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SI Text
Second-order phase transitions often separate states that have
different “symmetry properties,” meaning that on one side of the
transition, states remain constant when certain parameters of
the system are changed, whereas states on the other side of the
phase transition would be affected by the same change in pa-
rameters. Maximally informative solutions, within our model,
exhibit different symmetry properties on different sides of the
phase transition. Solutions in the large noise regime are not af-
fected by an exchange in neural indexes (because the thresholds
are the same for the two neurons) whereas solutions from the
small noise regime are affected. In the small noise regime, the
system has to arbitrarily choose a positive or a negative value by
assigning one neuron to the adapting class and the other neuron
to the sensitizing class. This process is directly analogous to
magnetic systems where the system has to choose between two
alternatives—“up” or “down” magnetization states—below the
critical temperature, and thus these symmetry properties coincide
with those of the Ising model. Thus, the arguments based on
symmetry also indicate that the difference in thresholds, m=
μ2 − μ1, is the neural quantity analogous to magnetization. Other
quantities that have been proposed to correspond to magnetiza-
tion include the mean spike rate (1) and the balance between
excitation and inhibition (2). Although these quantities are po-
tentially related to each other, and to the difference in thresholds
m we describe here, in nonlinear ways, they do not produce
a mapping onto one of the known types of phase transitions (1).
In addition, for these other neural quantities there is not an ob-
vious change in symmetry on different sides of the transition we
identify here.

SI Methods
Experimental Preparation.We recorded from retinal ganglion cells
of larval tiger salamanders, using an array of 60 electrodes
(Multichannel Systems) as previously described (3). A video
monitor projected the visual stimuli at 30 Hz controlled by Matlab
(Mathworks), using the Psychophysics Toolbox (4, 5). Stimuli were
uniform field with a constant mean intensity, M, of 10 mW/m2

and were drawn from a Gaussian distribution. Contrast is defined
as σ =W=M, where W is the SD of the intensity distribution.
Neurons were probed with nine different contrast distributions
from 12% to 36% in 3% intervals. The contrasts were randomly
interleaved and repeated. Each contrast was presented, in total,
for ≥600 s. For the calculation of the response functions, the first
10 s of data in each contrast were not used to allow for a better
estimation of the steady state.
For Fig. 1 C and D, the stimulus was composed of independent

50-μm bars, each with a contrast distribution of 35%. The fact
that the stimulus was spatial made the effective contrast experi-
enced by the cell unknown. However, the contrast for the nor-
malization was estimated by comparing the values of the slopes to
those recorded with a spatially uniform stimulus (Fig. 2B).

Modeling Neural Responses Using Linear–Nonlinear Models. LN
models consisted of the light intensity passed through a linear
temporal filter, which describes the average response to a brief
flash of light, followed by a static nonlinearity, which describes the
threshold and sensitivity of the cell. To compute the model, the
stimulus, sðtÞ, was convolved with a linear temporal filter, FðtÞ,
which was computed as the time reverse of the spike-triggered
average stimulus, such that gðtÞ= R

Fðt− τÞsðτÞdτ. A static non-
linearity, NðgÞ, was computed by comparing all values of the

firing rate, rðtÞ, with gðtÞ, and then computing the average value of
rðtÞ over bins of gðtÞ . The filter, FðtÞ, was normalized in ampli-
tude such that it did not amplify the stimulus; i.e., the variances of
s and g were equal (6). Thus, the linear filter contained only
relative temporal sensitivity, and the nonlinearity represented the
overall sensitivity of the transformation. The nonlinearity was
fitted using a logistic function
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that has two parameters: threshold μ corresponding to a 50%
spiking probability and the slope ν of the function (Fig. 1A). This
functional form is advantageous because it matches well the in-
put functions of single neurons (7), and it represents a minimal
function consistent with the constraints on the mean firing rate
and mean filtered stimulus, x, given a spike (8).

