# **Supporting Information**

### Samuel et al. 10.1073/pnas.1417047112

#### **SI Materials**

DEPMPO was obtained from Santa Cruz Labs. Amplex Red was purchased from Life Technologies. Ferrous sulfate heptahydrate (FeSO<sub>4</sub>·7H<sub>2</sub>O), cupric sulfate pentahydrate (CuSO<sub>4</sub>·5H<sub>2</sub>O), nitric acid (HNO<sub>3</sub>), H<sub>2</sub>O<sub>2</sub> (30% in water), potassium phosphate monobasic (KH<sub>2</sub>PO<sub>4</sub>), potassium permanganate (KMnO<sub>4</sub>), ethanol (EtOH), sulfuric acid (H<sub>2</sub>SO<sub>4</sub>), and sodium hydroxide (NaOH) were purchased from Fisher Scientific. Potassium phosphate dibasic (K<sub>2</sub>HPO<sub>4</sub>) was purchased from J. T. Baker. Methoxypolyethylene glycol amine [PEG, molecular weight (MW) 5,000], Chelex, EDTA tetrasodium salt hydrate (EDTA), catalase from bovine liver, triethanolamine (TEA), methylsulfoxide (DMSO), sodium perchlorate (NaClO<sub>4</sub>), HRP, deferoxamine mesylate (DFO), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), pyrogallol, sodium nitrite (NaNO<sub>2</sub>), ascorbic acid (acid form), caffeic acid,  $(\pm)$ -6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox), hypoxanthine (HX), cytochrome cfrom equine heart, xanthine oxidase (XO), SOD from bovine erythrocytes (EC 1.15.1.1), CAPS, CHES, TAPS, and Hepes were purchased from Sigma-Aldrich. Crown ether (18-crown-6) was purchased from Fluka. Potassium superoxide (KO<sub>2</sub>) was obtained from Acros Organics. The inductively coupled plasma standard for iron and the dialysis membrane [molecular weight cutoff (MWCO) 1,000 and MWCO 5,000] were purchased from High Purity standards and Biotech, respectively. Human oxyhemoglobin (HbO<sub>2</sub>) was a gift from J. S. Olson, Rice University, Houston. C<sub>60</sub>-serinol was donated by Lon Wilson, Rice University, Houston, and C<sub>3</sub> was donated by Douglas DeWitt, The University of Texas Medical Branch, Galveston, TX.

#### SI Methods

**PEG-HCCs.** HCCs were prepared by oxidizing single-walled carbon nanotubes using a mixture of oleum and nitric acid. These HCCs were then PEGylated using 5,000-MW  $\alpha$ -amino- $\omega$ -methoxy PEG via standard carbodiimide coupling chemistry (1). The concentration of PEG-HCCs in solution is estimated based on the carbon core absorbance at 763 nm using an extinction coefficient of 0.01040 L/mg or 0.00428 nM<sup>-1</sup> (1). The MW of the PEG-HCCs (411,509 g/mol) was estimated based on weight loss percentages obtained from thermogravimetric plots of the HCCs and PEG-HCCs. See Fig. S8 for calculations.

**Oxyhemoglobin NO° Scavenging Assay.** Oxyhemoglobin (HbO<sub>2</sub>, 8  $\mu$ M based on heme content,  $\epsilon_{425nm} = 125 \text{ mM}^{-1} \text{ cm}^{-1}$ ) was dissolved in TEA buffer (50 mM, pH 7.5). The NO° solution was prepared by bubbling NaOH trap-purified 99.9% pure NO° gas (Matheson) through 10 mL of anaerobic TEA (50 mM, pH 7.5) for 10 min. An ~2 mM solution of NO° was obtained at atmospheric pressure and kept in a glass tonometer (2). The HbO<sub>2</sub> and the PEG-HCCs were mixed in the quartz cuvette before initiating

the reaction with the addition of NO<sup>•</sup>. The final metHb concentration was 9.7  $\pm$  0.3  $\mu M$  ( $\epsilon_{401-411nm}$  = 38 mM<sup>-1</sup>·cm<sup>-1</sup>) (3), and 0.02 mg/mL of both PEG-HCCs (48.6 nM) and PEG (4000 nM). The UV spectra were measured using a Hewlett-Packard 8453 diode array spectrophotometer.

