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Supplementary Figures 

 

 

Supplementary Figure 1. Replicate vs. non-replicate conditions in the network model. (a) Stimulus and responses of an 
example neuron in the non-replicate condition (different stimuli across trials). Top: stimulus injected current from several 
individual trials (gray) and averaged across trials (black). The rastergram from 500 trials and the corresponding PSTH (T = 
20 ms) are shown below. (b-c) Stimulus and response of two example neurons from the same population in the replicate 

condition (identical stimuli across trials). Top: common term of the stimulus )(tIc
  (black; same for both neurons in b-c) 

and the individual stimulus realization )(,stim tI k
  (red) for neurons k = 1,2 (see Methods). Individual stimulus currents 

injected into cells within the same population had a temporal correlation coefficient   5.0)(),(CorrCoef ',stim,stim tItI kk
  on 

average. Bottom: rastergrams from 500 trials in response to the same stimuli )(,stim tI k
  and the corresponding PSTHs. 
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Supplementary Figure 2. Structure of bottom-up correlations in the sensory circuit. (a) Parametric variation of the spatial 
arrangement of the external background inputs using two separate external populations X1 and X2 (rather than one common 

population X). The connection probability from population Xi to Ej is )+(p=p xXiEj 1 for i = j and )(p=p xXiEj 1  for i 

≠ j. The parameter varies between 0 (global background input, standard network as in Fig. 1a) and 1 (local background 

input, where each Ei receives specific connections from its corresponding external population Xi). The connection 

probability from X1 and X2 to population I is xp . (b) Response rates of the sensory populations to a global (dashed lines) 

and a local (solid lines) external input. We injected a constant input current I1 into both E1 and E2 (global), or an input 2I1 
into E1 only (local). The inhibitory population received I1 in both cases. Excitatory neurons also received a baseline input of 
I0 = 80 pA, equivalent to the mean input of zero-coherence stimuli (Methods). A global increase in the input leads to a 
marginal increase of the rates rE1 and rE2 . In contrast, a local increase of the input to E1 yields a substantial increase of rE1, 
and, due to the strong common inhibition, a corresponding decrease in rE2. This is the mechanism underlying competitive 

dynamics in the circuit. (c-f) Spike count correlation matrices kk'ρ  (c-d) and correlation histograms (e-f) of the sensory 

circuit obtained for global ( or partly local (background inputsColor plots show the correlation matrices 

from 100 + 100 + 50 randomly picked neurons from the E1, E2 and I populations, respectively. Histograms are shown for 
within (EiEi) and across population (EiEj) pairs. Correlations were obtained from the response to replicate stimuli (count 

window T = 2 s). Correlations in a pair EiEj caused by a global ( or local (> 0) fluctuating input are proportional to 
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the product of the slopes 
1

Ej

1

Ei

dI

dr

dI

dr
  obtained using global or local constant input I1 (b; ref. 1). This explains why local 

background inputs induce positive EiEi and negative EiEj correlations with average correlation across all EE-pairs close to 
zero2. Correlations EI and II also had a mean close to zero (not shown). This mechanism also explains why non-replicate 
stimuli or top-down inputs, which can be both viewed as local inputs into E1 and E2 that fluctuate from trial-to-trial, 
generate correlations with the same spatial structure as local background inputs (compare Fig. 2c,f with Supplementary 
Fig. 3c). 
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Supplementary Figure 3. Impact of bottom-up correlations and sensory integration dynamics on choice probability and 
categorization accuracy. (a-c) Average population rates for preferred and non-preferred choice trials in the integration and 
sensory circuits (a), average CP (b) and spike count correlations (c) obtained in a network with spatially localized external 

background input ( = 0.67, except in b) using replicate stimuli and top-down connections set to zero (bFB = 0). Correlations 
were sustained and had a structure among sensory neurons similar to that caused by trial-to-trial stimulus fluctuations 
(compare c to Fig. 2c). In consequence, they produced a CP with the fast-rise-decay time-course described in Fig. 2b. 
Shaded areas in a-c represent the stimulus interval. (d) Percentage of correct categorizations versus stimulus coherence 

when stimuli are classified according to their accumulated evidence for motion in the β -direction (by computing the 

integrals  )(ts  of stimulus inputs into populations β  = E1, E2; “Stimulus integrator”) or by using a perfect integrator 

reading out the sensory activity (see Supplementary Figure 5). For = 0, the perfect integrator reached the accuracy of 

the stimulus integrator. Noise correlations introduced by > 0 had a structure similar to signal correlations 
(Supplementary Fig. 2d) and for that reason they decrease discrimination accuracy3,4. Note that due to temporal stimulus 
modulations (σ > 0), a fraction of low-coherence stimuli actually provides accumulated evidence favoring the opposite 
direction and this limits the accuracy that can be reached. Although trial-to-trial fluctuations caused by non-replicate stimuli 
can generate a similar structure of correlations than local background inputs, they do not cause a decrease in discrimination 
accuracy because they are not truly noise correlations but spurious signal correlations. (e) Percentage of correct 
categorizations as a function of stimulus coherence for the perfect integrator (black; replotted from d) and for the 

