 119 49 1981 575 180 1145 81
SEC61G 625 87 19 789 199 59 498 33
SLC26A10 1308 113 49 1744 543 160 975 66
TSFM 1217 115 38 1641 480 141 960 60




Gene Gene Tf Mir Interaction CnvGene MethGene TfGene MirGene
name num num num num num num num num
AVIL 1231 114 38 1664 489 144 972 59
TSPAN31 1207 114 36 1621 473 144 950 54
CDK4 1207 114 36 1621 473 144 950 54
CDKN2A 620 89 17 799 233 59 489 18
CTDSP2 1265 113 41 1700 518 138 975 69
DCTNZ2 1351 111 49 1812 576 152 1010 74
DDIT3 1364 117 52 1827 579 165 1012 71
EGFR 778 103 13 1055 230 74 737 14
KIF5A 1350 111 49 1812 576 153 1009 74
KIT 1288 111 45 1709 568 175 897 69
MDM4 1355 121 46 1854 537 185 1067 65
METTL1 1210 107 39 1600 480 141 911 68
0S9 1238 110 43 1654 491 141 951 71
PDGFRA 1311 115 42 1772 561 181 972 58
PHKG1 1193 102 44 1582 496 150 876 60
PIK3C2B 1345 117 45 1841 537 186 1050 68
PTEN 661 84 29 862 171 90 562 39
RB1 1229 108 40 1628 519 153 884 72




Supplementary Table S2. The datasets for other six types of cancer

Gene miRNA DNA Copy . . Common
Cancer name . . . Somaticmutations
expression expression methylation  number samples
. . SOLiID_DNASeq
Ovarian Serous H-miRNA .
cvstadenocarcinoma HG-U133A 8x15KV2 Methyl27 SNP_6.0 IllluminaGA_DNASeq 446
[év] (578) 500) (613) (570)  IlluminaGA_DNASeq
(462)
Head d Neck IlluminaHiSe llluminaHiSe llluminaGA_DNASe
ac - an ¢ HMInaTiiSeq u.ml anioed Methyl450  SNP_6.0 y I - d
squamous cell _RNASeqV2 _MiRNASeq (516) (509) IlluminaGA_DNASeq_automated 437
carcinoma[HNSC] (495) (467) (511)
Lun IlluminaHiSe IlluminaHiSe
b a T 9 Methyl450  SNP_6.0 IlluminaGA_DNASeq
adenocarcinoma _RNASeqV2 _mMIiRNASeq (450) (494) (519) 389
[LUAD] (488) (428)
Cervical squamous
cell carcinoma and IlluminaHiSeq IlluminaHiSeq IlluminaGA_DNASeq
. . Methyl450  SNP_6.0 .
endocervical _RNASeqVv2 _miRNASeq 211) (192) llluminaGA_DNASeq_automated 180
adenocarcinoma (185) (200) (324)
[CESC]
. . AgilentG4502  IlluminaHiSeq IlluminaGA_DNASeq
Breast invasive . Methyl27 SNP_6.0 .
carcinoma[BRCA] A 07 3 _miRNASeq (342) (011) IlluminaGA_DNASeq_curated 131
(529) (782) (519)
IlluminaGA_DNASeq
Prostate IluminaHiSeq  IluminaHiSeq IlluminaGA_DNASeq_automated
. . Methyl450  SNP_6.0 .
adenocarcinoma _RNASeqV2 _miRNASeq (340) (331) llluminaGA_DNASeq_automated 284
[PRAD] (297) (326) IlluminaGA_DNASeq_curated

(300)
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