NO\* Scavenging Assay by HbO<sub>2</sub> Using Anaerobic Sequential Stopped Flow and Preincubation of the NO<sup>•</sup> with PEG-HCCs. NO<sup>•</sup> radicals were incubated with the PEG-HCCs at three different aging times before mixing with HbO2 using the sequential mode of an Applied Photophysics model SX-18MV stopped-flow instrument with a rapid-scan diode array accessory. The instrument was located inside an anaerobic chamber model 110 V equipped with a gas analyzer model 10 (Coy Laboratory Products) for tracking the H<sub>2</sub> and O<sub>2</sub> levels. The chamber was filled with 10% H<sub>2</sub> in N<sub>2</sub> (4). The following stock solutions were prepared using TEA (50 mM, pH 7.4): PEG-HCCs (194.4 nM or 0.08 mg/mL) in aerobic buffer, NO<sup>•</sup> (20  $\mu$ M) in anaerobic buffer and HbO<sub>2</sub> (15  $\mu$ M) in air-saturated buffer. Either buffer (control) or PEG-HCCs were incubated with NO<sup>•</sup> in a 1:1 ratio for 20 ms, 1 s, or 1 min in the aging loop after first mixing. This solution was then further mixed with  $HbO_2$  in a 1:1 ratio in the detector chamber. Note that 0.04 mg/mL (97.2 nM) was the concentration of the PEG-HCCs when it was incubated with NO<sup>•</sup> and 0.02 mg/mL (48.6 nM) when it was mixed with HbO<sub>2</sub>, thus an overall 4× dilution after two-stage mixing.

**ONOO<sup>-</sup>** Scavenging Assay. A 12-mL aqueous solution containing 4 g NaNO<sub>2</sub> was added to a 125-mL aqueous solution containing 7.5 mL 35%  $H_2O_2$  and 2 mL 96%  $H_2SO_4$ . This mixture was immediately poured into 250 mL solution containing 12.5 g NaOH. To remove unreacted H<sub>2</sub>O<sub>2</sub>, MnO<sub>2</sub> was added to the final mixture and allowed to stand for 15 min. The concentration of ONOO<sup>-</sup> was determined to be 1.73 mM using the absorbance maximum at 302 nm ( $\varepsilon = 1,670 \text{ M}^{-1} \cdot \text{cm}^{-1}$ ). ONOO<sup>-</sup> was portioned into 1.5-mL aliquots and frozen; during use, the ONOO<sup>-</sup> was kept on ice. Solutions of antioxidants (ascorbic acid, caffeic acid, PEG-HCCs, and Trolox) were prepared at 0.100 mg/mL (243.0 nM) in phosphate buffer. Pyrogallol red was prepared at 5 mM in phosphate buffer. Assays were done in methacrylate cuvettes. Typically, 25 µL of pyrogallol red stock solution was added to the cuvette, followed by phosphate buffer, antioxidant  $(10, 30, 50, 100, \text{ or } 200 \,\mu\text{L})$  and finally ONOO<sup>-</sup> (the final volume was 1.5 mL). The cuvette was inverted several times after the addition of the ONOO-. The absorbance spectrum from 300-700 nm was measured. Each assay was carried out in triplicate. Control samples were the pyrogallol red in the absence of antioxidant and ONOO<sup>-</sup>, as well as pyrogallol red in the presence of ONOO<sup>-</sup> without antioxidant. The absorbance change at 540 nm  $(\varepsilon = 2.4 \times 10^4 \text{ M}^{-1} \cdot \text{cm}^{-1})$  was used in inhibition calculations (5).

in aqueous solutions in contact with oxygen. J Chem Soc, Faraday Trans 94: 2763–2767.

Berlin JM, et al. (2010) Effective drug delivery, in vitro and in vivo, by carbon-based nanovectors noncovalently loaded with unmodified Paclitaxel. ACS Nano 4(8): 4621–4636.

