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S1. THE FLUX QUBIT-CAVITY HAMILTONIAN

The potential energy of a compound flux qubit, shown in Fig. S1, is obtained by combining the

corresponding Josephson potentials E(ϕ`) =−EJ` cos(ϕ`), where EJ` and ϕ` are the Josephson

energy and the superconducting phase across the `th Josephson junction (JJ). We assume EJ1 =

EJ2 =EJ , EJ3 = αEJ and EJ4 =EJ5 = βEJ . In addition, the total flux around each closed loop

satisfies the flux quantization
∑

` ϕ` = 2πf`+2πn, where ϕ` is a gauge-invariant superconducting

phase, f` = φ`/φ0 is the frustration parameter of the `th JJ, and n is an integer-multiple. The

potential energy for the free qubit and for the qubit-resonator interaction is given by

U

EJ
=− [cosϕ1 + cosϕ2 + α cos(ϕ2 − ϕ1 + 2πf1)

+ 2β(f3) cos(ϕ2 − ϕ1 + 2πf̃ + ∆ψ)], (S1)

where β(f3) = β cos(πf3), f̃ = f1 + f2 + f3/2 and ∆ψ stands for the phase slip shared by the

coplanar waveguide resonator (CWR) and f2 loop (see Fig. S1). We also note that the junction at

the central line, JJ6, introduces a boundary condition that modifies the mode structure of the cavity

but without modifying the potential energy, Eq. (S1). A detailed analysis of an inhomogeneous

CWR can be found elsewhere1,2. In particular, it has been shown that the phase slip takes the form

∆ψ = ∆ψ1(a + a†) where ∆ψ1 = (δ1/ϕ0)(~/2ωrCr)1/2. Here, ωr is the frequency of the first

cavity mode, Cr is the total geometric capacitance of the cavity, ϕ0 = φ0/2π is the reduced flux

quantum, and δ1 = u1(x1)−u(x2) corresponds to a difference between the first-order spatial mode

evaluated at the points x1 and x2, shared by the resonator and the f2 loop. The potential U can be

further approximated by considering the condition ∆ψ1�1, which can be satisfied with realistic
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FIG. S1. The compound flux qubit design. The JJ6 inserted in the central conductor leads to the ultrastrong

coupling and the f3 loop provides a switchable qubit-resonator coupling strength. Please refer to the text

for detailed explanation of the design.
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cavity parameters1,2. In the following, we make an expansion of ∆ψ term in Eq. (S1) up to the

second order such that we arrive at

U

EJ
=− [cosϕ1 + cosϕ2 + α cos(ϕ2 − ϕ1 + 2πf1)

+ 2β(f3)
[

cos ϕ̃
(

1− 1

2!
(∆ψ)2

)
−∆ψ sin ϕ̃

]]
,

(S2)

where ϕ̃ = ϕ2−ϕ1+2πf̃ . From Eq. (S2), we obtain the flux qubit potentialUqubit = −EJ(cosϕ1+

cosϕ2+α cos(ϕ2−ϕ1+2πf1)) and the tunable qubit-resonator interaction, Eq. (S4). The potential

Uqubit can be diagonalized numerically as a function of the frustration parameter f1. In particular,

for f1 ∼ 0.5, the two lowest energy levels are well separated from higher excited energy levels,

thus defining a two-level system. After projecting the qubit-resonator interaction into the qubit

basis, the system Hamiltonian reads

HRabi =
~ωeg

2
σz + ~ωcava

†a+Hint, (S3)

with the effective interaction Hamiltonian

Hint = −κ
∑
n=1,2

(∆ψ)n
∑

µ=x,y,z

cnµ(α, β, f1, f2, f3)σµ, (S4)

where κ = 2EJβ(f3) and cnµ(α, β, f1, f2, f3) are the controllable magnitudes of the longitudinal

and transversal coupling strengths for nth order interaction. When external fluxes satisfy f2 +

f3/2 = 0.5, both c1
y and the second-order coupling strength are negligible2. Thus, the effective

interaction Hamiltonian reduces to

Hint = ~g(a+ a†)(czσz + cxσx), (S5)

where cz,x = c1
z,x and the switchable qubit-cavity coupling strength g = 2EJβ(f3)∆ψ1/~.

