Supplementary Information

Metabolic theory predicts whole-ecosystem properties

John R. Schramski, Anthony I. Dell, John M. Grady, Richard M. Sibly and James H. Brown

This PDF file includes:

Materials and Methods Table S1 Table S2 Table S3 Figure S1

Materials and Methods

1. Proof of Equation 1 (main text)

Here we show that the average residence time of carbon molecules within an ecosystem at equilibrium is proportional to its total biomass divided by *GPP*. We assume that *GPP* is measured by the number (*P*) of carbon molecules entering the system every second, and that total biomass is measured as the total number (*B*) of carbon molecules in the ecosystem. We work in discrete time in seconds though the proof can be made general.

Of the *P* molecules entering the system every second, let the proportion staying in the system for time *t* and then leaving be p_{τ} , for $\tau = 1, 2, 3, ..., T$ seconds. The number of molecules in the system that entered 1 s ago and stay for 1 s or more is $P(p_1 + p_2 + p_3 + ... + p_{\tau} + ... + p_{T})$, = *P*. The number that entered 2 s ago and stay 2 s or more is $P(p_2 + p_3 + ... + p_{\tau} + ... + p_{T})$. This is less than *P* because Pp_1 molecules, that entered 2 s ago, have now left the system. The number that entered 3 s ago and stay 3 s or more is $P(p_3 + ... + p_{\tau} + ... + p_{\tau})$, and so on up until the oldest molecules in the system which entered *T* s ago. Addition gives the total number of molecules in the system as

$$P(p_{1} + p_{2} + p_{3} + \dots + p_{\tau} + \dots + p_{T}) + P(p_{2} + p_{3} + \dots + p_{\tau} + \dots + p_{T}) + P(p_{3} + \dots + p_{\tau} + \dots + p_{T}) + \dots + P(p_{\tau} + \dots + p_{\tau}) + \dots + P(p_{\tau} + \dots + p_{T}) + \dots + P(p_{\tau} + \dots + p_{T}) + \dots + P(p_{\tau}) = P(p_{1} + 2p_{2} + 3p_{3} + \dots + \tau p_{\tau} + \dots + \tau p_{T})$$

So the total number of carbon molecules in the system (*B*) is $P\sum_{\tau} tp_{\tau}$. $\sum_{\tau} tp_{\tau}$ is by definition the average residence time of a carbon molecule in the system, and so average residence time = *B*/*P* (Eq. 1, main text).

2. Proof of Equation 7 (main text)

TST_c is the sum of the flows through each compartment that have previously passed through them, and TST is given by Eq. 6 (main text). We assume there is just one compartment at each trophic level and that the flow from decomposers goes only to level 2. We define d₁, d₂ and P₂ as in the main text, and write d₁d₂ = d. Then to derive an equation for FCI we go through the compartments one at a time, calculating how much of their outflow returns to them. The outflow from decomposers is $d(P + P_2 \frac{1-t^{n-1}}{1-t})$, of which a proportion d₁ returns directly to decomposers. A further proportion td₁ returns to decomposers from level 3, t²d₁ from level 4, and so on, giving in all

$$d(P + P_2 \frac{1 - t^{n-1}}{1 - t}) d_1 \frac{1 - t^{n-1}}{1 - t}$$
 Eq. S1

This is the flow through decomposers that has passed through them before.

The flow into level 2 is P_2 , of which dP_2 returns to level 2 directly, P_2td returns via level 3 and so on, giving a total of $P_2d \frac{1-t^{n-1}}{1-t}$ for the flow through level 2 that has passed through level 2 before.

The flow into level 3 is $P_2 t$, of which dt returns to level 3 without going through any higher level, $t^2 d$ returns via level 4 and so on, giving a total of $P_2 d(t^2 + t^3 + t^4 + ... + t^{n-3})$.

Similarly the flow into level 4 that has been there before is $P_2d(t^4 + t^5 + t^6 + ... + t^{n-4})$, and so on, so the total for non-decomposers is

$$\frac{P_2d}{1-t}\left\{\frac{1-t^{2n-2}}{1-t^2} - \frac{t^{n-1}-t^{2n-2}}{1-t}\right\}$$
 Eq. S2

Adding together expressions S1 and S2 gives TST_c as

$$TST_{c} = \frac{d}{1-t} \left(Pd_{1}(1-t^{n-1}) + P_{2} \left\{ d_{1} \frac{\left(1-t^{n-1}\right)^{2}}{1-t} + \frac{1-t^{2n-2}}{1-t^{2}} - \frac{t^{n-1}-t^{2n-2}}{1-t} \right\} \right)$$
 Eq. S3

FCI can now be obtained as $FCI = 100 \times TST_{c}/TST$.

