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This supplementary material provides the derivation of the method, ad-
ditional numerical results, and proof of the main results in the main text.

1 Methodology

For simplicity, we start with a population covariance matrix Σ, and we define
a covariance loss function for every column i = 1, 2, . . . , p,

fi(Σ,B) =
1

2
βTi Σβi − eTi βi, (1)

where B =
(
β1,β2, . . . ,βp

)
, and each βi is a column vector. Each function

fi in (1) is strictly convex in βi as Σ is strictly positive-definite; more im-
portantly, the minimal values of each fi are achieved at βi’s that satisfy the
following equality, for each i,

Σβi − ei = 0. (2)

The quadratic function (1) is of the same form as the iterative conjugate
gradient method that solves a linear system like (2). It is also straightforward
to see that each column of the precision matrix Ω satisfies these equalities,
and thus minimizing all the loss functions in (1). In fact, Ω is the unique
solution of (2) if Σ is full rank, which can be seen by the inversion formula
ωi = Σ−1ei = Ωei.
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Certainly, the functions in (1) and the inversion formula cannot be di-
rectly applied to data, because the population covariance Σ is usually un-
known. Thus, we replace with the sample covariance matrix Σ̂, to produce
the sample based loss function of (1):

fi(Σ̂,B) =
1

2
βTi Σ̂βi − eTi βi.

One intuition is to minimize the above function, for every i, to produce an
estimator for Ω. However, this is not possible because there may be multiple
solutions if Σ̂ is not full rank. Moreover, it does not utilize the sparsity
assumption of Ω. We will address these two issues momentarily.

Motivated by recent developments on using the `1 norm in sparse precision
matrix estimation (Friedman, Hastie, and Tibshirani, 2008; Cai, Liu and Luo,
2011), we add the `1 penalty to the column loss function

1

2
βTi Σ̂βi − eTi βi + λni|βi|1 (3)

for i = 1, 2, . . . , p, where the penalization parameter λni > 0 and is allowed
to be different from column to column, in order to adapt to the magnitude
and sparsity of each column. Due to the shrinkage effect of the `1 penalty,
some coordinates of βi may be shrunk to zero exactly. The loss function (3)
is connected to the CLIME estimator (Cai, Liu and Luo, 2011). By taking
the subgradient of (3), the minimal values satisfy the following constraint for
i = 1, 2, . . . , p, ∣∣∣Σ̂β − ei∣∣∣

∞
≤ λni (4)

which is exactly the CLIME constraint.

2 Numerical examples

2.1 Simulations

Table 1 lists the frequencies of correct zero/nonzero identification by SCIO,
SCIOcv, CLIME, and glasso, as discussed in the main text.
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2.2 A genetic dataset on HIV-1 associated neurocog-
nitive disorders

Borjabad et al (2011) analyzed gene expression arrays on post-mortem brain
tissues. They showed that patients with HAND on antiretroviral therapy
have many fewer and milder gene expression changes than untreated patients,
and these genes are postulated to regulate several important genetic path-
ways. Their dataset is publicly available from Gene Expression Ominibus
(GEO) under the serial number GSE28160. We here apply our method to
study how their genetic interactions/pathways are altered between treated
and untreated patients, and compare with other methods using classification,
due to lack of the golden truth.

This dataset contains gene expression profiles of post-mortem brain tis-
sues under two biological replications. The first replication contains 6 control
(healthy) samples, 7 treated HAND samples, and 8 untreated HAND sam-
ples; the second replication contains 3 controls, 5 treated, and 6 untreated.
The data are preprocessed by GEO and then log-transformed using Biocon-
ductor in R. We will use the first replications as a training set, and test the
performance of classifying 3 classes on the second replications. The class
label is denoted by q, where q = 1, 2, 3 for control, treated and untreated
respectively. The model building procedure is similar to Cai, Liu and Luo
(2011). On the training data, we first compare pair-wise mean differences
between 3 classes for each gene using Wilcoxon’s tests, and select the top 100
genes with the most significant p-values in testing any pair of classes. Based
on these 100 genes and the training data, we estimate the inverse covariance
matrix Ω̂q for each class q using SCIO, CLIME, and glasso. To classify a
new observation X from the testing dataset, we employ a classification score
for each pair of class (q, q′), which is defined as the log-likelihood difference
(ignoring constant factors)