S2. CAVITY NETWORK

In order to transfer the state of a qubit along a given path in a cavity network, interactions

between neighboring resonators must be selectively turned on and off on demand. This can

be done via connecting more resonators to a single circuit node, and then grounding that node

through a superconducting quantum interference device (SQUID), as shown in Fig. S2. A SQUID
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FIG. S2. A node of the cavity network, showing four single-mode resonators grounded through a SQUID

device. The colour scheme suggests that the frequencies ωi of the four cavities are different so that direct

interactions among them are off-resonance. Hopping interactions between any cavity pair can be activated

by driving the SQUID with an external flux, which must be oscillating with the frequency given by sum of

the two-cavity bare frequencies.

is a superconducting loop interrupted by two JJs. When a SQUID is perfectly symmetrical, it

behaves as a single JJ, such that its effective Josephson energy can be tuned by threading the

loop with an external magnetic flux. Indeed, this device can be seen as a tunable inductance,

shunted by a small capacitance. The SQUID inductance can be written as LJ =
ϕ2
0

EJ (φext)
, where

EJ(φext) = 2EJ

∣∣∣cos
(
φext
2ϕ0

)∣∣∣. Here ϕ0 is the reduced magnetic flux quantum, φext is the external

magnetic flux, and EJ is the Josephson energy. If the system parameters are chosen in order to

make the SQUID impedance much smaller than that of the resonators, the electrical potential at

the node can be approximated to zero. Such condition is naturally satisfied in most circuit QED

experiments involving SQUIDs in the non-dissipative regime. This enables us to define well sep-

arated spatial modes for the electromagnetic field in the different resonators. A direct coupling

between resonators is then given by the inductive energy term of the SQUID. The strength of this

interaction depends on the SQUID impedance and the external flux threading the device. After

quantization, the Hamiltonian describing a single network node can be written as (see Ref. 3 for

detailed derivation)

H = ~
∑
l

ωla
†
lal (S6)

− ~
∑
l,r

αl,r(t)
(
a†l + al

) (
a†r + ar

)
,
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where ωl is frequency of the lth resonator and the indexes l, r run over all resonators pairs. The

corresponding coupling parameters are given by

αl,r(t) =
ϕ2

0

EJ(φext)

√
ωlωr
ClCr

1

ZlZr
, (S7)

where Ci and Zi indicate the resonator effective capacitance and impedance, respectively. When

the resonators are off-resonance, i.e. when |ωl − ωr| � αl,r, their interaction is negligible, as far

as the coupling strength is constant. Nevertheless, the SQUID can be driven by an external mag-

netic flux oscillating at frequency comparable with that of the resonators4. In this way, the direct

interaction term between any resonator pair can be tuned on resonance when the corresponding

frequency matching conditions are satisfied. In particular, we can set φext/2ϕ0 = φ̄+ ∆ cos (ωdt),

where φ̄ is a constant offset and ∆ is the amplitude of a small harmonic drive, whose frequency is

given by ωd. Neglecting terms of the order of ∆2, we obtain

1

EJ (φext)
≈ 1

cos φ̄
+

sin φ̄

cos2 φ̄
∆ cos (ωdt). (S8)

To activate hopping interactions (a†lar + ala
†
r) between two resonators, the driving frequency must

satisfy the condition ωd = |ωl − ωr|. By controlling the external magnetic flux threading the

SQUID device, this scheme allows to selectively turn on an inductive coupling between any two

neighboring resonators, which would not interact otherwise.

S3. OPEN QUANTUM SYSTEM DYNAMICS

It is inevitable that any practical and realistic quantum system operates in noisy environment

and so is our memory element. Moreover, it is well-known that the standard quantum optics

master equation technique is not valid for any value of the qubit-field coupling5. Hence, we follow

a perturbative expansion of the system-bath coupling strength in the microscopic derivation6 and

obtain the master equation7

ρ̇(t) = i[ρ(t), HS] + Laρ(t) + Lσρσ(t), (S9)

where HS = HRabi of Eq. S3 and σ = x, y, z. La and Lσ are Liouvillian superoperators with

Lνρ(t) =
∑
j,k>j

Γjkν (1 + n̄ν(∆kj, T ))D[|j〉〈k|]ρ(t)

+
∑
j,k>j

Γjkν n̄c(∆kj, T )D[|k〉〈j|]ρ(t), (S10)
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where ν = a, x, y, z, D[O]ρ = (2OρO† − ρO†O−O†Oρ)/2, T is the temperature of the thermal

bath and n̄ν(∆kj, T )) is the number of thermal photons feeding the system from all the possible

|k〉 → |j〉 transitions. Here, states |j〉 are eigenstates of HRabi with respective eigenenergy ~ωj ,

i.e., HS|j〉 = ~ωj|j〉. To arrive at the numerical simulation shown in Fig. 5 of the main text,

we assume our system is in a very low temperature environment, i.e., T ' 0, and the relaxation

coefficients take the form7 Γjkν = γν
∆kj

ω0
|Cν

jk|2, where γν are standard weak coupling damping

rates, ∆kj = ωk − ωj , and Cν
jk = −i〈j|Θ|k〉, (Θ = a − a†) for ν = a and (Θ = σx,y,z) for

ν = {x, y, z}, respectively.
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