3. Proof that FCI ~ 100 $d_1d_2(d_1 + t)$, when t, d_1 and d_2 are small (main text)

To first order in t, d_1 and d_2 , Eqs. 6 and 7 (main text) give

$$P_2 = Pt$$
 Eq. S4

$$TST_c = d_1 d_2 (Pd_1 + Pt)$$
Eq. S6

It follows from Eq. S4 to S6 that FCI = 100 $TST_c/TST \simeq 100 d_1d_2(d_1 + t)$

Table S1. Summary parameter values for 37 ecological steady-state trophic networks we constructed (see Fig. 1 & 3). **Model** is model number (see Fig. 1, Fig. S1); **Hab** is habitat (T, terrestrial, M, pelagic marine); **PComp** is total number of primary producer compartments; **Comp** is total number of trophic compartments; **TL** is total number of trophic levels; **L/C** is linear (L, no recycling) or cyclic (C, with recycling); **Temp** is mean environmental temperature, and is assumed to approximately equal ectotherm body temperature (Kelvin); **GPP** is gross primary production (kg C/yr m²); **PMass** is mean size of an individual primary producer (kg C); β is the mass scaling exponent (see Eq. 3, main text); **TTE**₁₋₂ is trophic transfer efficiency from the first to second trophic level (all other TTE's = 0.1, except to and from decomposers [see); **TTE***d*₁ is trophic transfer efficiency to the decomposer compartment (if present); **TTE***d*₂ is trophic transfer efficiently from the decomposer apartment (if present); **B**_{eco} is total biomass of the ecosystem (kg C/m²); \hat{t}_{eco} is total residence time of carbon within the ecosystems (yr); **GPP/B**_{eco} (yr); **FCI** is Finn Cycling Index; and **TST** is total systems throughput (kg C/yr m²). For additional details about each model see Fig. S1, or contact the corresponding author.

Model	Hab	PComp	Comp	ΤL	L/C	Temp	GPP	PMass	β	TTE ₁₋₂	TTEd₁	TTEd ₂	B _{eco}	\hat{t}_{eco}	GPP/B _{eco}	FCI	TST
1a	Т	1	4	4	L	293	0.6	100	0.75	0.10	0.00	0.00	66.24	110.39	0.0091	0	0.667
1b	Т	1	4	4	L	293	0.6	10	0.75	0.10	0.00	0.00	37.35	62.25	0.0161	0	0.667
1c	Т	1	4	4	L	293	0.6	1	0.75	0.10	0.00	0.00	21.10	35.17	0.0284	0	0.667
1d	Т	1	4	4	L	293	0.6	0.1	0.75	0.10	0.00	0.00	11.97	19.94	0.0501	0	0.667
1e	Т	1	4	4	L	293	0.6	0.01	0.75	0.10	0.00	0.00	6.83	11.38	0.0879	0	0.667
1f	Т	1	4	4	L	293	0.6	0.001	0.75	0.10	0.00	0.00	3.94	6.57	0.1523	0	0.667
1g	Т	1	4	4	L	293	0.06	0.001	0.75	0.10	0.00	0.00	0.39	6.57	0.1523	0	0.067