sq,q′ (X) = −
(
X −Xq

)T
Ω̂q

(
X −Xq

)
+
(
X −Xq′

)T
Ω̂q′

(
X −Xq′

)
+ log det

(
Ω̂q

)
− log det

(
Ω̂q′

)
where Xj is the mean vector for class j using the training data, j = q, q′ and
q 6= q′. This score is essentially the logarithm of the likelihood ratios under
two estimated multivariate normals. Because each class has almost the same
number of observations in the training, we will assign the label q if sq,q′ > 0
and q′ otherwise.
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Figure 1 plots the support maps with a representing case of 10% con-
nected edges using both SCIO, CLIME, and glasso. Each label has different
connection patterns as shown by all these methods, and all methods share
similar patterns by visual inspection. However, it should be noted that glasso
tends to have stripes in the support, which is also observed in simulations.

2.3 An fMRI dataset on attention deficit hyperactivity
disorders

The ADHD-200 project (http://fcon 1000.projects.nitrc.org/indi/adhd200/)
released a resting-state fMRI dataset of healthy controls and ADHD chil-
dren. We apply our method using the data in one of the participating center,
Kennedy Krieger Institute. There are 61 typically-developing controls (HC),
and 22 ADHD cases. The fMRI data were preprocessed by from neurobureau
(http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline),
and the preprocessing steps are described on the same website. After pre-
processing, we have 148 time points from each of 116 brain regions, for each
subject. We will use the data of each subject to estimate the precision ma-
trix. We choose the precision matrix instead of the covariance because it is
more relevant to direct connections rather than indirect ones.

3 Proof of the main results

To prove the main results, we need the following lemmas. The first one comes
from (28) and (33) in Cai, Liu and Luo (2011).

Lemma 1 Let Σ = (σij)p×p and the sample covariance Σ̂ = (σ̂ij)p×p. We
have for some C > 0,

P
(

max
1≤i,j≤p

{|σ̂ij − σij|/(σ1/2
ii σ

1/2
jj )} ≥ C

√
log p

n

)
= O(p−1)

under (C2), and

P
(

max
1≤i,j≤p

{|σ̂ij − σij|/(σ1/2
ii σ

1/2
jj )} ≥ C

√
log p

n

)
= O(p−1 + n−δ/8)

under (C2∗).
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Figure 1: Comparison of support recovered by SCIO, CLIME, and glasso
for the HIV dataset, when 10% of the edges are connected. Nonzeros are in
black.

(a) Control–SCIO (b) Treated–SCIO (c) Untreated–SCIO

(d) Control–CLIME (e) Treated–CLIME (f) Untreated–CLIME

(g) Control–glasso (h) Treated–glasso (i) Untreated–glasso

6



Figure 2: Comparison of support recovered by SCIO, CLIME, and glasso for
the ADHD dataset, when 30% of the edges are connected. Black is nonzero
over 100% of subjects, and white is 0%.

(a) ADHD–SCIO (b) ADHD–CLIME (c) ADHD–glasso

(d) Control–SCIO (e) Control–CLIME (f) Control–glasso

7



Let Ω = (ωij) = (ω1, . . . ,ωp), Si be the support of ωi and ωSi = (ωji; j ∈
Si)T . We will also need the following lemma from Cai, Liu and Zhou (2011).

Lemma 2 Assume c−1
0 ≤ Λmin(Ω) ≤ Λmax(Ω) ≤ c0. We have for some

C > 0,

P
(

max
1≤i≤p

|Σ̂Si×SiωSi − eSi |∞ ≥ C

√
log p

n

)
= O(p−1)

if (C2) holds;

P
(

max
1≤i≤p

|Σ̂Si×SiωSi − eSi|∞ ≥ C

√
log p

n

)
= O(p−1 + n−δ/8)

if (C2*) holds.

Proof of Theorem 1. For the solution β̂i, it satisfies that

Σ̂β̂i − ei = −λniẐi,

where Ẑi =: (Ẑ1i, . . . , Ẑpi)
T is the subdifferential ∂|β̂i|1 satisfying

Ẑji =


1, β̂ji > 0;

−1, β̂ji < 0;

∈ [−1, 1], β̂ji = 0.