Xia Y, Tsai A-L, Berka V, Zweier JL (1998) Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem 273(40):25804–25808.

<sup>3.</sup> Petlicki J, van de Ven TGM (1998) The equilibrium between the oxidation of hydrogen peroxide by oxygen and the dismutation of peroxyl or superoxide radicals

Berka V, Wu G, Yeh H-C, Palmer G, Tsai A-L (2004) Three different oxygen-induced radical species in endothelial nitric-oxide synthase oxygenase domain under regulation by L-arginine and tetrahydrobiopterin. J Biol Chem 279(31):32243–32251.

Feelisch M, Noack EA (1987) Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylatecyclase. *Eur J Pharmacol* 139(1): 19–30.

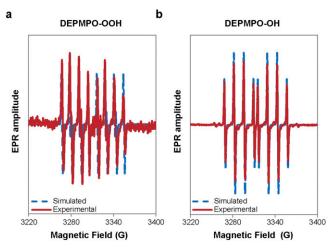



Fig. S1. Simulated and experimental spectra of the spin-adducts. (A) DEPMPO-OOH and (B) DEPMPO-OH adducts.

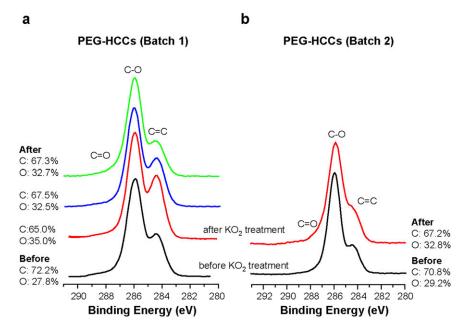
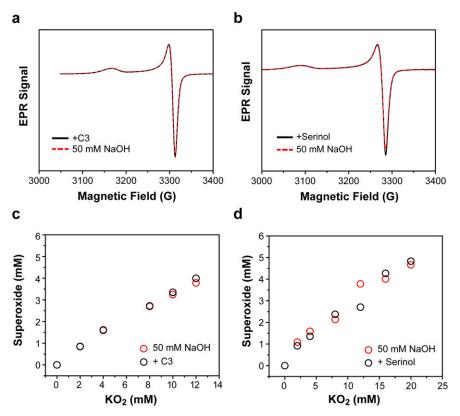
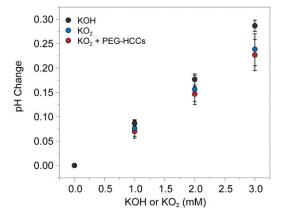
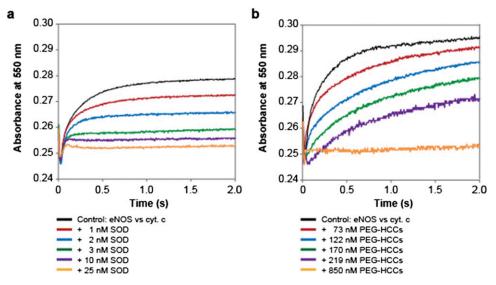
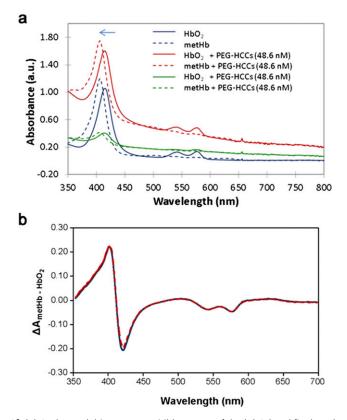


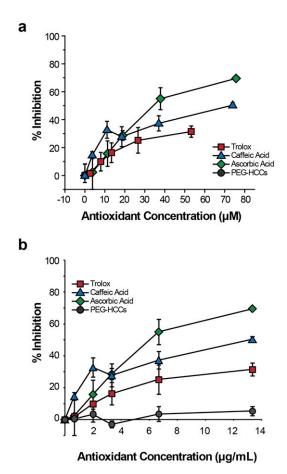

Fig. 52. XPS analysis of PEG-HCCs before and after treatment with KO<sub>2</sub>. (A) PEG-HCC concentration = 0.350 mg/mL. (B) PEG-HCC concentration = 0.733 mg/mL.

