
 
 
Figure S1, Related to Figure 1. Examination of cross-validation performance and stimulus dependence of CSS model. 
(A) Cross-validation performance. The Full model is fit to all face sizes simultaneously and is asked to predict a few held-out 
face positions on each cross-validation iteration. This model performs quite well and approaches the noise ceiling in each region. 
The Generalize model is fit to two face sizes and is asked to predict the held-out face size. Performance is again quite high, 
indicating the model's ability to predict responses to entirely novel face sizes. Finally, the Individual model is fit and cross-
validated on each face size separately. The performance of this model is lower than that of the Full model, indicating that a 
single model (the Full model) is sufficient to account for responses to different face sizes. The low noise ceilings in V1–V3 are 
due to the fact that voxels in these areas have small pRFs and respond to few stimulus conditions. Bars indicate median across 
voxels ± 68% CI. (B) Faces elicit substantially stronger responses compared to phase-scrambled faces in face-selective regions, 
but not early visual areas. Increase in gain is quantified as 100 x (F – P) / P where F and P refer to the gain observed for faces 
and phase-scrambled faces, respectively. Bars indicate median across voxels ± 68% CI. (C) Faces and phase-scrambled faces 
produce similar angle and eccentricity estimates. Each dot represents a voxel, and the gray-level of each dot indicates the 
signal-to-noise ratio (SNR) of the phase-scrambled responses, defined as the maximum response amplitude divided by the 
average error (dark indicates high SNR). When SNR is high, similar angle and eccentricity estimates are obtained. This 
suggests that dissimilarities in estimates are simply due to low SNR. These results indicate that pRFs in face-selective regions 
can, in theory, be estimated using stimuli other than faces but that, in practice, responses may be weak, leading to noisy pRF 
estimates. 



 
 
Figure S2, Related to Figure 2. Additional quantification of pRF properties. (A) pRF locations and visual field coverage in 
the right hemisphere. Same format as Figure 2B. pRFs centers are located in the contralateral visual field and become larger 
and more foveal in anterior regions. (B) Scatterplots of pRF eccentricity versus size. Individual voxels underlying the lines 
relating pRF eccentricity and size in Figure 2A are plotted for each region (combining across hemispheres). Each dot 
corresponds to one voxel, and dots are partially transparent. For each region, we fit a line minimizing the sum of the 
perpendicular distances between the voxels and the line. The fitting procedure is bootstrapped to estimate error (68% CI), 
indicated by the band around each line (some bands are too small to be visible). To summarize the range of eccentricities 
observed in each region, we count voxels in 1° eccentricity bins (0–1°, 1–2°, etc.) and identify bins with at least 10% of the 
number of voxels in the largest bin. These bins are indicated by gray shading and correspond to the solid lines in Figure 2A. (C) 
Summary of pRF eccentricity. Dots indicate the median eccentricity across voxels in each region ± 68% CI. In face-selective 
regions, pRF centers are typically located at foveal eccentricities. Right pFus and mFus exhibit a stronger foveal bias compared 
to left pFus and mFus. 
 
  



 
 
 
 
 
 



 
 
