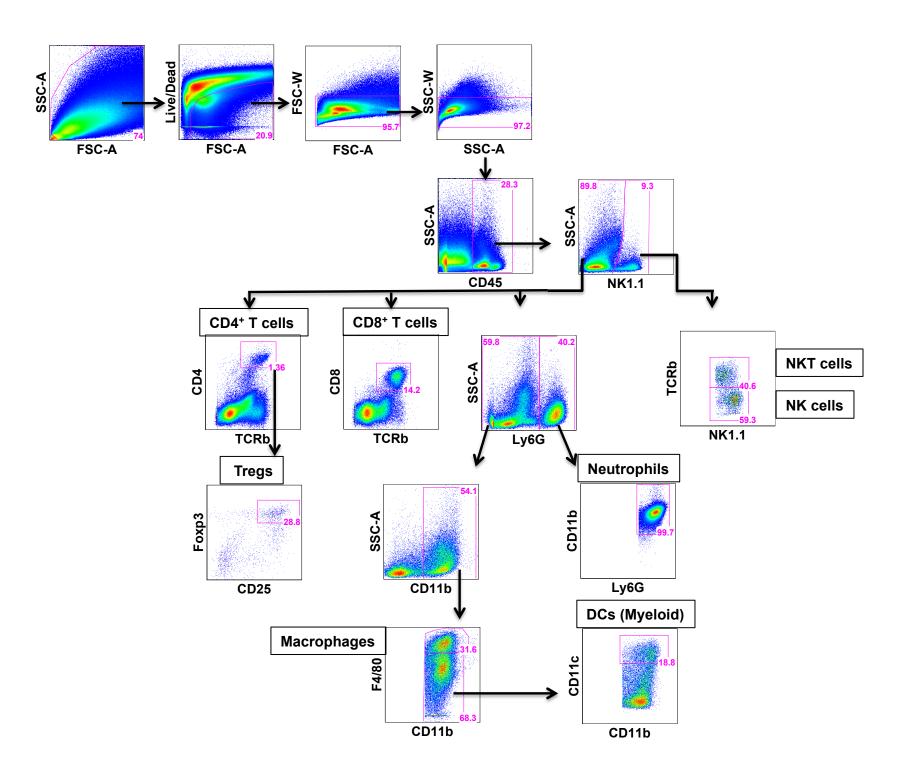

Supp. Figure 1. Hedrick

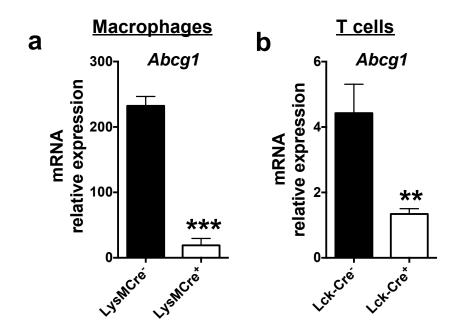
Supplementary Figure 1

The loss of ABCG1 does not change plasma lipoprotein profiles in tumor-bearing hypercholesterolemic mice. Chow diet-fed (**a**) *ApoE^{-/-}, Abcg1^{-/-} ApoE^{-/-}* and (**b**) *Ldlr^{/-}, Abcg1^{-/-}Ldlr^{/-}* mice were injected with MB49 tumor cells. 12 days later, blood plasma from 5 tumor-bearing mice for each group was pooled and lipoprotein profiles were analyzed by FPLC. Graph shows VLDL, IDL/LDL and HDL levels in all groups.