DN A C



Fig. S3. Detection of O<sub>2</sub><sup>--</sup> from KO<sub>2</sub> in C<sub>3</sub> and C<sub>60</sub>-serinol. Detection in the absence and presence of (A and C) C<sub>3</sub> or (B and D) C<sub>60</sub>-serinol.




**Fig. S4.** Production of  $OH^-$  and its stoichiometry determined by pH shift. KOH or  $KO_2$  (1, 2, or 3 mM) was added to 5 mL 20 mM Hepes at pH 7.2 (with or without 0.6  $\mu$ M PEG-HCCs), and the pH increase due to  $OH^-$  production was measured. The error bars are the SDs of five measurements. The measured pH shift from KOH addition matches that calculated from the Henderson–Hasselbalch relationship from a strong base.



**Fig. S5.** Comparison of  $O_2^{\bullet -}$  quenching activity of (*A*) SOD and (*B*) PEG-HCCs at pH 7.7 by competitive cytochrome *c* reduction. The concentration of eNOS<sub>ox</sub> and cytochrome *c* was 10  $\mu$ M and 15  $\mu$ M, respectively. The absorbance values of the reduced cytochrome *c* were converted to EC<sub>50</sub> values and plotted in Fig. 7A.



**Fig. S6.** Hemoglobin-based assays for NO<sup>•</sup>. (*A*) Oxyhemoglobin assay. UV-visible spectra of the (HbO<sub>2</sub>) and final product (metHb) after manual addition of NO<sup>•</sup> alone (blue set) or in the presence of two concentrations of PEG-HCCs (red and green sets) are shown. The arrow indicates the blue shift of the Soret peak corresponding to conversion of HbO<sub>2</sub> to metHb. Experiments were carried out in triplicate with experimental error ~10%. (*B*) Difference spectrum of metHb and HbO<sub>2</sub> (data from Fig. S5A) in the absence and presence of the PEG-HCCs (0.02 mg/mL or 48.6 nM). The difference between the  $\Delta A_{401-411nm}$  values of the control and the  $\Delta A_{401-411nm}$  values of PEG-HCCs treated system is lower than 5%. Control or PBS-treated system (blue, —), PEG-HCCs-treated system (red, —). The experiment was run in triplicate.



**Fig. 57.** The interaction between the ONOO<sup>-</sup> and PEG-HCCs. Inhibition of pyrogallol red decomposition: ( $\blacklozenge$ ) ascorbic acid, ( $\blacklozenge$ ) caffeic acid, ( $\blacksquare$ ) Trolox, and ( $\bullet$ ) PEG-HCCs. (A) Antioxidant concentration in microlar (note that the concentration of PEG-HCCs in this plot ranges from 0 to 0.034  $\mu$ M and so is too small to be visible in A. (B) Antioxidant concentration in micrograms per milliliter. For experimental details see *SI Methods, ONOO<sup>-</sup> Scavenging Assay*.

According to the TGA plots

- Weight loss of the HCC: 58
- Weight loss of the PEG-HCCs: 84

HCCs amount = 100 - 84 = 16

moles of HCCs =  $\frac{16}{12\frac{B}{mol}}$  = 1.33 moles (The O atoms were ignored, MW of carbon = 12 g/mol)

Functionality in HCCs =  $\left(\frac{58}{100 - 58}\right) * (100 - 84) = 22.08$ 

Amount of PEG = 84 - 22.08 = 61.92

moles of PEG = 
$$\frac{61.92}{5000 \frac{g}{mol}}$$
 = 0.0124 moles

Ratio of functionalization =  $\frac{\text{moles of C}}{\text{moles of PEG}} = \frac{1.33}{0.0124} \approx 107$ 