1h	Т	1	4	4	L	293	0.6	100	0.66	0.10	0.00	0.00	95.53	159.21	0.0063	0	0.667
1i	Т	1	4	4	L	293	0.6	10	0.66	0.10	0.00	0.00	44.74	74.57	0.0134	0	0.667
1j	Т	1	4	4	L	293	0.6	1	0.66	0.10	0.00	0.00	20.99	34.98	0.0286	0	0.667
1k	Т	1	4	4	L	293	0.6	0.1	0.66	0.10	0.00	0.00	9.88	16.46	0.0607	0	0.667
11	Т	1	4	4	L	293	0.6	0.01	0.66	0.10	0.00	0.00	4.68	7.80	0.1282	0	0.667
1m	Т	1	4	4	L	293	0.6	0.001	0.66	0.10	0.00	0.00	2.25	3.75	0.2667	0	0.667
1n	Т	1	4	4	L	293	0.06	0.001	0.66	0.10	0.00	0.00	0.23	3.75	0.2667	0	0.067
2a	Т	1	5	4	С	293	0.6	100	0.75	0.01	0.40	0.50	66.77	111.28	0.0090	10.77	1.200
2b	Т	1	5	4	С	293	0.6	10	0.75	0.01	0.40	0.50	37.88	63.14	0.0158	10.77	1.200
2c	Т	1	5	4	С	293	0.6	1	0.75	0.01	0.40	0.50	21.64	36.06	0.0277	10.77	1.200
2d	Т	1	5	4	С	293	0.6	0.1	0.75	0.01	0.40	0.50	12.50	20.83	0.0480	10.77	1.200
2e	Т	1	5	4	С	293	0.6	0.01	0.75	0.01	0.40	0.50	7.36	12.27	0.0815	10.77	1.200
2f	Т	1	5	4	С	293	0.6	0.001	0.75	0.01	0.40	0.50	4.47	7.46	0.1341	10.77	1.200
2g	Т	1	5	4	С	293	0.06	0.001	0.75	0.01	0.40	0.50	0.45	7.46	0.1341	10.77	0.120
2h	Т	1	5	4	С	293	0.6	100	0.75	0.01	0.40	0.10	66.16	110.27	0.0091	1.61	0.951
3	М	1	5	5	L	293	0.6	1E-12	0.75	0.10	0.00	0.00	0.10	0.17	5.7488	0	0.667
4a	М	1	6	5	С	293	0.6	1E-12	0.75	0.10	0.40	0.50	0.35	0.60	1.6918	10.69	0.000
4b	М	1	6	5	С	293	0.06	1E-12	0.75	0.10	0.40	0.10	0.02	0.25	3.9206	1.67	0.000
5	М	1	3	3	L	293	0.6	1E-12	0.75	0.10	0.00	0.00	0.97	1.61	0.6204	0	0.666
6a	М	1	4	3	С	293	0.6	1E-12	0.75	0.10	0.40	0.50	3.69	6.16	0.1624	10.87	1.200
6b	М	1	4	3	С	280	0.6	1E-12	0.75	0.10	0.40	0.50	9.65	16.09	0.0622	10.87	1.200
6c	М	1	4	3	С	300	0.6	1E-12	0.75	0.10	0.40	0.50	2.53	4.21	0.2375	10.87	1.200
6d	М	1	4	3	С	293	0.6	1E-12	0.75	0.10	0.40	0.10	1.41	2.36	0.4243	1.53	0.972
7a	Т	2	7	5	L	293	0.6	92.24	0.75	0.10	0.00	0.00	36.95	61.57	0.0162	0	0.666
7b	Т	2	7	5	L	300	0.6	92.24	0.75	0.10	0.00	0.00	20.75	34.58	0.0289	0	0.666
7c	Т	2	7	5	L	280	0.6	92.24	0.75	0.10	0.00	0.00	119.59	199.32	0.0050	0	0.666
8	Т	2	8	5	С	293	0.6	92.24	0.75	0.10	0.40	0.50	37.62	62.71	0.0159	10.13	1.200
9	Т	1	6	5	L	280	0.09	0.001	0.75	0.10	0.00	0.00	2.13	23.71	0.0422	0	0.100
10	Т	1	6	5	L	280	0.09	10	0.75	0.10	0.00	0.00	18.69	207.63	0.0048	0	0.100
11a	М	3	9	4	L	293	0.6	1.25E-09	0.75	0.10	0.00	0.00	0.52	0.86	1.1604	0	0.666