hierarchical network model (red) when = 0. Because the network performs a transient integration of the sensory 
information (i.e. non-uniform across time, Fig. 3b) it yields a lower classification accuracy than the perfect integrator (see 
also Figure 7h). Simulation data (squares) were fitted using a Weibull function (solid lines). 
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Supplementary Figure 4. Impact of stimulus modulation amplitude and strength of top-down signals on choice probability 
and correlations in the network model. (a) Average CP of sensory neurons obtained using non-replicate stimuli at various 
modulation amplitudes σ in the network without top-down connections (count window T = 100 ms). CP for σ = 1 is also 
shown in Fig. 2b. (b-c) Average spike count correlations of pairs of excitatory sensory neurons within the same population 
(EiEi) versus time (b; T = 100 ms) and the dependence of the time-averaged correlation on the count window size T (c). The 
plateau obtained for T > 125 ms indicates that correlations produced by the stimulus fluctuations exhibited a fast time-scale. 
(d) Psychophysical kernels (difference of average choice-conditioned stimuli) for various σ. Trial-to-trial stimulus 
fluctuations of moderate amplitude (σ ~ 1) generate positive average EiEi correlations (b-c) and a fast-rise-and-decay CP 
(a). For large stimulus modulation (σ = 2.7 and 4), the CP and the psychophysical kernel do not decay to baseline, indicating 
that stimulus modulations are strong enough to revert the categorization even after the integration circuit has reached a 
choice attractor (see Fig. 7). For larger σ values (> 4) the winner-take-all dynamics in the integration circuit are overridden 
by the large sensory modulations. The integration circuit does no longer accumulate evidence over the stimulus but works as 
a memoryless leaky integrator yielding a CP and a psychophysical kernel with a ramping-up time-course5 (not shown). Note 
the similarity in the time-course of CP and the psychophysical kernel across σ values characteristic of a network without 
top-down connections. (e) Average CP obtained for various top-down connection strengths bFB (see values in g) using 
replicate stimuli (σ = 1 as in Fig. 1b; T = 100 ms). (f-g) Average correlations of pairs within one population (EiEi) versus 
time (f, T = 200 ms) and the dependence of the time-averaged correlation on T (g). The increase of the correlation with T 
over the entire range 15 - 2000 ms reflects that the trial-to-trial correlations induced by the top-down feedback have a slow 
time-scale. Shaded areas represent the stimulus interval. 
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Supplementary Figure 5. Choice probability and psychophysical kernel for bounded integrator and perfect integrator 
models. (a) The bounded integrator model integrates evidence by continuously “summing up” the spikes fired by each 
sensory population, with weights +1 and –1 for each spike from neurons in populations E1 and E2, respectively. The 
accumulation process terminated when the integration variable reached the absorbing bounds at +B or −B (dashed lines), 
after which it remained constant and impervious to sensory activity. Traces from two example trials yielding choice 1 (red) 
and choice 2 (blue) are shown. (b-c) Both CP and psychophysical kernel obtained using the bounded integrator show a fast-
rise-and-decay time-course, quantitatively similar to those obtained in the network with the accumulation dynamics 
implemented by the spiking attractor model (Fig. 2b and Fig. 3b, respectively). (d-f) As in a-c but for the perfect integrator 
model where evidence is accumulated during the whole stimulus period (no bounds). The decision is determined by the 
sensory population which fired more spikes during the entire period. Traces show the integration variable in two example 
trials yielding choices 1 (red) and 2 (blue). The dashed line indicates the decision boundary. Both the CP (e) and the 
psychophysical kernel (f) show a sustained time-course. This indicates that the impact of sensory evidence on the decision is 
constant across time, which is at odds with the experimentally observed decay in the psychophysical kernel derived from 
RDKs (Supplementary Fig. 7c,e). For both integrator models we employed the spikes generated by the sensory circuit in 
the simulations used to generate Fig. 2a-c, i.e. the network without top-down connections receiving non-replicate stimulus 
input. Shaded areas represent the stimulus interval. 
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Supplementary Figure 6. Bottom-up correlations together with top-down signals can lead to sustained CP in the presence 
of increased average correlations between sensory neurons. (a) Illustration of the time-course of oriented motion energy in 
opposite directions calculated from a zero-coherence RDK (MEL and MER are the left and right motion energy, 
respectively). Motion energy traces are obtained by: (1) filtering the RDK with a quadrature pair of spatio-temporal filters, 
(2) calculating local motion energy by summing the squared filter outputs, and (3) averaging local motion energies across 
space5,6 (see Methods). (b) Auto-correlation function of motion energy traces (LL, RR, solid line) and cross-correlation 
between motion energy traces in opposite directions (LR, dotted line). The cross-correlation at time lag 0 corresponds to the 
Pearson correlation coefficient rLR between the left and right motion energy traces (rLR = 0.35). This positive correlation is a 
consequence of weak responses of the spatio-temporal filters in the reverse direction6. Overall, the fluctuations in motion 
energy, obtained using filters with a passband matched to the speed of coherent motion (Methods), are correlated on a 
relatively short time-scale of ~50 ms. (c) We mimic the positive correlation between opposite motion energies by 
introducing a positive correlation in the stimuli injected to populations E1 and E2. This led to an increase in the average 
spike count correlations across all pairs (black trace in d) but similar CP as in the network with independent left and right 
stimulus inputs. The network is identical to the one used for Fig. 3a, except that: (1) Competition between sensory 
populations E1 and E2 was decreased by removing the potentiation (suppression) of synaptic connections between (across) 