Information Maximization. The mutual information between the
filtered stimulus values and the neural responses becomes a func-
tion of four parameters: a threshold and a slope value for each of
the two neurons. The response functions for each neuron from
Eq. S1 together define the probability of observing one of the
four possible responses of the two neurons given a filtered stim-
ulus x. The four response patterns ri correspond to the presence or
absence of a spike from each of the two neurons. This treats the
neurons as conditionally independent without significant corre-
lations in their responses for a given input, which is a good first
approximation for the fast Off adapting and sensitizing cells (3).
The mutual information is equal to the difference between

the so-called total entropy and the noise entropy (9). The noise
entropy represents the uncertainty in neural responses induced
by the input noise. For conditionally independent responses, the
noise entropy is the sum of uncertainties of individual neurons
considered separately. The uncertainty in neural responses is
small for inputs that are either much less or much greater than μ,
because for such inputs, the spike probability remains close to
0 or 1, respectively. However, for input values close to the
threshold μ, the probability to elicit a spike is close to 0.5, which
indicates maximal uncertainty in the neural response to repeated
presentations of such inputs. This uncertainty can be quantified
as the entropy of the neural response for a given stimulus x:

SiðxÞ=−
X

pðri j xÞlog2 pðri j xÞ: [S2]

As shown in Fig. S1D this quantity reaches the peak value of 1 for
x= μ and decreases to zero with increasing jx− μj. The larger the
slope ν is, the larger the range of input values with the spike
probability close to 0.5. The noise entropy, HðrjxÞ, is computed
by averaging this quantity across inputs x and the two neurons:

Hðr j xÞ=−
Z

pðxÞ
X2
i=1

X1
pi=0

pðri j xÞlog2 pðri j xÞdx: [S3]

As shown in Fig. S1E, the noise entropy increases with ν.
From the response functions pðrijxÞ one can also compute the

average probability of observing ri by multiplying the response
functions by the input distribution and averaging with respect
to pðxÞ. The total entropy, HðrÞ, is computed as an entropy
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representing the four possible response patterns ri reflecting
the presence or absence of a spike from each of the two neurons:

HðrÞ=−
X

pðriÞlog2 pðriÞ: [S4]

Metabolic Constraints on Information Maximization. Achievable in-
formation transmission rates generally increase with metabolic
resources (7, 10–12). However, this does not diminish the po-
tential relevance of solutions with lower information rates if they
have lower metabolic requirements. Therefore, we seek to find
maximally informative solutions among parameter values that
have comparable metabolic requirements. In the context of our
model, the variables that could serve as proxies for the metabolic
cost are the average spike rate across the two retinal ganglion
cells (13, 14) and noise in the afferent circuitry, with smaller ν
implying a higher metabolic cost. The average spike rate is pri-
marily determined by the average threshold μ= ðμ1 + μ2Þ=2.
Therefore, we consider information for a given pair of values ν1

and ν2 as a function of μ1 − μ2 while adjusting μ to ensure that all
solutions correspond to the same average spike rate. As shown in
Fig. 3 and Fig. S4, changing the value of the spike rate constraint
(and therefore μ) leads only to quantitative changes in the in-
formation function and does not alter qualitatively the de-
pendence on the other parameters. An example of optimal
threshold separation is shown in Fig. S1F. When extracting the
parameters for the threshold μ and slope ν from measured re-
sponse functions, the data were normalized by their maximal
firing rate to ensure that they ranged from 0 to 1.

Spinodal Line and Model Normalization. The spinodal line in Fig. 3
was extracted from the curves that related the information to the
threshold difference between the two response functions (Fig.
2C) and is defined as the point between the minimum and
maximum of the information where the derivative of information
with respect to the threshold difference, m, is maximal. The spi-
nodal points were determined for each pair of fast Off adapting
and sensitizing cells at each contrast.
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Fig. S1. Experimental paradigm and model setup. (A) Example neural responses for different levels of contrast. Stimulus (Top) and average response of a fast
Off sensitizing (Middle) and adapting (Bottom) cell are recorded simultaneously. (B) Steady-state nonlinearities for the same pair of adapting and sensitizing
cells recorded simultaneously at three different levels of temporal contrast: 12% (Left), 24% (Center), and 36% (Right). Black lines are the sigmoid fits to the
data. (C) Adapting cells maintain higher thresholds than sensitizing cells across a range of contrasts. Symbols show average midpoint of the sigmoid, μ,
normalized by contrast, σ, for all sensitizing (n = 11) and adapting (n = 36) cells at each contrast. Error values, SEM, are smaller than symbols. (D) Uncertainty in
the neural response peaks near the threshold value. The uncertainty was evaluated according to Eq. S2. (E) The noise entropy, evaluated according to Eq. S3,
increases with increasing slope, ν, for a single response function and a fixed value of hri. (F) An example of the maximally informative placement of two
response functions for a given input distribution (gray line) and average response rate hri shows the separation of thresholds between the two cell types.