Table S2. Empirical data for the body size dependence of carbon and nitrogen half-life within individual organisms (see Fig. 4A). **Taxa** is broad taxonomic group; **Mass** is wet mass of the entire organism (g); **Tissue type** is the tissue used to estimate half-life; **HL** is half-life (measured as the amount of time required for the stable-isotopic signature of the tissue to reach a midpoint value between the enriched and original value, see original sources for exact equations) (d); **HL15°C** is the temperature corrected half-life to 15°C, using Eq. 3 (main text); **Thermy** is 'Endo' for endotherm, and 'Ecto' for ectotherm; **Temp** is body temperature, for ecotherms it is assumed to be equivalent to environmental temperature and for endotherms 37°C; **Source** is data source from which data was obtained; and **Original Source** is the original source from which Source papers obtained data (see Table S3 for full citations).

Element	Таха	Species	Common name	Mass	Tissue type	HL	HL15°C	Thermy	Temp	Source	Original source
Carbon	Bird	Aythya valisineria	Canvasback	1248	Blood	23	147.27873	Endo	37	[1]	[2]
Carbon	Bird	Calidris alpina pacifica	Dunlin	44	Blood	11.2	71.71834	Endo	37	[3]	[4]
Carbon	Bird	Calidris alpina pacifica	Dunlin	56	Blood	11.23	71.91044	Endo	37	[1]	[4]
Carbon	Bird	Catharacta skua	Great skua	970	Blood	15.1	96.69169	Endo	37	[3]	[5]
Carbon	Bird	Corvus Brachyrhynchos	American crow	384.8	Blood (plasma)	2.9	18.56992	Endo	37	[3]	[6]
Carbon	Bird	Corvus Brachyrhynchos	American crow	428	Blood	29.8	190.82201	Endo	37	[1]	[6]
Carbon	Bird	Coturni japonica	Japanese quail	115	Blood	11.2	71.71834	Endo	37	[3]	[7]
Carbon	Bird	Coturni japonica	Japanese quail	115	Bone	173.3	1109.71324	Endo	37	[3]	[7]
Carbon	Bird	Coturni japonica	Japanese quail	115	Liver	2.5	16.00855	Endo	37	[3]	[7]
Carbon	Bird	Coturni japonica	Japanese quail	115	Muscle (flight)	12.4	79.40244	Endo	37	[3]	[7]
Carbon	Bird	Dendroica coronata	Yellow-rumped warbler	12	Blood	10.9	69.79731	Endo	37	[8]	[9]
Carbon	Bird	Dendroica coronata	Yellow-rumped warbler	12	Blood (plasma)	1	6.40342	Endo	37	[8]	[9]
Carbon	Bird	Dendroica coronata	Yellow-rumped warbler	12.5	Blood	4.5	28.81540	Endo	37	[1]	[10]
Carbon	Bird	Passer domesticus	House sparrow	22	Blood	19.3	123.58606	Endo	37	[8]	[11]
Carbon	Bird	Passer domesticus	House sparrow	22	Blood (plasma)	6.7	42.90293	Endo	37	[8]	[11]
Carbon	Bird	Passer domesticus	House sparrow	22	Bone (collagen)	20.4	130.62983	Endo	37	[8]	[11]
Carbon	Bird	Passer domesticus	House sparrow	22	Gizard	14.1	90.28826	Endo	37	[8]	[11]
Carbon	Bird	Passer domesticus	House sparrow	22	Heart	15.2	97.33203	Endo	37	[8]	[11]
Carbon	Bird	Passer domesticus	House sparrow	22	Intestine	10.3	65.95525	Endo	37	[8]	[11]
Carbon	Bird	Passer domesticus	House sparrow	22	Liver	9.8	62.75354	Endo	37	[8]	[11]
Carbon	Bird	Passer domesticus	House sparrow	22	Muscle (flight)	23.5	150.48044	Endo	37	[8]	[11]
Carbon	Bird	Passer domesticus	House sparrow	23	Blood	15.6	99.89340	Endo	37	[1]	[1]
Carbon	Bird	Sylvia borin	Garden warbler	24.8	Blood	5.4	34.57848	Endo	37	[3]	[12]
Carbon	Bird	Taeniopygia guttata	Zebra finch	16	Blood	13.4	85.80587	Endo	37	[8]	[8]
Carbon	Bird	Taeniopygia guttata	Zebra finch	16	Brain	12.8	81.96381	Endo	37	[8]	[8]
Carbon	Bird	Taeniopygia guttata	Zebra finch	16	Gizard	7	44.82396	Endo	37	[8]	[8]
Carbon	Bird	Taeniopygia guttata	Zebra finch	16	Heart	12	76.84107	Endo	37	[8]	[8]
Carbon	Bird	Taeniopygia guttata	Zebra finch	16	Intestine	5.6	35.85917	Endo	37	[8]	[8]
Carbon	Bird	Taeniopygia guttata	Zebra finch	16	Kidney	8	51.22738	Endo	37	[8]	[8]
Carbon	Bird	Taeniopygia guttata	Zebra finch	16	Liver	8.3	53.14841	Endo	37	[8]	[8]
Carbon	Bird	Taeniopygia guttata	Zebra finch	16	Muscle (flight)	14.5	92.84963	Endo	37	[8]	[8]
Carbon	Bird	Taeniopygia guttata	Zebra finch	16	Muscle (leg)	18.1	115.90196	Endo	37	[8]	[8]
Carbon	Fish	Danio rerio	Zebra danio	0.28	Muscle	53.3	171.99465	Ecto	28.5	[13]	[14]
Carbon	Fish	Dicentrarchus labrax	European sea bass	8	Muscle	157.5	119.58432	Ecto	12	[13]	[15]
Carbon	Fish	Lateolabrax japonicus	Japanese temperate bass	9.87	Muscle	21	42.59146	Ecto	23	[13]	[16]