populations by setting 0.1  ww  (Methods). (2) The stimulus currents )(tIc
 into neurons of populations )2EE1,( , 

that represent oriented motion energy, were correlated (r = 0.5) rather than independent. Average CP caused by non-
replicate stimuli and top-down inputs (σ = 2.7, bFB = 2; black) is sustained during the stimulus interval. Two complementary 
contributions to CP are revealed by removing trial-to-trial stimulus fluctuations (i.e. using replicate stimuli; green) or by 
removing the top-down connections (bFB = 0; blue). Thus, the results of Fig. 3, obtained with a network with almost zero 
average correlations across all pairs, are qualitatively unchanged if overall average correlations are larger but the correlation 
difference corr(EiEi) – corr(EiEj) is maintained. (d) Average spike count correlations of sensory neurons (T = 100 ms). Due 
to the correlated input, correlations are positive in pairs of neurons within the same population (EiEi, pink), slightly negative 
across populations (EiEj, cyan), and positive across all pairs (EE, black). 
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Supplementary Figure 7. Different time-course of MT choice probability and the psychophysical kernel in the random dot 
direction discrimination task. (a) Average CP obtained during a fixed 2-second duration motion discrimination task (n = 143 
neurons from monkeys E and W7,8, count window T = 250 ms). Count windows partially off the stimulus interval are 
indicated by dotted lines. (b) Psychometric functions for the two monkeys. Data points were fitted by Weibull functions. 
Coherence threshold α, defined by 82% correct, was 10.8% and 8.6%, and slope β was 0.98 and 0.93 for monkeys E and W, 
respectively. (c) Left: Average motion energy traces for right choice (red, n = 861), left choice (n = 724) and all trials 
(black) from monkey S performing a similar 1-second fixed duration task (Methods). Positive (negative) values indicate 
rightward (leftward) motion. The stimuli had zero coherence. Right: Difference in motion energy for right vs. left choices. 
Thick horizontal lines mark periods of significant difference (P < 0.05, permutation test). Error bars (shaded regions) 
indicate s.e.m. (d) Psychometric function for monkey S, with threshold α = 8.3% and slope β = 1.34. (e) As c but for 
monkey F (622 and 639 left and right choice trials, respectively). (f) As d but for monkey F (threshold α = 16.7% and slope 
β = 1.23). Note that all four monkeys show comparable psychophysical performance (monkey F being slightly worse). 
Thus, transient evidence integration reflected in a decaying psychophysical kernel (c and e; monkeys S and F) is compatible 
with high perceptual performance observed for monkeys E and W (b) for which the sustained CP was obtained (a).  
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Supplementary Figure 8. Additional data from area MT showing the impact of trial-to-trial stimulus fluctuations on 
neuronal variability. (a) Raster and post-stimulus time histogram (PSTH) for a sample MT neuron (e093) responding to 210 
presentations of replicate (red) and non-replicate (black) zero-coherence RDKs (replotted from ref. 9). The rapid and strong 
rate surges in the replicate PSTH are presumably induced by random conjunctions of dot trajectories in the preferred 
direction of this neuron9,10. In contrast, the non-replicate PSTH shows no temporal fluctuations because they were averaged 
out across the ensemble of RDKs. Inset: example spike count histograms from the indicated count windows, with similar 
mean (replicate: 26.9, non-replicate: 26.7 sp/s) and higher variance in the non-replicate condition (replicate: 32.6, non-
replicate: 51.5 sp2/s2 ). The larger variability across trials in the non-replicate condition is due to the trial-to-trial stimulus 
fluctuations acting as an additional source of variability. (b) Spike count correlations for a second pair of neurons 
(emu034)8. Same layout as Fig. 4b. Count window T = 100 ms (left and center). Spike count correlations over the whole 
stimulus period are significantly larger in the non-replicate than in the replicate condition (P < 0.05, permutation test), as for 
the neuron pair in Fig. 4b. Note that only 2 pairs have been recorded in both stimulus conditions during the motion 
discrimination task. Error bars indicate s.e.m. and thick black lines periods of significant differences between the non-
replicate and the replicate condition (P < 0.05, permutation test). 
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Supplementary Figure 9. CP in the homogeneous and heterogeneous networks, dependence of CP correlations on trial 
number, and CP correlations in MT for replicate stimuli. (a) Population-averaged CP in the homogeneous network (the 
same network used for Fig. 5a-b, count window T = 250 ms) shows a sustained time-course (black line in Fig. 3a shows the 
same model data obtained using T = 100 ms). (b) CP correlation C(ti, ti+1) for adjacent time bins (as in Fig. 5b right) 
computed from different number of trials for comparison with data. Increasing the number of trials yields higher C(ti, ti+1) 
values but does not change the sustained time-course. This shows that the steady behavior of C(ti, ti+1) can be assessed using 
a small number of trials, comparable to experiments (in the order of 100 trials). (c) Average CP (black) across all neurons in 
the heterogeneous network (the same network as used for Fig. 5c-d), and across neurons in each of the four groups (see 
Methods) that receive (1) both stimulus and top-down inputs (S+FB+), (2) only top-down inputs (S−FB+), (3) only stimulus 
input (S+FB−), and (4) neither stimulus nor top-down inputs (S−FB−). The average CP of each group is characteristically 
different, reflecting the hardwired heterogeneity. (d) Same as b, but for the heterogeneous network. Again, increasing the 
number of trials yields higher C(ti, ti+1) values but does not perturb the rising of C(ti, ti+1) over time. Thus, the rising of CP 
correlations is robust to small trial number. (e) Time-course of adjacent CP correlations C(ti,ti+1) for the MT data7 recorded 
in the replicate condition. Note that statistical power is greatly decreased compared to the non-replicate case (Fig. 5f), 
because here there are only n = 41 neurons and RDKs compared to n = 143 neurons and 25-221 RDKs (median: 59) for the 
non-replicate case. The CP correlation in the replicate condition shows elevated values early followed by a drop and ramp-
and-plateau behavior similar to the non-replicate condition (Fig. 5f). The elevated values of CP correlation at the beginning 
imply that the ordering of early CPs remains fairly stable, although early CPs have a small average magnitude (Fig. 4c). A 
possible explanation is that some neurons exhibit a pre-stimulus CP component, which, due to the absence of a stimulus-
driven early CP component, is fairly stable until the top-down component kicks in. In order to investigate why CP 
correlation is elevated early, we would need more neurons in the replicate condition and pre-stimulus data, which are 
unavailable in our data set. 
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Supplementary Figure 10. Relationship between the dynamics of lagged correlations and late CP in the heterogeneous 