Define β̂
o

i be the solution of the following optimization problem:

β̂
o

i = arg min
supp(β)⊆Si

{1

2
βT Σ̂β − eTi β + λni|β|1

}
,

where supp(β) denotes the support of β. We will show that β̂i = β̂
o

i with
high probability.

Let Ẑ
o

Si is the subdifferential ∂|β̂
o

i |1 on Si. We define the vector Z̃i =

(Z̃1i, . . . , Z̃pi)
T by letting Z̃ji = Ẑo

ji for j ∈ Si and

Z̃ji = −λ−1
ni (Σ̂β̂

o

i )j for j ∈ Sci .

By Lemma 3 proved momentarily, for j ∈ Sci and some r < 1,

|Z̃ji| ≤ r < 1 (5)
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with probability greater than 1−O(p−1) under (C2) (or 1−O(p−1 + n−δ/8)
under (C2∗)). By this primal-dual witness construction and (9), the theorem
is proved.

The following lemma is employed when proving Theorem 1.

Lemma 3 With probability greater than 1 − O(p−1) under (C2) (or 1 −
O(p−1 + n−δ/8) under (C2∗)), we have

|Z̃ji| < 1− α/2

uniformly for j ∈ Sci .

Proof. By the definition of Z̃i, we have

Σ̂SiSiβ̂
o

Si − eSi = −λniZ̃Si (6)

and

Σ̂Sci Siβ̂
o

Si = −λniZ̃Sci . (7)

Write (6) as

ΣSiSi(β̂
o

Si − ωSi) + (Σ̂SiSi −ΣSiSi)(β̂
o

Si − ωSi) + Σ̂SiSiωSi − eSi = −λniZ̃Si .

This implies that

β̂
o

Si − ωSi = Σ−1
SiSi

(
− λnZ̃Si − (Σ̂SiSi −ΣSiSi)(β̂

o

Si − ωSi)− Σ̂SiSiωSi + eSi

)
. (8)

By (3) of the main text, Lemma 1 and Lemma 2, we have with probability
greater than 1−O(p−1) (or 1−O(p−1 + n−δ/8)),

|β̂
o

Si − ωSi |2 ≤ C
√
sp log p/n+ o(1)|β̂

o

Si − ωSi |2.

This implies that

|β̂
o

Si − ωSi |2 ≤ C
√
sp log p/n. (9)

9



By (7) and the above equation, we have

−Z̃Sci =
1

λn
Σ̂Sci Si(β̂

o

Si − ωSi) +
1

λn
(Σ̂Sci Si −ΣSci Si)ωSi

=
1

λn
(Σ̂Sci Si −ΣSci Si)(β̂

o

Si − ωSi)−ΣSci SiΣ
−1
SiSiZ̃Si

− 1

λn
ΣSci SiΣ

−1
SiSi(Σ̂SiSi −ΣSiSi)(β̂

o

Si − ωSi)

− 1

λn
ΣSci SiΣ

−1
SiSi(Σ̂SiSiωSi − eSi)

+
1

λn
(Σ̂Sci Si −ΣSci Si)ωSi .

Since ‖ΣSci SiΣ
−1
SiSi‖∞ ≤ 1− α and |Z̃Si |∞ ≤ 1, we have |ΣSci SiΣ

−1
SiSiZ̃Si |∞ ≤

1 − α. By (9) and Lemma 1, we obtain that with probability greater than
1−O(p−1) (or 1−O(p−1 + n−δ/8))

|(Σ̂Sci Si −ΣSci Si)(β̂
o

Si − ωSi)|∞ ≤ Csp log p/n. (10)

This, together with Lemma 2, implies (5).

Proof of Theorems 2 and 3. By the proof of Theorem 1, we have β̂i = β̂
o

i .
Reorganize terms to yield that

β̂i − ωi = Σ−1
(
− λnẐi − (Σ̂−Σ)(β̂i − ωi)− Σ̂ωi + ei

)
. (11)

By (9) and Lemma 1, we obtain that with probability greater than 1−O(p−1)
(or 1−O(p−1 + n−δ/8)),

|(Σ̂−Σ)(β̂i − ωi)|∞ ≤ Csp log p/n. (12)

Thus,

|β̂i − ωi|∞ ≤ CMp

√
log p

n
.