Figure S3, Related to Figure 3. Additional details on the task experiment. (A) Schematic of task experiment. The design is 
similar to that of the pRF-estimation experiment (Figure 1A), except that faces are presented on a coarser grid and at a single 
size. In different runs, the subject performs one of three tasks while maintaining central fixation: press a button when the fixation 
digit repeats (digit task), when a red dot appears on top of the face (dot task), or when face identity repeats (face task). (B) 
Example voxel from task experiment (left IOG, subject 3). A separate pRF is fit to responses measured under each task. Data 
(black bars; median across trials ± 68% CI) and pRF estimates (green lines) are shown for each task. Compared to the pRF 
obtained under the digit task (left), the pRFs obtained under the dot task (middle) and face task (right) exhibit increased 
eccentricity, size, and gain. (C) pRF angle and eccentricity are stable across tasks in V1–V3. Each dot represents a single voxel. 
Dots lie near the line of unity in V1–V3, indicating that the task does not substantially change angle and eccentricity tuning in 
these regions. (D) Eye tracking results (subject 2). Each image is a 2D histogram of eye positions measured during the 
presentation of faces at a single location (the complete 5 x 5 grid of locations is shown for each task). Horizontal and vertical 
gray lines indicate 1° increments. Eye positions were summarized by fitting a 2D Gaussian probability distribution, and a contour 
that contains 95% of the fitted distribution is indicated by a blue line. Eye positions remain consistently near the center of the 
display. (E) Eye tracking results (subject 3). (F) Summary of eye tracking results. For each face location, we compute the area of 
the 95%-contour that summarizes the range of eye positions observed (see panels D–E). We then divide face locations into 
three eccentricity bins (Low: 0–1.6°, Med: 1.6–3.2°, High: 3.2–4.8°) and plot the mean and standard deviation of the contour 
areas observed in each bin. (Due to calibration error, the scale of the results for Subject 1 may be inaccurate.) Although contour 
area varies significantly across tasks (p < 0.0001, one-way ANOVA in each subject), the size of the variation is quite small. To 
better understand the size of the variation, we compute the average contour area across face positions (separately for each 
task) and use a circle to approximate the contour shape. This analysis reveals that for subject 2, eye positions remain within a 
circle of radius 0.64° during the digit task and this radius increases by 0.03° during the dot task and by 0.11° during the face task. 
For subject 3, eye positions remain within a circle of radius 0.57° during the digit task and this radius increases by 0.02° during 
the dot task and by 0.06° during the face task. The increase in scatter of eye positions during the dot and face tasks is quite 
small (~0.1° or less) and cannot account for the sizes of the attentional effects that we observe (in face-selective regions, the 
median increase in pRF eccentricity from the digit task to the face task is ~0.6° and the median increase in pRF size from the 
digit task to the face task is ~1.5°; see Figure 3A). (G) Results of interleaved-task experiment (same format as Figure 3A). In this 
experiment, the same three tasks (digit, dot, face) were randomly interleaved within each run. We observe the same task-related 
changes in pRF properties as in the original task experiment (compare to Figure 3A). Thus, pRF changes cannot be explained 
by differences in subject arousal across runs. (H) Results of peripheral-digits experiment. In this experiment, pRFs were 
measured while subjects performed the digit task at fixation (central-digit task) or 3° left of fixation (peripheral-digit task). To 
examine whether this attentional manipulation causes pRFs to be shifted, we selected pRFs positioned near the center-of-gaze 
under the central-digit task (eccentricity less than 2°), and then computed the centroid of the pRF centers separately for each 
task (median x- and y-coordinate across voxels ± 68% CI; some error bars are not visible due to their small size). In right-
hemisphere hV4, IOG, and pFus, the centroid computed for the peripheral-digit task is shifted leftward relative to the centroid 
computed for the central-digit task, indicating that pRFs in these regions shift towards the locus of attention (size of change in x-
coordinate indicated at top-right of each plot). The absence of a leftward shift in right-hemisphere mFus suggests that attentional 
effects in mFus may specifically require attention to face features (which is present during the face task but not during the 
peripheral-digit task). Overall, the leftward shift of pRF centers is consistent with the influence of a top-down attentional field in 
ventral temporal cortex.  



 
 
Figure S4, Related to Figure 4. Effect of pRF parameters on decoding and results of direct-decoding analysis. (A) 
Changes in pRF location and size reduce spatial uncertainty in distributed responses. We compared the uncertainty of pRFs at 
5° eccentricity under the digit task (black) and face task (light gray) to the uncertainty of pRFs with same location and size 
measured in the face task, but with the gain measured in the digit task (dark gray). We reasoned that if the reduction in 
uncertainty under the face task is due solely to increased pRF gain, then uncertainty under the location-and-size-matched 
condition should be similar to uncertainty under the digit task. The results show that there are reductions in uncertainty when 
location and size (but not gain) are matched to the face task. This indicates that reductions in uncertainty under the face task are 
due not only to changes in pRF gain, but also to changes in pRF location and size. (B) Visualization of direct decoding results for 
an example region, IOG. Each image is a 5 x 5 map of classification performance, where the shading of each pixel indicates 
how well a given face position can be discriminated from the reference face position (which is indicated by the relative position of 
the image within the overall grid). (C) Summary of direct decoding results. For each 5 x 5 map, we compute the average 
classification performance excluding the face position corresponding to the reference. Then, we bin the results according to the 
eccentricity of the reference face position. The mean of each bin (± SEM) is plotted. In face-selective regions, performance 
substantially improves under the face task compared to the digit task for peripheral reference face positions, with the dot task 
yielding intermediate performance. 
  



SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Subjects 
 
Three experienced fMRI subjects (the authors; two males, one female) participated in this study. All subjects had normal or 
corrected-to-normal visual acuity. Informed written consent was obtained from all subjects, and the experimental protocol was 
approved by the Stanford University Institutional Review Board. Each subject participated in 8–9 scanning sessions: 3–4 
scanning sessions to develop and test the model (pRF-estimation experiment), 3 scanning sessions to examine the effects of 
attention on pRF properties (task experiment, interleaved-task experiment, peripheral-digits experiment), and 2 scanning 
sessions in which retinotopic mapping [S1, S2] and functional localizers [S3, S4] were conducted in order to define regions of 
interest. 
 
Visual stimuli 
 
Stimuli were presented using a Samsung SyncMaster 305T LCD monitor positioned at the head of the scanner bed. Subjects 
viewed the monitor via a mirror mounted on the RF coil. The monitor operated at a resolution of 1280 x 800 at 60 Hz. Stimuli 
subtended 12.5–12.6° of visual angle (viewing distance 182–184 cm). A MacBook Pro computer controlled stimulus presentation 
using code based on Psychophysics Toolbox [S5, S6]. Behavioral responses were recorded using a button box. 
 
Experimental design 
 
pRF-estimation experiment 
 
The goal of this experiment was to develop a population receptive field (pRF) model [S7, S8] that describes VTC responses. We 
therefore designed a novel protocol optimized for estimating pRFs in high-level visual areas. In this protocol, subjects 
maintained central fixation while faces and phase-scrambled faces were presented at various positions and sizes. To construct 
the face stimuli, we photographed individuals in a controlled laboratory environment and generated a stimulus set of 95 
individuals x 7 viewpoints (0°, ±15°, ±30°, ±45°) = 665 faces. The faces were converted to grayscale, cropped with a circular 
mask, rescaled to three different sizes (1.6°, 3.2°, 4.7° diameter), and placed on a gray background (Figure 1A). The positions of 
the faces were varied according to a 7 x 7 grid with 1° spacing (with the central position coincident with the center-of-gaze). 
Phase-scrambled faces were constructed for the smallest face size (1.6° diameter). This was done by randomizing the phase 
spectrum of each face (excluding the DC component), cropping the resulting images with a circular mask to match the spatial 
extent of the original faces, and then reducing image contrast by 30% to avoid clipping of luminance values. The pRF-estimation 
experiment included a total of 7 positions x 7 positions x 4 stimulus types (small faces, medium faces, large faces, phase-
scrambled small faces) = 196 conditions. 
 
Stimuli were presented in 4-s trials, one condition per trial. In a trial, 7 images lasting 0.5 s each were sequentially presented 
and were followed by a 0.5-s delay before the next trial. The images presented in a trial were drawn from the same position and 
stimulus type but were randomized with respect to identity and viewpoint in order to reduce adaptation effects [S9, S10] and 
increase response magnitudes. A white semi-transparent (20% opacity) fixation grid was superimposed on top of the stimuli and 
was present throughout the duration of the experiment [S11]. 
 
The 196 conditions were randomly split into 4 groups containing 49 stimuli each. Stimulus types were equally distributed across 
groups (e.g. each group contained 12–13 small faces, 12–13 medium faces, etc.). In each run, conditions from one of the 
groups were presented once and in random order. To establish the baseline signal level, each run also included null trials in 
which no stimuli were presented. Four null trials were inserted at the beginning and end of each run, and ten null trials were 
randomly intermixed with the 49 stimulus trials under the constraint that null trials could not occur first nor last and null trials 
could not occur back-to-back. Each run lasted ~4.5 min. A total of 4 groups x 3 repetitions = 12 runs were collected in a 
scanning session. Thus, each of the 196 conditions was presented 3 times over the course of the session. 
 
A single task was used throughout the pRF-estimation experiment: the subject was instructed to fixate the center of the grid and 
to press a button whenever a red dot (0.3° x 0.3°, 25% opacity) appeared on top of the stimulus. The red dot was always 
positioned at the center of the stimulus. The dot appeared with probability 0.5 on each trial, lasted 0.5 s, and coincided with the 
presentation of one of the 7 images from that trial. 
 
To increase the signal-to-noise ratio (SNR) in the pRF-estimation experiment, each subject participated in 3–4 scanning 
sessions of the experiment. The stimuli and their temporal ordering were matched across scanning sessions. Data from different 
sessions were pre-processed (see Data pre-processing) and then averaged together before subsequent analysis. 
 