network model. (a) Slopes of the regression of lagged spike count correlations kk'(ti, ti+1) against time ti for individual 

neuron pairs (T = 250 ms) vs. the mean late CP of the two corresponding neurons calculated over the last second of the 
stimulus interval (T = 1,000 ms; correlation R = 0.56, P < 10–6, n = 357). Pairs in which both neurons receive top-down 
connections (black dots; FB+ in Supplementary Fig. 9c) tend to have higher slopes of lagged correlations and higher late 
CP than pairs of neurons that do not receive top-down connections (red dots; FB– in Supplementary Figure 9c). (b) 
Average CP time-course for cells that receive (black) or do not receive (red) top-down connections (T = 250 ms). Shaded 
area represents the stimulus interval. 
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Supplementary Table 1. Tabular description of the sensory circuit model. 

A: Model Summary 
Populations Two excitatory (E1 and E2), one inhibitory (I), one external (X) 
Connectivity Random connections (Erdös-Rényi directed random graph) 

Neuron model 
Leaky integrate-and-fire, fixed voltage threshold, fixed absolute refractory time; 
independent fixed-rate Poisson spike trains (external population) 

Synapse model Conductance-based inputs (difference of exponentials PSCs) 

Inputs 
Stimulus modeled as a time-varying current into excitatory neurons; 
Top-down feedback signal from neurons in the decision circuit to excitatory neurons 

Measurements Spiking activity 
B: Populations 
Name Elements Size 
E1 Iaf neuron NE1 = 2 NI 
E2 Iaf neuron NE2 = 2 NI 
I Iaf neuron NI 
X Poisson NX = 2.5 NI 
C: Connectivity 
Name Source Target Pattern 
Local recurrent connections 

EiEj Ei Ej Random with probability p, mean weight EiEjg , delay Ed  

EiI Ei I Random with probability p, mean weight EIg , delay Ed  

IEj I Ej Random with probability p, mean weight IEg , delay Id  

II I I Random with probability p, mean weight IIg , delay Id  

External connections 

XEj X Ej Random with probability px, mean weight XEg , delay XEd  

XI X I Random with probability px, mean weight XIg , delay XEd  

Connection weights of local recurrent and external connections are drawn from Normal distributions with mean g and standard deviation  . Weights 

less than zero are set to zero. 
Feedback connections from the decision circuit 

FB Di (decision) Ei (sensory) Random with probability FBp , fixed weight FBg , delay FBd  

D: Neuron models 
Name Iaf neuron 
Type Leaky integrate-and-fire, conductance-based synaptic inputs 

Subthreshold dynamics 
  )()()()()( ,stim,FB tItItItItIVVg

dt

dV
C jj

X
j

I
j

E
jLjL

j
m




 , for  ref tt  

Rj VtV )( , otherwise 

Synaptic currents 
 

rev)( VVstI j
i

ijj   , where i runs over all presynaptic neurons from population α  

which have a connection to the postsynaptic neuron j in population    

Spiking if Tj VtV  )( and Tj VtV  )( : (1) set tt  and (2) emit spike with time stamp t  

Name Poisson 
Type independent Poisson spike trains with fixed rate νext 
E: Synapse model 
Type Difference-of-exponentials synapse 

Synaptic  
dynamics 




 ijij
ij xs

dt

ds
decay  




 ij
ij x

dt

dx
rise , and after each presynaptic spike, at time 

iji dtt   : 
ijijij gxx   

F: Stimulus 
Type Current input 
Target E1, E2 

Description 

))(σ)(1()(

)(

,ind

)(

stim0stim

k

  
ts

kk

ts

β
k, tztzσ+c+I=tI



   during the stimulus interval and 0 otherwise. 