Element	Таха	Species	Common name	Mass	Tissue type	HL	HL15°C	Thermy	Temp	Source	Original source
Carbon	Fish	Lepomis macrochirus	Bluegill	0.06	Muscle	18	32.06743	Ecto	21.5	[13]	[13]
Carbon	Fish	Lepomis macrochirus	Bluegill	5.38	Muscle	29	51.66419	Ecto	21.5	[13]	[13]
Carbon	Fish	Lepomis macrochirus	Bluegill	72.7	Muscle	116	206.65678	Ecto	21.5	[13]	[13]
Carbon	Fish	Micropterus salmoides	Largemouth bass	0.52	Muscle	18	32.06743	Ecto	21.5	[13]	[13]
Carbon	Fish	Micropterus salmoides	Largemouth bass	5.6	Muscle	25	44.53809	Ecto	21.5	[13]	[13]
Carbon	Fish	Micropterus salmoides	Largemouth bass	413	Muscle	173	308.20364	Ecto	21.5	[13]	[13]
Carbon	Fish	Oreochromis niloticus	Nile tilapia	23.87	Muscle	23.3	56.06088	Ecto	25	[13]	[17]
Carbon	Fish	Oreochromis niloticus	Nile tilapia	24.46	Muscle	26	62.55720	Ecto	25	[13]	[17]
Carbon	Fish	Paralichthys dentatus	Summer flounder	0.00067*	Whole organism	8.7	7.24536	Ecto	13	[13]	[18]
Carbon	Fish	Paralichthys dentatus	Summer flounder	0.00067*	Whole organism	2.9	5.39540	Ecto	22	[13]	[18]
Carbon	Fish	Paralichthys dentatus	Summer flounder	0.00718*	Whole organism	11.6	9.66048	Ecto	13	[13]	[18]
Carbon	Fish	Paralichthys dentatus	Summer flounder	0.00718*	Whole organism	5	9.30241	Ecto	22	[13]	[18]
Carbon	Fish	Paralichthys dentatus	Summer flounder	0.02080*	Whole organism	17.3	14.40745	Ecto	13	[13]	[18]
Carbon	Fish	Paralichthys dentatus	Summer flounder	0.02080*	Whole organism	5.8	10.79080	Ecto	22	[13]	[18]
Carbon	Fish	Paralichthys dentatus	Summer flounder	58.8	Muscle	69	106.89063	Ecto	19.9	[13]	[19]
Carbon	Fish	Paralichthys dentatus	Summer flounder	102	Muscle	49	79.30979	Ecto	20.4	[13]	[19]
Carbon	Fish	Paralichthys olivaceus	Japanese flounder	0.26	Muscle	17.3	22.96049	Ecto	18.15	[13]	[20]
Carbon	Fish	Paralichthys olivaceus	Japanese flounder	0.26	Muscle	13.9	16.64862	Ecto	17	[13]	[20]
Carbon	Fish	Paralichthys olivaceus	Japanese flounder	1.06	Muscle	5	6.84543	Ecto	18.5	[13]	[20]
Carbon	Fish	Perca flavescens	Yellow perch	0.11	Muscle	8	14.25219	Ecto	21.5	[13]	[13]
Carbon	Fish	Perca flavescens	Yellow perch	2.24	Muscle	58	103.32839	Ecto	21.5	[13]	[13]
Carbon	Fish	Perca flavescens	Yellow perch	11.16	Muscle	116	206.65678	Ecto	21.5	[13]	[13]
Carbon	Fish	Pleuronectes americanus	Winter flounder	0.00255*	Whole organism	2.2	2.88113	Ecto	18	[13]	[21]
Carbon	Fish	Pleuronectes americanus	Winter flounder	0.00322*	Whole organism	4.1	3.41448	Ecto	13	[13]	[21]
Carbon	Fish	Pomatoschistus minutus	Sand goby	5.85	Muscle	23.9	28.62604	Ecto	17	[13]	[22]
Carbon	Fish	Pseudoplatystoma corruscans	Pintado	0.77	Whole organism	105	291.35423	Ecto	26.69	[13]	[23]
Carbon	Fish	Sciaenops ocellatus	Red drum	0.00016*	Whole organism	6	18 57412	Ecto	28	[13]	[24 25]
Carbon	Fish	Sciaenops ocellatus	Red drum	0.00496*	Whole organism	5	15 47844	Ecto	28	[13]	[24 25]
Carbon	Fish	Sciaenops ocellatus	Red drum	0.00597*	Whole organism	7	15 46772	Ecto	24	[13]	[24 25]
Carbon	Fish	Solea senegalensis	Senegalese sole	0.00176*	Whole organism	25	4 45380	Ecto	21.5	[13]	[26]
Carbon	Fish	Solea senegalensis	Senegalese sole	0.00176*	Whole organism	27	4 81011	Ecto	21.5	[13]	[26]
Carbon	Fish	Solea senegalensis	Senegalese sole	0.00176*	Whole organism	3.5	6 23533	Ecto	21.5	[13]	[26]
Carbon	Mammal	Equus caballus	Horse	409778	Hair	136	870.86556	Endo	37	[3]	[27]
Carbon	Mammal	Meriones unquiculates	Gerbil	64.8	Brain	27.7	177.37482	Endo	37	[3]	[28]
Carbon	Mammal	Meriones unquiculates	Gerbil	64.8	Fat	15.8	101.17408	Endo	37	[3]	[28]
Carbon	Mammal	Meriones unquiculates	Gerbil	64.8	Hair	46.2	295.83815	Endo	37	[3]	[28]
Carbon	Mammal	Meriones unquiculates	Gerbil	64.8	Liver	6.4	40 98190	Endo	37	[3]	[28]
Carbon	Mammal	Meriones unquiculates	Gerbil	64.8	Muscle	27.7	177 37482	Endo	37	[3]	[28]
Carbon	Mammal	Mus musculus	Mouse	18 55	Blood	16.9	108 21785	Endo	37	[3]	[29]
Carbon	Mammal	Mus musculus	Mouse	18.55	Muscle	23.9	153 04181	Endo	37	[3]	[29]
Carbon	Mammal	Mus musculus	Mouse (28 d)	19	Blood	20.4	130 62983	Endo	37	[8]	[30]
Carbon	Mammal	Mus musculus	Mouse (172 d)	19	Blood	10.9	126 78778	Endo	37	[8]	[30]
Carbon	Mammal	Mus musculus	Mouse (172 d)	19	Brain	17.8	113 98093	Endo	37	[8]	[30]
Carbon	Mammal	Mus musculus	Mouse (28 d)	19	Heart	13.0	89 00758	Endo	37	[8]	[30]
Carbon	Mammal	Mus musculus	Mouse (28 d)	19	Kidney	4.6	29 45574	Endo	37	[8]	[30]
Carbon	Mammal	Mus musculus	Mouse (28 d)	19	Livor	4.0 5	23.43374	Endo	37	[0] [8]	[30]
JaiDUII	mannal			13		3	32.01711		57	[0]	[00]