This proves (6). By (9) and the inequality ‖Ω̂−Ω‖2
F ≤ 2

∑p
j=1 |β̂i−ωi|22, we

obtain (7). Theorem 3 (i) follows from the proof of Theorem 1. Theorem 3
(ii) follows from Theorem 2 and the lower bound condition on min(i,j)∈Ψ |ωij|.
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Proof of Theorem 4. Let

β̂i = arg min
β∈IRp

{1

2
βT Σ̂1

1β − eTi β + λni|β|1
}

with the theoretical λni = C
√

log p/n ∈ {λi, 1 ≤ i ≤ N} and C is sufficiently
large. Then by the proofs of Theorem 1 and 2, we have with probability
greater than 1−O(p−1),

max
1≤i≤p

|β̂i − ωi|22 ≤ Csp
log p

n
.

By the definition of β̂
1

i with the cross validated λ̂i, we have

1

2
(β̂

1

i )
T Σ̂

1

2β̂
1

i − eTi β̂
1

i ≤
1

2
(β̂i)

T Σ̂
1

2β̂i − eTi β̂i.

Set Di = β̂
1

i − ωi and Do
i = β̂i − ωi. This implies that

〈(Σ̂
1

2 −Σ)Di,Di〉+ 〈ΣDi,Di〉+ 2〈Σ̂
1

2ωi − ei, β̂
1

i − β̂i〉
≤ 〈(Σ̂

1

2 −Σ)Do
i ,D

o
i 〉+ 〈ΣDo

i ,D
o
i 〉.

Lemma 4 proved later yields that

|〈(Σ̂
1

2 −Σ)Di,Di〉| = OP (1)|Di|22

√
logN

n

and

〈Σ̂
1

2ω·i − ei, β̂
1

i − β̂i〉 = OP (1)|β̂
1

i − β̂i|2

√
logN

n
.

Thus,

|Di|22 ≤ OP

(√ logN

n

)
(|Di|2 + |β̂i − ωi|2) + |Do

i |22.

This proves the theorem.
The following lemma is needed for proving Theorem 4.
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Lemma 4 For any vector v with |v|2 = 1, we have

max
1≤i≤N

|〈(Σ̂
1

2 −Σ)v,v〉| = OP

(√
logN

n

)
(13)

and

max
1≤i≤N

|〈Σ̂
1

2ωi − ei,v〉| = OP

(√
logN

n

)
. (14)

Proof. We will use the following identity

〈(Σ̂
1

2 −Σ)v,v〉 = 〈(Σ−1/2Σ̂
1

2Σ
−1/2 − I)Σ1/2v,Σ1/2v〉

= 〈(Σ−1/2Σ̃
1

2Σ
−1/2 − I)Σ1/2v,Σ1/2v〉+ (vTX̄ − vTµ)2,

where Σ̃
1

2 = 1
n2

∑n2

k=1(Xk − µ)(Xk − µ)T . We have

〈(Σ̃1

2 −Σ)v,v〉 =
1

n2

n2∑
k=1

(vT (Xk − µ))2 − vTΣv.

By (C3) and the exponential inequality in Lemma 1, for any M > 0, there
exists some C > 0 such that

max
1≤i≤N

P
(∣∣∣ 1

n2

n2∑
k=1

(vT (Xk − µ))2 − vTΣv
∣∣∣ ≥ C

√
logN

n

)
= O(N−M),

max
1≤i≤N

P
(
|vTX̄ − vTµ| ≥ C

√
logN

n

)
= O(N−M).

Hence, (13) is proved. (14) follows from the exponential inequality in Lemma
2.
Proof of Proposition 1. The objective is equivalent to (after neglecting
constant terms with respect to βp)

βpβ
T
−pΣ̂12 +

1

2
β2
pΣ̂22 − βp1 {p = i}+ λ |βp| .

The minimizer then should have a subgradient equal to zero,

βT−pΣ̂12 + βpΣ̂22 − 1 {p = i}+ λ∂ |βp| = 0.

Thus the solution is the thresholding rule

βp = T
(

1 {p = i} − βT−pΣ̂12, λ
)
/Σ̂22.
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