)(tz   and )(tzk
  are independent realizations of an Ornstein-Uhlenbeck process, defined by )(2 stimstim tz

dt

dz   , where 

)(t  is Gaussian white noise (mean 0, variance dt). 

G: Measurements 
Spikes from all neurons of populations E1 and E2. 
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Supplementary Table 2. Simulation parameters for the sensory circuit model. 

Populations 
NE1 = NE2 800 Size of excitatory populations E1 and E2 
NI 400 Size of inhibitory population I 
NX 1000 Size of external population X 
Connectivity] 
Local recurrent connections 
p 0.2 Connection probability for (EE, EI, IE, II) 

w  1.3 Relative synaptic strength of connections within populations E1 and E2 

w  7.02  w  Relative synaptic strength of connections across populations E1 and E2 

2211  EEEE gg   wnS0.76  Weight of excitatory to excitatory synapses within populations E1 and E2 

1221  EEEE gg   wnS76.0  Weight of excitatory to excitatory synapses across populations E1 and E2 

 EIg  1.52 nS Weight of excitatory to inhibitory synapses 

IIIE gg   12.6 nS Weight of inhibitory to excitatory (inhibitory) synapses 

   5.0 g  Standard deviation of synaptic weights from neurons in population α to neurons in population β 

Ed  [0.5 ms, 1.5 ms]  Range of uniformly distributed transmission delays of excitatory connections 

Id  [0.1 ms, 0.9 ms]  Range of uniformly distributed transmission delays of inhibitory connections 

External connections  
px 0.32 Connection probability for external connections 

  XIXE gg   1.71 nS Weight of external to excitatory (inhibitory) synapses 

 X   5.0 Xg  Standard deviation of synaptic weights from neurons in external population to neurons in 
population β 

XEd  [0.5 ms, 1.5 ms]  Range of uniformly distributed conduction delays of external connections 

Feedback connections from the decision circuit 

FBp  0.2 Connection probability for feedback connections 

 FBb  varied Feedback strength in the homogeneous network  

 FBg   nS 06680 FBb.   
Synaptic weight of feedback connections to neuron k from the corresponding population of the 
decision circuit (D1 → E1, D2 → E2) 

FBd  1 ms  Fixed synaptic delay / conduction delay of feedback connections 

Neuron model 
Cm 250 pF  Membrane capacitance 

Lg  16.7 nS  Leak conductance 

VL –70 mV  Resting potential 
VT –50 mV  Spiking threshold 
VR –60 mV  Reset potential 

E
ref  2 ms  Absolute refractory period of excitatory neurons 
I
ref  1 ms  Absolute refractory period of inhibitory neurons 

Vinit [–48 mV, -50 mV]  Range of initial uniform distribution of membrane potentials 
νext 12.5 spikes/s Firing rate of external Poisson neurons 
Synapse model 

EVrev  0 mV Reversal potential of excitatory synapses 
IVrev  –80 mV Reversal potential of inhibitory synapses 

decay  5 ms Decay constants of AMPA-type and GABA-type conductances 

rise  1 ms Rise constant of AMPA- and GABA-type conductances 

Stimulus 

0I  0.08 nA Mean input current for zero-coherence stimulus  

c varied Stimulus coherence (between 0 and 1) 
1E  +0.25 Average additional input current to E1 at highest coherence (c = 1) 

2E  –0.25 Average additional input current to E2 at highest coherence (c = 1) 

σ varied  Amplitude of temporal modulations of the stimulus 

stim   212.0   S.d. of modulations of stimulus inputs )(ts β in the homogeneous network 

ind   212.0   S.d. of modulations in individual inputs )(ts βk  in the homogeneous network 

stim  20 ms Correlation time constant of Ornstein-Uhlenbeck process 
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Supplementary Table 3. Tabular description of the integration circuit model. 

A: Model Summary 
Populations Three excitatory, one inhibitory 
Connectivity All-to-all connections 
Neuron model Leaky integrate-and-fire, fixed voltage threshold, fixed absolute refractory time 
Synapse model Conductance-based inputs (exponentially decaying PSC) 

Input 
Independent fixed-rate Poisson spike trains to each neuron; 
Feed-forward signal from the sensory circuit to excitatory neurons 

Measurements Spiking activity 
B: Populations 
Name Elements Size 
D1 Iaf neuron NE1 = 4 NI fE 
D2 Iaf neuron NE2 = 4 NI fE 
Dn Iaf neuron NEN = 4 NI (1-2fE) 
I Iaf neuron NI 
C: Connectivity 
Name Source Target Pattern 
Local recurrent connections 