Element	Таха	Species	Common name	Mass	Tissue type	HL	HL15°C	Thermy	Temp	Source	Original source
Carbon	Mammal	Mus musculus	Mouse (28 d)	19	Muscle (leg)	23.1	147.91907	Endo	37	[8]	[30]
Carbon	Mammal	Mus musculus	Mouse (172 d)	19	Muscle (leg)	18.2	116.54230	Endo	37	[8]	[30]
Carbon	Mammal	Mus musculus	Mouse	27.7	Blood	18.6	119.10367	Endo	37	[3]	[3]
Carbon	Mammal	Rattus norvegicus	Rat	288	Blood	24.7	158.16455	Endo	37	[3]	[3]
Carbon	Mammal	Vicugna pacos	Alpaca	60000	Liver	37.3	238.84768	Endo	37	[8]	[31]
Carbon	Mammal	Vicugna pacos	Alpaca	60000	Muscle (leg)	178.7	1144.29173	Endo	37	[8]	[31]
Carbon	Shark	Carcharhinus plumbeus	Sandbar shark	5500	Blood	93.25	197.42225	Ecto	23.5	[32]	[32]
Carbon	Shark	Carcharhinus plumbeus	Sandbar shark	5500	Muscle	155.2	328.57837	Ecto	23.5	[32]	[32]
Nitrogen	Amphibian	Rana palmipes	Tadpole	2.115	Muscle	138.6	293.43403	Ecto	23.5	[33]	[33]
Nitrogen	Bird	Aythya valisineria	Canvasback	1250	Blood	23.2	148.55941	Endo	37	[3]	[2]
Nitrogen	Bird	Calidris alpina pacifica	Dunlin	44	Blood	10	64.03423	Endo	37	[3]	[4]
Nitrogen	Bird	Catharacta skua	Great skua	970	Blood	12	76.84107	Endo	37	[3]	[5]
Nitrogen	Bird	Dendroica coronata	Yellow-rumped warbler	11.5	Blood	7.5	48.02567	Endo	37	[3]	[10]
Nitrogen	Bird	Sylvia borin	Garden warbler	24.8	Blood	8.1	51.86772	Endo	37	[3]	[12]
Nitrogen	Crustacean	<i>Euphausiacea</i> spp.	Krill	0.01	Whole organism	784	159.87826	Ecto	-1.5	[33]	[34]
Nitrogen	Crustacean	<i>Euphausiacea</i> spp.	Krill	0.01	Whole organism	156	43.08434	Ecto	1.5	[33]	[34]
Nitrogen	Fish	Ancistrus triradiatus	Armored catfish	1.44	Blood	16.9	35.77947	Ecto	23.5	[33]	[33]
Nitrogen	Fish	Ancistrus triradiatus	Armored catfish	1.44	Muscle	18.2	38.53174	Ecto	23.5	[33]	[33]
Nitrogen	Fish	Ancistrus triradiatus	Armored catfish	1.44	Muscle (fin)	12.2	25.82897	Ecto	23.5	[33]	[33]
Nitrogen	Fish	Paralichthys dentatus	Summer flounder	0.01	Whole organism	8	6.66240	Ecto	13	[33]	[18]
Nitrogen	Fish	Paralichthys dentatus	Summer flounder	0.01	Whole organism	3	5.58145	Ecto	22	[33]	[18]
Nitrogen	Fish	Paralichthys dentatus	Summer flounder	0.1	Whole organism	14	11.65921	Ecto	13	[33]	[18]
Nitrogen	Fish	Paralichthys dentatus	Summer flounder	0.1	Whole organism	6	11.16290	Ecto	22	[33]	[18]
Nitrogen	Fish	Pleuronectes americanus	Winter flounder	0.00255*	Whole organism	3.1	4.05978	Ecto	18	[21]	[21]
Nitrogen	Fish	Pleuronectes americanus	Winter flounder	0.00322*	Whole organism	3.9	3.24792	Ecto	13	[21]	[21]
Nitrogen	Fish	Salvelinus namaycush	Lake trout	55	Whole organism	69	45.97915	Ecto	10.6	[33]	[35]
Nitrogen	Gastropod	Elimia sp.	Snail	0.1	Whole organism	69	54.36701	Ecto	12.4	[33]	[36]
Nitrogen	Gastropod	Lavigeria grandis	Snail	0.495	Muscle	49.5	129.60970	Ecto	26	[33]	[33]
Nitrogen	Gastropod	Tarebia granifera	Snail	0.055	Muscle	20.2	42.76599	Ecto	23.5	[33]	[33]
Nitrogen	Mammal	Mus musculus	Mouse	18.55	Blood	19.3	123.58606	Endo	37	[3]	[29]
Nitrogen	Mammal	Mus musculus	Mouse	18.55	Liver	7.3	46.74498	Endo	37	[3]	[29]
Nitrogen	Mammal	Mus musculus	Mouse	18.55	Muscle	24.8	158.80489	Endo	37	[3]	[29]
Nitrogen	Mammal	Mus musculus	Mouse	27.7	Blood	19.6	125.50709	Endo	37	[3]	[3]
Nitrogen	Mammal	Rattus norvegicus	Rat	288	Blood	21.3	136.39291	Endo	37	[3]	[3]
Nitrogen	Shark	Carcharhinus plumbeus	Sandbar shark	5500	Blood	60.6	128.29799	Ecto	23.5	[32]	[32]
Nitrogen	Shark	Carcharhinus plumbeus	Sandbar shark	5500	Muscle	92.35	195.51683	Ecto	23.5	[32]	[32]