#### 1 PEG every 107 carbons

#### Molecular weight

PNAS PNAS

Assumption: 137 carbons atoms/nm -----> 40 nm HCCs -----> 5480 C atoms

#of PEG chains 
$$=\frac{5480}{107}=51$$

Molecular weight of PEG - HCCs =  $\left(5480 * 12\frac{g}{mol}\right) * \frac{22.08}{16} + \left(5480 * 12\frac{g}{mol}\right) + \left(51 * 5000\frac{g}{mol}\right) = 411509\frac{g}{mol}$ Molecular weight of HCCs =  $\left(5480 * 12\frac{g}{mol}\right) + \left(5480 * 12\frac{g}{mol}\right) * \frac{22.08}{16} = 156509\frac{g}{mol}$ Carbon core Functionality

Fig. S8. MW estimation of the PEG-HCCs.

## Table S1. Hyperfine constants used in simulating the EPR spectra of the DEPMPO-OOH and DEPMPO-OH adducts

| Adduct                                                                 | Element | No. | Isotope | Spin | Abundance | a, G  |
|------------------------------------------------------------------------|---------|-----|---------|------|-----------|-------|
|                                                                        | Р       | 1   | 31      | 1/2  | 100.00    | 49.80 |
|                                                                        | Ν       | 1   | 14      | 1    | 99.64     | 13.30 |
| DEPMPO-OOH                                                             |         |     | 15      | 1/2  | 0.36      | 19.00 |
|                                                                        | н       | 1   | 1       | 1/2  | 99.99     | 11.00 |
| g = 2.00504                                                            |         |     | 2       | 1    | 0.01      | 1.40  |
| Lorentzian/Gaussian:1.0 (meaning fully Lorentzian)<br>linewidth: 1.2 G | H(r)    | 1   | 1       | 1/2  | 99.99     | 1.00  |
|                                                                        |         |     | 2       | 1    | 0.01      | 0.14  |
|                                                                        | Р       | 1   | 31      | 1/2  | 100.00    | 47.55 |
| DEPMPO-OH                                                              | N       | 1   | 14      | 1    | 99.64     | 14.00 |
|                                                                        |         |     | 15      | 1/2  | 0.36      | 21.00 |
| g = 2.00455                                                            | н       | 1   | 1       | 1/2  | 99.99     | 13.20 |
| Lorentzian/Gaussian:1.0 (meaning fully Lorentzian)<br>linewidth: 1.5 G |         |     | 2       | 1    | 0.01      | 1.80  |

#### Table S2. Relative percent of antioxidant activity

| Sample           |                       | Average of the EPR amplitude $^{\dagger}$ | SD    | SE    | Relative % of<br>antioxidant activity |
|------------------|-----------------------|-------------------------------------------|-------|-------|---------------------------------------|
|                  | Control               | 28,782                                    | 3,833 | 2,213 | NA                                    |
| 02 <sup>•-</sup> | PEG                   | 23,774                                    | 6,408 | 3,700 | 13 ± 30 <sup>§</sup>                  |
|                  | PEG-HCCs <sup>‡</sup> | 433                                       | 320   | 185   | 98 ± 16 <sup>§</sup>                  |
|                  | Control               | 15,242                                    | 3,594 | 2,075 | NA                                    |
| •он              | PEG <sup>¶</sup>      | 12,277                                    | 1,488 | 1,052 | 19 ± 5 <sup>§</sup>                   |
|                  | PEG-HCCs              | 4,165                                     | 499   | 288   | $73 \pm 20^{\$}$                      |

Calculated from [% = ((Control amplitude – PEG-HCCs or PEG amplitude)/Control amplitude) ×100%]. Experiments were carried out in triplicate. A quality control sample was run every three samples. NA, not applicable. <sup>†</sup>EPR amplitude of the signal at 3,278 G and 3,308 G for the  $O_2^{\bullet-}$  and  $^{\bullet}OH$  scavenging experiments, respectively. <sup>‡</sup>Absolute value.

<sup>§</sup>Error propagation from arithmetic calculations using SDs. <sup>¶</sup>Experiment run in duplicate.

PNAS PNAS