DiDj Di Dj All-to-all, fixed weights DiDj
AMPAg  and DiDj

NMDAg , fixed delay d 

DiI Di I All-to-all, fixed weights DiI
AMPAg  and DiI

NMDAg , fixed delay d 

IDj I Dj All-to-all, fixed weights IDj
GABAg , fixed delay d 

II I I All-to-all, fixed weights II
GABAg , fixed delay d 

Feed-forward connections from the sensory circuit 

FF Ei (sensory) Di (decision) Random with sparseness FFp , fixed weight FF
AMPAg , delay FFd  

D: Neuron models 
Name Iaf neuron 
Type Leaky integrate-and-fire, conductance input 

Subthreshold dynamics 
  )()()()()( ,FF

,AMPA
EXT,

,AMPA,GABA,NMDA,AMPA tItItItItIVVg
dt

dV
C jjjjjLjL

j
m




  , for  ref tt  

Rj VtV )( , otherwise 

Synaptic currents 

 
rev,AMPA,AMPA )( VVstI j

i
ijj   , where i runs over all presynaptic neurons from population α  

 
rev,NMDA

1
,NMDA )57.3/)mV062.0exp(1/(1)( VVsVtI j

i
ijjj     

 
rev,GABA,GABA )( VVstI j

i
ijj     

 
rev

EXT
,AMPA

,EXT
,AMPA )( VVstI jjj   

 
rev

FF,
,AMPA

FF,
,AMPA )( VVstI j

i
ijj   , where i runs over all presynaptic neurons from the sensory population α 

Spiking if Tj VtV  )( and Tj VtV  )( : (1) set tt  and (2) emit spike with time stamp t  

E: Synapse model 
Type Synaptic dynamics  

AMPA synapse 


 ij
ij s

dt

ds
,AMPA

,AMPA
AMPA  , and after each presynaptic spike, at time dtt i   : 

AMPA,AMPA,AMPA gss ijij   

GABA synapse 


 ij
ij s

dt

ds
,GABA

,GABA
GABA  , and after each presynaptic spike, at time dtt i   : 

GABA,GABA,GABA gss ijij   

NMDA synapse 

 



 ijij

ijij sx
s

dt

ds
,NMDANMDA

decayNMDA,

,NMDA,NMDA 1  




 ij
ij x

dt

dx
riseNMDA, , and after each presynaptic spike, at time dtt i   : 

NMDAgxx ijij   

F: Inputs 
Type Poisson generator 
Target All neurons (in D1, D2, Dn, I) 

Description 
Spikes are emitted according to a Poisson process with rate  EXT  independent for each neuron and mediated by AMPA 

synapses with weight EXT,
AMPAg . 

G: Measurements 
Spikes from all neurons of populations E1 and E2. 
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Supplementary Table 4. Simulation parameters for the integration circuit model. 

Populations 
fE 0.15 Fraction of stimulus-selective excitatory neurons 
ND1 = ND2 240 Size of excitatory populations D1 and D2 
NDN 1120 Size of excitatory population Dn 
NI 400 Size of inhibitory population I 
Connectivity] 
Local recurrent connections 

w  1.6 Relative recurrent synaptic strength within populations D1 and D2 

w    
 f 

  w  f
  

E

E

)1(

)1(
1




   Relative recurrent synaptic strength of connections across populations D1 and D2 and from the 
non-selective population Dn to D1 and D2 

D2D2
AMPA

D1D1
AMPA gg   wnS05.0  Weight of AMPA synapses within populations D1 and D2 

D2D2
NMDA

D1D1
NMDA gg   wnS165.0  Weight of NMDA synapses within populations D1 and D2 

Dn
AMPA
g  nS05.0  Weight of AMPA synapses to neurons in Dn 

Dn
NMDA
g  nS165.0  Weight of NMDA synapses to neurons in Dn 

D2
AMPA

D1
AMPA

 gg   wnS05.0  Weight of AMPA synapses D2 → D1, Dn → D1, D1 → D2, and Dn → D2 
D2

NMDA
D1

NMDA
 gg   wnS165.0  Weight of NMDA synapses D2 → D1, Dn → D1, D1 → D2, and Dn → D2 

DI
AMPAg  0.04 nS Weight of excitatory to inhibitory synapses (AMPA) 
DI
NMDAg  0.13 nS Weight of excitatory to inhibitory synapses (NMDA) 

ID
GABAg  1.3 nS Weight of inhibitory to excitatory synapses 

II
GABAg  1.0 nS Weight of inhibitory to inhibitory synapses 

d 0.5 ms  Transmission delay of recurrent excitatory and inhibitory connections 
External connections and feed-forward connections from the sensory circuit 

DEXT,
AMPAg  2.1 nS Weight of external input to excitatory neurons 

IEXT,
AMPAg  1.62 nS Weight of external input to inhibitory neurons 

FFp  0.2 Connection probability for feedback connections 

FF
AMPAg  0.09 nS 

Synaptic weight of feed-forward connections from the corresponding stimulus-encoding 
population from the sensory circuit (E1 → D1, E2 → D2) 