Kastner et al. www.pnas.org/cgi/content/short/1418092112 2 of 4

www.pnas.org/cgi/content/short/1418092112


Fig. S2. The difference in slopes of neural response functions is analogous to a magnetic (conjugate) field. In physics, a magnetic field induces a linear change
in the average magnetization regardless of temperature. More specifically, in the Ising model, the value of the magnetic field can be found by taking the
derivative of free energy with respect to magnetization at one of the optima. Performing an analogous procedure in the neural context amounts to evaluating
the derivative of information with respect to m, for m = 0. This yields a function that is proportional to the difference of the slopes of the two response
functions ν2 − ν1, confirming that the latter quantity can be used as a proxy for the magnetic field. The analysis was repeated for multiple values of ν in
different colors. The lines overlay, thereby obscuring the different colors.

Fig. S3. Singular behavior of maximally informative solutions near the critical point matches the Ising model. (A) The analog of the specific heat, the second
derivative of the information, I, with respect to the noise, C = ∂2I=∂ν2, exhibits a drop expected from mean-field calculations for the Ising model for ν> νc (1).
(B) The analog of the magnetic susceptibility, the second derivative χ = ∂2I=∂h2 of the information, I, with respect to h= ν2 − ν1, the quantity analogous to a
magnetic field, diverges as jν− νc j−1. The fit (green line) yields an exponent of −0.93, which matches the value of −1 predicted by the mean-field theory for the
magnetic susceptibility. (C) The optimal threshold difference between response functions as a function of the slope, ν, follows the theoretically predicted
equation m∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffijν− νc j
p

dependence, when h = 0. The fit of the relationship yields m∝ jν− νc j0:47 (green line). (D) Optimal threshold difference as a function of
the slope difference, h, a quantity analogous to a magnetic field, for ν= νc follows the predicted dependence of m∝h1=3. The fit of the relationship yields
m∝h0:34 (green line). The functions in A–C are plotted relative to ðν− νcÞ=ν, the normalized distance to the critical point, such that zero indicates that ν is at the
critical noise value. This difference is normalized by ν according to the definition from ref. 2 to obtain a dimensionless quantity, analogous to reduced
temperature. All exponents take similar values whether the reduced effective temperature is defined as jν− νc j=ν according to ref. 2 or as jν− νc j=νc .
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Fig. S4. Changes in model parameters with changes in the rate constraint. (A) Model parameters other than the universal scaling exponents, β and 1/δ, vary
smoothly with hri. (Top) the relationship between the critical noise value νc and hri. (Bottom) The relationship between the proportionality coefficient A, from
the fit to the model for the equation m=Ajν− νc jβ when h= 0 (Fig. S3C), and different hri. (B) The scaling exponents β (Top) and 1/δ (Bottom) do not vary with
the average rate, hri. Dotted red lines show the average values for the two exponents (0.47 and 0.34, respectively).

Fig. S5. Analysis of the critical point for non-Gaussian inputs. The quantitative characteristics of the critical point are preserved when non-Gaussian inputs
PðxÞ∝e−jxj were used instead of a Gaussian distribution. (A) analogous to Fig. 1B; (B–E) analogous to Fig. S3; (F and G) analogous to Fig. S4.

Table S1. Summary of predictions for critical exponents for the nearest-neighbor Ising model in different dimensions

Exponent 2D Ising 3D Ising 4D Ising/mean field
Experiments in various

physical systems
Our measurements in

the retina

β 1/8 = 0.125 0.325 ± 0.0015 1/2 = 0.5 0.316–0.35 0.39 ± 0.12
δ 15 4.82(4) 3 4.2–4.9 7 ± 4

Data represent compilation of table 3.1 from ref. 1 and table 3.4 from ref. 2 in comparison with our measurements. The values for the four-dimensional
model coincide with values obtained using mean-field theory and with values assuming an infinite range of interactions (2).
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