Supp. Figure 2. Hedrick

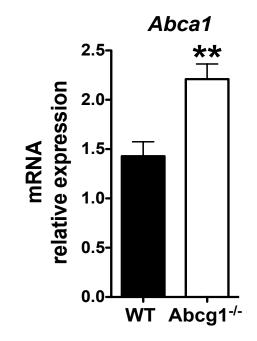
Supplementary Figure 2

Abcg1^{-/-} mice on Western-like diet show decreased tumor metastasis. (a-d) Lung metastasis was quantified based on luminescence detected by using IVIS 200 Bioluminescence imager.(a) Schematic diagram of the experimental design is shown. (b) The graph shows tumor volume in Western-like diet-fed *Abcg1*^{-/-} and WT mice 28 days after injection of B16-F10-luc2 cells subcutaneously. Red box shows the mice that were picked for the spontaneous metastasis analysis. *p<0.05, n.s.: not significant, two tailed Student's t test (c) Representative lung images and (d) Bar graph show spontaneous B16-F10-luc2 lung metastasis in *Abcg1*^{-/-} (*n*=5) and WT (*n*=5) mice. Data is pooled from 2 independent experiments with similar results. (mean \pm s.e.m., **P*< 0.05, Wilcoxon-matched-pairs signed rank test)


Supp. Figure 3. Hedrick

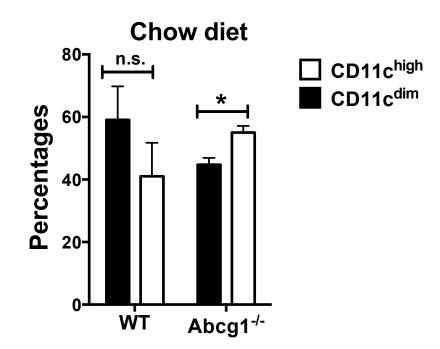
Supplementary Figure 3

Flow cytometry gating strategy to identify immune cell subsets in the tumor. Single-cell suspension from tumor was stained with different fluorophore-conjugated antibodies and analyzed by flow cytometry. Among single cells, the live cells, singlets and CD45⁺ cells were selected for further analysis to identify NKT cells (NK1.1^{+,} TCR β^+), NK cells (NK1.1^{+,} TCR β^-), CD4⁺ T cells (NK1.1^{-,} TCR β^+ , CD4⁺), CD8⁺ T cells (NK1.1^{-,} TCR β^+ , CD4⁺, CD4⁺), CD8⁺ T cells (NK1.1^{-,} TCR β^+ , CD4⁺, CD25⁺, Foxp3⁺), neutrophils (NK1.1⁻, Ly6G⁺, CD11b⁺), macrophages (NK1.1⁻, Ly6G⁻, CD11b⁺, F4/80^{high}) and myeloid dendritic cells (NK1.1⁻, Ly6G⁻, F4/80⁻, CD11b⁺ CD11c⁺).


Supp. Figure 4. Hedrick

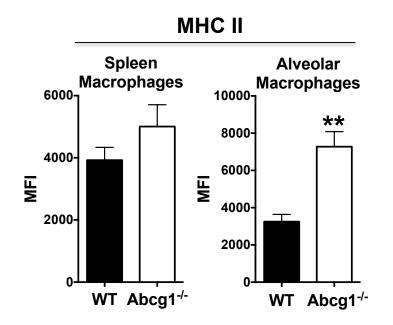
Supplementary Figure 4

Deletion of ABCG1 in macrophages from $Abcg1^{fl/fl}$ -LysM-Cre⁺ mice and T cells from $Abcg1^{fl/fl}$ -Lck-Cre⁺ mice. (a) Macrophages were FACS-sorted from peritoneal lavage of $Abcg1^{fl/fl}$ -LysM-Cre⁻ and $Abcg1^{fl/fl}$ -LysM-Cre⁺ mice. (b) T cells were FACS-sorted from spleen of $Abcg1^{fl/fl}$ -Lck-Cre⁻ and $Abcg1^{fl/fl}$ -Lck-Cre⁺ mice. Expression of Abcg1 was assessed by qPCR. (mean ± s.e.m., **P < 0.01, ***P < 0.001, two-tailed Student's t test).