FFd  1 ms  Transmission delay of feed-forward connections 

Neuron model 
e
mC  500 pF  Membrane capacitance of excitatory neurons 

i
mC  250 pF Membrane capacitance of inhibitory neurons 

e
Lg  25 nS  Leak conductance of excitatory neurons 

i
Lg  20 nS Leak conductance of inhibitory neurons 

VL –70 mV  Resting potential 
VT –50 mV  Spiking threshold 
VR –55 mV  Reset potential 

e
ref  2 ms  Absolute refractory period of excitatory neurons 

i
ref  1 ms  Absolute refractory period of inhibitory neurons 

Vinit [–48 mV, –50 mV]  Range of initial uniform distribution of membrane potentials 
Synapse model 

EVrev  0 mV Reversal potential of excitatory synapses 

IVrev  –70 mV Reversal potential of inhibitory synapses 

AMPA  2 ms Decay constant of AMPA-type conductances 

GABA  5 ms Decay constant of GABA-type conductances 

decayNMDA,  100 ms Decay constant of NMDA-type conductances 

riseNMDA,  2 ms Rise constant of NMDA-type conductances 

NMDA  0.5 ms-1 Saturation constant of NMDA-type conductances 

Inputs 
D2
EXT

D1
EXT    2392 spikes/s Firing rate of external Poisson input to neurons in population D1 and D2 

I
EXT

En
EXT    2400 spikes/s Firing rate of external Poisson input to neurons in population Dn and I 
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Supplementary Methods 

Network model 

A standardized description of the model and all simulation parameters can be found in Supplementary Tables 1-411,12.  

Choice bias: The random connectivity within the sensory circuit and across circuits (i.e. bottom-up and top-down) can cause 
that the network’s behavioral responses exhibit a bias towards one of the two choice options. We avoided this “quenched” 
bias by testing 10 different connectivity matrices and selecting the one that showed the least bias (51% choice 1 vs. 49% 
choice 2). This connectivity matrix was used in all simulations. Our conclusions remain valid for networks that show higher 
choice biases. 

Stimulus model: The stimulus term )(ts  (see equation 2 in Methods) that is common to all neurons of a population and the 

individual inputs )(tsk
  (see equation 3 in Methods) that are independently generated for each neuron k have the same 

standard deviation   212.0indstim ,k . This yields an average correlation between the currents injected into two 

different neurons k and k’ of   5.0CorrCoef stimstim =(t)I(t),I β
k',

α
k,  for β=α , and zero for βα  . This stimulus 

parameterization, adding a common and an independent term, accounts for the fact that each MT neuron “sees” the RDK 
through the specific and heterogeneous receptive fields of its afferent inputs13, causing the PSTHs from pairs of neurons 
obtained from repeated presentations of the replicate stimuli to be partially correlated (average correlation coefficient ~0.5, 
PSTH bin size T = 20 ms; Supplementary Fig. 1b-c). This is comparable to the two pairs in the MT data set which were 
recorded with replicate RDKs and exhibited different PSTHs10 (correlation = 0.47 and 0.26 with direction difference = 9º 
and 20º for pairs emu035 and emu034, respectively; bin size T = 60 ms; coherence 0%). Introducing higher correlations in 
the current inputs to sensory neurons led to an increase in pair-wise correlations and to an increase in the early CP (Fig. 
2b,c) but left all results unchanged (not shown). 

Psychophysical data 

Because the stimuli used during the MT recordings were not stored, we trained two male adult macaque monkeys (Macaca 
mulatta) to report the net motion direction of a fixed-duration random dot kinematogram (RDK, see below) along the 
horizontal axis with varying levels of difficulty (depending on the motion coherence of the RDK). On each trial we recorded 
both the monkey’s choice and the presented stimulus (i.e. the positions of the dots in each frame). These data were used to 
compute average motion energy traces (Supplementary Fig. 7c,e). Minor stimulus differences aside (see above), the task 
was very similar to the classical fixed-duration version7,8,14, except that: (1) the monkey reported his choice with a reaching 
response rather than with a saccadic eye movement, (2) the targets were displayed 500 ms before stimulus onset rather than 
only after stimulus offset. We are confident that these differences do not provide a reason for expecting a different dynamics 
of decision formation (reflected in a different psychophysical kernel). Importantly, and as in the original studies, the 
monkeys were only trained in the fixed-duration task. They were never exposed to other variants of the task, which could in 
principle encourage the decision to be formed rapidly (such as reaction time tasks or variable duration tasks). All surgical 
and behavioral procedures conformed to guidelines established by the National Institutes of Health and were approved by 
the Institutional Animal Care and Use Committee of Stanford University. 