* Dry mass converted to wet mass using data for Chinook salmon (Oncorhynchus tshawytscha) - dry mass is 14.9% of wet mass [37].

Table S3. Data sources for carbon and nitrogen half-life within individual organisms (see Table S2).

- 1. Carleton SA, Martinez del Rio C (2005) The effect of cold-induced increased metabolic rate on the rate of 13C and 15N incorporation in house sparrows (Passer domesticus). Oecologia 144: 226-232.
- 2. Haramis GM, Jorde DG, Macko SA, Walker JL (2001) Stable-isotope analysis of Canvasback winter diet in upper Chesapeake Bay. Auk 118: 1008-1017.
- 3. MacAvoy SE, Arneson LS, Bassett E (2006) Correlation of metabolism with tissue carbon and nitrogen turnover rate in small mammals. Oecologia 150: 190-201.
- Ogden LJE, Hobson KA, Lank DB (2004) Blood Isotopic (δ13c and δ15n) Turnover and Diet-Tissue Fractionation Factors in Captive Dunlin (Calidris Alpina Pacifica). The Auk 121: 170.
- 5. Bearhop S, Waldron S, Votier S, Furness R (2002) Factors that infuence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol Biochem Zool 75: 451-458.
- 6. Hobson K, Clarke R (1993) Turnover of 13C in cellular and plasma fractions of blood: implications for nondestructive sampling in avian dietary studies. Auk 110: 638-641.
- 7. Hobson K, Clark R (1992) Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor 94: 181-188.
- 8. Bauchinger U, McWilliams S (2009) Carbon turnover in tissues of a passerine bird: allometry, isotopic clocks, and phenotypic flexibility in organ size. Physiol Biochem Zool 82: 787-797.
- 9. Podlesak DW, McWilliams SR, Hatch KA (2005) Stable isotopes in breath, blood, feces and feathers can indicate intraindividual changes in the diet of migratory songbirds. Oecologia 142: 501-510.
- 10. Pearson SF, Levey DJ, Greenberg CH, Martinez Del Rio C (2003) Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia 135: 516-523.
- 11. Carleton SA, Kelly L, Anderson-Sprecher R, del Rio CM (2008) Should we use one-, or multi-compartment models to describe (13)C incorporation into animal tissues? Rapid Commun Mass Spectrom 22: 3008-3014.
- 12. Hobson KA, Bairlein F (2003) Isotopic fractionation and turnover in captive Garden Warblers (Sylvia borin): implications for delineating dietary and migratory associations in wild passerines. Canadian Journal of Zoology-Revue Canadienne De Zoologie 81: 1630-1635.
- Trudel M, Weidel BC, Carpenter SR, Kitchell JF, Vander Zanden MJ (2011) Rates and components of carbon turnover in fish muscle: insights from bioenergetics models and a whole-lake13C addition. Canadian Journal of Fisheries and Aquatic Sciences 68: 387-399.
- 14. Tarboush RA, MacAvoy SE, Macko SA, Connaughton V (2006) Contribution of catabolic tissue replacement to the turnover of stable isotopes in Danio rerio. Canadian Journal of Zoology 84: 1453-1460.
- 15. Sweeting CJ, Jennings S, Polunin NVC (2005) Variance in isotopic signatures as a descriptor of tissue turnover and degree of omnivory. Functional Ecology 19: 777-784.
- 16. Suzuki KW, Kasai A, Nakayama K, Tanaka M (2005) Differential isotopic enrichment and half-life among tissues in Japanese temperate bass (Lateolabrax japonicus) juveniles: implications for analyzing migration. Canadian Journal of Fisheries and Aquatic Sciences 62: 671-678.
- Zuanon JA, Pezzato AC, Pezzato LE, Passos JR, Barros MM, et al. (2006) Muscle delta13C change in Nile tilapia (Oreochromis niloticus): effects of growth and carbon turnover. Comp Biochem Physiol B Biochem Mol Biol 145: 101-107.
- Witting DA, Chambers RC, Bosley KL, Wainright SC (2004) Experimental evaluation of ontogenetic diet transitions in summer flounder (Paralichthys dentatus), using stable isotopes as diet tracers. Canadian Journal of Fisheries and Aquatic Sciences 61: 2069-2084.
- 19. Buchheister A, RJ L (2010) Turnover and fractionation of carbon and nitrogen stable isotopes in tissues of a migratory coastal predator, summer flounder (Paralichthys dentatus). Can J Fish Aquat Sci 67: 445-461.
- Tominaga O, Uno N, Seikai T (2003) Influence of diet shift from formulated feed to live mysids on the carbon and nitrogen stable isotope ratio (d13C and d15N) in dorsal muscles of juvenile Japanese flounders, Paralichthys olivaceus. . Aquaculture 218: 265-276.
- 21. Bosley KL, Witting DA, Chambers RC, Wainright SC (2002) Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanus with stable isotopes. Marine Ecology Progress Series 236: 233-240.