Supp. Figure 5. Hedrick

Supplementary Figure 5

ABCG1-deficient tumor macrophages display increased expression of *Abca1*. Macrophages were FACS-sorted from tumors from Western-like diet-fed $Abcg1^{-/-}$ (*n*=6) and WT (*n*=6) mice 20 days after inoculation of MB49 cells. Expression of *Abca1* was measured by qPCR. Data are pooled from 2 independent experiments with similar results. (mean ± s.e.m., ***P* < 0.01, two-tailed Student's t test).


Supp. Figure 6. Hedrick

Supplementary Figure 6

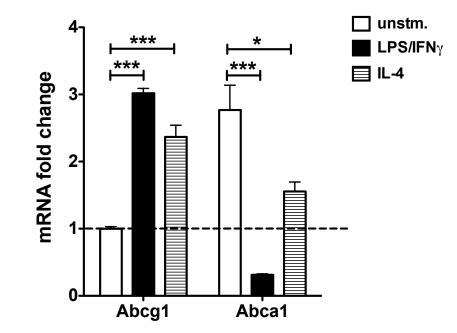
Chow diet-fed *Abcg1^{-/-}* mice display a slightly higher percentage of CD11c^{high} (M1-like) macrophages in the tumor. Tumor cells from Western diet-fed *Abcg1^{-/-}* (*n*=3) and WT mice (*n*=3) mice were analyzed by flow cytometry 20 days after injection of MB49 cells. Bar graph shows percentages of CD11c^{high} (M1-like) and CD11c^{dim} (M2-like) macrophages (CD45⁺, NK1.1⁻, Ly6G⁻, CD11b⁺, F4/80^{high}) in the tumor. Data is representative of 2 independent experiments with similar results (mean \pm s.e.m., **P* < 0.05, two-tailed Student's t test).

Supp. Figure 7. Hedrick

Supplementary Figure 7

Alveolar macrophages in Western-like diet-fed tumor-bearing *Abcg1^{-/-}* mice display an M1 bias.

Spleen and lung cells from Western-like diet-fed $Abcg1^{-/-}$ (n=5) and WT mice (n=5) mice were analyzed by flow cytometry 20 days after injection of MB49 cells. Bar graphs show the MFI of MHC II on spleen macrophages (CD19⁻, NK1.1⁻, Ly6G⁻, CD11b⁺, F4/80⁺) (left) and alveolar macrophages (CD45⁺, CD19⁻, NK1.1⁻, Ly6G⁻, CD11c⁺, SiglecF⁺) (right). Data are representative of 2 independent experiments with similar results (mean \pm s.e.m., **P < 0.01, two-tailed Student's t test).


Supp. Figure 8.Hedrick

Supplementary Figure 8

ABCG1-deficient macrophages display enhanced apoptosis in the tumor. Tumor cells from Western-like diet-fed *Abcg1*^{fl/fl}-LysM-Cre⁺ (*n*=3) and *Abcg1*^{fl/fl}-LysM-Cre⁻ (*n*=3) mice were analyzed for apoptosis by Caspase-3 staining and flow cytometry 12 days after injection of MB49 cells. Dot plot show percentages of apoptotic (Caspase-3⁺ live) (**a**) total macrophages and (**b**) M1 (CD11c^{high}) and M2 (CD11c^{dim}) macrophages in the tumor. Data are representative of 2 independent experiments with similar results (mean ± s.e.m., **P* < 0.05 ****P* < 0.001, two-tailed Student's t test).

Supp. Figure 9. Hedrick

Supplementary Figure 9

Polarized WT macrophages exhibit enhanced ABCG1 and reduced ABCA1 expression. WT bone marrow-derived macrophages were polarized to an M1 phenotype by IFN γ /LPS stimulation or to an M2 phenotype by IL-4 stimulation, *in vitro.* Expression of *Abcg1* and *Abca1* was assessed by qPCR. Data are representative of 2 independent experiments with similar results (mean ± s.e.m., **P* < 0.05, ****P* < 0.001, two-tailed Student's t test).