Random dot kinematograms 

The stimulus used in our psychophysical experiment – a random dot kinematogram (RDK)14 – was generated using 
MATLAB and Psychophysics Toolbox15. Stimuli were presented on a 19-inch LCD touch monitor (Elo Touchsystems) with 
75 Hz frame rate and 800 x 600 pixels resolution positioned 30 cm away from the monkey. The details for generating the 
stimulus have been extensively described previously5,16. We used the same algorithm and parameters expect: (1) the 
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stimulus duration was fixed at 1 s, (2) the diameter of the stimulus aperture was 14 degrees, and (3) the speed of the dots 
was 8 degrees / second. Otherwise, we used the same coherences (0, 3.2, 6.4, 12.8, 25.6, and 51.2%), dot density (16.7 dots 
deg-2 s-1), and dot size (2 pixels). To create the impression of motion, the dots in the RDK were split into 3 consecutive sets 
of the same size (1 set displayed for each individual frame) and displaced 3 frames (40 ms) later. The fraction of dots 
displaced coherently toward one of the two targets was determined by the coherence (motion strength), with the remaining 
dots being displaced randomly. For zero-coherence stimuli all dots were displaced randomly but, due to the stochasticity of 
that process, one obtains non-zero net motion toward the targets over a small number of frames (i.e. the motion energy 
shows temporal modulations).  

The MT data7,8,14 analyzed here was obtained using 2-second RDK stimuli, which varied from session to session to match 
the stimulus preference of the MT neuron under study (diameter of the stimulus, the speed of the dots, between 0.4 and 28.4 
degrees/second, and the axis of motion). The algorithm used to generate the stimulus was also different14. Despite these 
differences in stimuli and task structure, the monkeys’ behavioral performance was similar across all studies (including 
ours, see Supplementary Fig. 7b,d,f). 

Psychophysical reverse correlation 

We used psychophysical reverse correlation17,18 in order to measure the amplitude and time-course of the impact of stimulus 
fluctuations on the decision. The psychophysical kernels were computed as the difference of the average stimulus leading to 
each of the two possible choices. For the network model, it was defined as: 

)()()( 21 tztztPK  ,        (1) 

where 
 


l

l tztz )()(  is the average of the stimulus fluctuations across trials yielding choice  ( =1,2). The stimulus 

fluctuations in each trial were defined as )()()( E2,E1, tztztz lll  , where )(, tz l  are the temporal modulations in sensory 

input into population  in trial l (see equation (2)). Psychophysical kernels were smoothed by convolution with a 100 ms 

rectangular window.  

The sensory integration window is defined as the interval, starting at stimulus onset, which contains 85% of the total area 
under the psychophysical kernel. The length of this window quantifies the period in which the system is sensitive to the 
sensory input. 

To compute the psychophysical kernel from the experimental data (Supplementary Fig. 7c,e) we used equation 1, but 

defined the stimulus fluctuations in each trial )(tzl as the difference of the motion energies6 in the two directions that the 

monkey had to discriminate (left vs. right)5: )()()( tmtmtz l
R

l
L

l  . Oriented motion energy )(tml
 in direction  = L, R) 

and trial l was calculated as a spatial average of the motion energy )(x,tml
 defined at each pixel x = (x,y). This was 

computed as the spatiotemporal convolution of a quadrature pair of oriented filters, )(x,tF and )(x,tF , and the stimulus 

image Il (x,t) (i.e. the random dot pattern in each frame t): 

   22
)(x,)(x,)(x,)(x,)(x, tItFtItFtm lll   . 

The filters were implemented as in ref. 5. The space constants σc and σg were multiplied by a factor 2.8 in order to adjust the 
spatiotemporal frequency passband to the speed of coherent motion which was higher in the current experiment 
(7.95 degrees / second vs. 2.84 degrees / second). 
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Statistical methods 

We mainly used permutation tests to establish the statistical significance of our results. Paired tests were used to compare 
measurements within neurons, implemented by permutation of trials across different conditions. When performing two-
sample tests (non-paired tests), we permuted neurons across the two independent samples conserving their sample size. 
When the model prediction identified the sign of the comparison we used one-sided tests, and this is explicitly indicated in 
the text. In particular, we used the following procedures for the permutation tests: Significant deviation of CP and 
psychophysical kernel from chance level (Supplementary Fig. 7) was tested by permutation of the choice outcome in each 
trial. Significant difference between replicate and non-replicate conditions were tested by shuffling neurons (which were 
either recorded with replicate or non-replicate stimuli) between the two conditions (Fano factors and CPs, Fig. 4). For the 
subset of neurons for which both conditions were available, we instead shuffled trials between the conditions within each 
neuron . The same was done for the spike count correlations of the two available pairs (Fig. 4b and Supplementary Fig. 
8b). Positive slope of the regression of CP correlations (Fig. 5f) was tested using permutations of the time stamps of CP 
measurements of individual neurons, recalculating the correlations and their slope for the shuffled data. Similarly, the 
positive slope of lagged correlations (Fig. 6g) was tested by individually shuffling the time stamps of lagged correlations for 
each neuron and recalculating the slope for the shuffled data. Standard errors were calculated using bootstrap, based on 
1,000 samples obtained by randomly resampling with replacement. 

When applying parametric tests (ANOVA , t-test), we verified that our data satisfied the assumptions of normality and 
homoscedasticity (Lilliefors test of normality, P > 0.05, and Levene's test for equality of variances, P > 0.05, respectively). 
Paired tests are used to compare measurements within neurons, in ANOVAs this is accomplished by using a mixed-effects 
design with neuron as random factor, nested in the monkey factor. In all analyses, outliers beyond 3 standard deviations of 
the population mean were removed for population tests and descriptive statistics are indicated by mean ± s.e.m. 
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