- Guelinckx J, Maes J, Van Den Driessche P, Geysen B, Dehairs F, et al. (2007) Changes in δ13C and δ15N in different tissues of juvenile sand goby Pomatoschistus minutus: a laboratory diet-switch experiment. Marine Ecology Progress Series 341: 205-215.
- 23. Furuya VRB, Hayashi C, Furuya WM, Sakaguti ES (2002) Replacement rates of carbon stable isotope (13 C) in muscle tissue of pintado, Pseudoplatystoma corruscans (Agassiz, 1829) Zootecnia Trop. 20(4):461-472..
- 24. Herzka SZ, Holt GJ (2000) Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts: potential applications to settlement studies. Canadian Journal of Fisheries and Aquatic Sciences 57: 137-147.
- 25. Herzka SZ (2005) Assessing connectivity of estuarine fishes based on stable isotope ratio analysis. Estuarine Coastal and Shelf Science 64: 58-69.
- 26. Gamboa-Delgado J, Cañavate JP, Zerolo R, Le Vay L (2008) Natural carbon stable isotope ratios as indicators of the relative contribution of live and inert diets to growth in larval Senegalese sole (Solea senegalensis). Aquaculture 280: 190-197.
- 27. Ayliffe LK, Cerling TE, Robinson T, West AG, Sponheimer M, et al. (2004) Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139: 11-22.
- 28. Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for ?13C analysis of diet. Oecologia 57: 32-37.
- 29. MacAvoy SE, Macko SA, Arneson LS (2005) Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis. Canadian Journal of Zoology 83: 631-641.
- 30. Arneson LS, MacAvoy S, Basset E (2006) Metabolic protein replacement drives tissue turnover in adult mice. Canadian Journal of Zoology-Revue Canadienne De Zoologie 84: 992-1002.
- 31. Sponheimer M, Robinson TF, Cerling TE, Tegland L, Roeder BL, et al. (2006) Turnover of stable carbon isotopes in the muscle, liver, and breath CO2 of alpacas (Lama pacos). Rapid Commun Mass Spectrom 20: 1395-1399.
- 32. Logan JM, Lutcavage ME (2010) Stable isotope dynamics in elasmobranch fishes. Hydrobiologia 644: 231-244.
- 33. McIntyre PB, Flecker AS (2006) Rapid turnover of tissue nitrogen of primary consumers in tropical freshwaters. Oecologia 148: 12-21.
- 34. Frazer TK, Ross RM, Quetin LB, Montoya JP (1997) Turnover of carbon and nitrogen during growth of larval krill, Euphausia superba Dana: a stable isotope approach. J Exp Mar Biol Ecol 212(2):259–275.
- 35. Harvey CJ, Hanson PC, Essington TE, Brown PB, Kitchell JF (2002) Using bioenergetics models to predict stable isotope ratios in fishes. Canadian Journal of Fisheries and Aquatic Sciences 59: 115-124.
- 36. Mulholland PJ, Tank JL, Sanzone DM (2000) Nitrogen cycling in a forest stream determined by a 15N tracer addition. Ecological Monographs 70: 471-493.
- 37. Rombough P (1994) Energy partitioning during fish development: additive or compensatory allocation of energy to support growth? Functional Ecology 8: 178-186.

Figure S1. The 37 ecological steady-state (inputs equal outputs) carbon flow models we constructed for numerical evaluation. In each trophic compartment (red box) is shown the ecological functional group (e.g., trees, insects, top carnivore) and total compartment biomass X_i (kg C/m²). Black arrows in and out of compartments represent carbon flows in and out, respectively. The incoming flow on the left of the system (f₀₁) is GPP (kg C/yr m²) and all outgoing flows f_{i0} represent respiration (kg C/yr m²). Dotted line represents the system boundary. See Table S1 for summary data for each model, and Materials and Methods for details of model calculations.

f₄₀ 0.1722