Task experiment 
 
The goal of this experiment was to characterize the effects of attention on pRF properties. The task experiment was similar to 
the pRF-estimation experiment, except that the fixation grid was removed, the number of stimuli was reduced, and responses 
were measured for three different tasks (digit task, dot task, face task). To reduce the number of stimuli, only medium-sized 
faces were used (3.2° diameter) and a coarser grid was used (5 x 5 grid, 1.5° spacing). The task experiment included a total of 5 



positions x 5 positions x 3 tasks = 75 conditions (Figure S3A). In each trial, subjects viewed a sequence of 7 faces presented at 
a single position. 
 
To support the tasks, additional characteristics were added to the stimulus design: (1) We placed a red dot on top of one of the 
faces in a trial at a probability of 0.5 per trial (same as in the pRF-estimation experiment). (2) For each 4-s trial, we generated a 
random sequence of 7 faces satisfying the constraint that both identity and viewpoint change from one face to the next. Then, 
with probability 0.5, we manipulated this sequence to contain a repetition of face identity. This was done by randomly selecting 
one of the faces (excluding the first) and forcing that face to repeat the identity of the previous face (thus, the repeated face 
shows a different viewpoint of the same individual). (3) We placed a stream of small digits (0.3° x 0.3°) at the center-of-gaze. 
The identity of the digit (0–9) changed every 0.5 s: each digit was presented for 0.25 s and was followed by a delay of 0.25 s. To 
minimize visual adaptation, the digit color alternated between black and white on successive presentations. Digit repetitions 
occurred with a probability of 0.052, with a maximum of two successive identical digits allowed (this matches the overall 
frequency of digit repetitions to the overall frequency of dot occurrences and the overall frequency of face-identity repetitions).  
 
At the beginning of each run, the subject was instructed to perform one of three tasks while viewing the stimuli. In the digit task, 
the subject was instructed to fixate the central digit and to press a button whenever the same digit repeated. In the dot task, the 
subject was instructed to fixate the central digit and to press a button whenever the red dot appeared. In the face task, the 
subject was instructed to fixate the central digit and to press a button whenever the same face identity was repeated within a trial.  
 
In each run, each of the 25 stimuli was presented twice and in random order. Null trials were included just as in the pRF-
estimation experiment. Each run lasted ~4.5 min. The first run involved the dot task, the second run the digit task, the third run 
the face task, and this cycled until a total of 3 tasks x 4 repetitions = 12 runs were collected. Thus, each of the 75 conditions was 
presented 8 times over the course of the session. To ensure that the only difference across tasks is the subject's attentional 
state, the exact same physical stimulus (including faces, dots, digits, and their temporal ordering) was used for each task. This 
was accomplished by generating four distinct stimulus sequences and repeating them over the course of the session (i.e., the 
stimuli are given by ABCD ABCD ABCD, where each letter corresponds to a distinct stimulus sequence, while the tasks are 
given by DGF DGF DGF DGF, where D, G, and F indicate the dot, digit, and face tasks, respectively). To verify accurate fixation, 
eye tracking was performed using a scanner-compatible SR Research EyeLink 1000 eye tracker. 
 
Interleaved-task experiment 
 
To control for potential differences in subject arousal across tasks, we conducted an experiment in which tasks were randomly 
interleaved on a trial-by-trial basis within each run. This experiment was identical to the original task experiment except for the 
following: (1) A central red letter (0.3° x 0.3°) presented at the beginning of each trial served as a cue for which task to perform 
('G': digit, 'D': dot, 'F': face). (2) Trials lasted 6 s and were structured as follows: 0.5-s cue presentation, 0.5-s delay, 1.0-s of 
digits, 3.5-s of faces and digits, and 0.5-s delay. (3) The 25 face locations were randomly split into 2 groups (13 and 12 locations 
each). In each run, face locations from one of the groups were presented three times, once for each task. Each run also 
included three cue-only trials for each task as well as three null trials at the beginning and end of the run and three null trials 
intermixed during the run. During cue-only trials, the cue and digits were presented but faces were omitted; during the null trials, 
just the digits were presented (no cue, no faces). The total number of trials was 3 null + ((13 (or 12) conditions + 3 cue-only) x 3 
tasks + 3 null) + 3 null = 57 (or 54) trials, lasting 5.7 (or 5.4) min. (4) Digit repetitions occurred with probability 0.5 on each cued 
trial. (5) A total of 2 groups x 6 repetitions = 12 runs were collected. 
 
Peripheral-digits experiment 
 
This experiment was similar to the task experiment, except that the fixation grid was present and responses were measured for 
two tasks. The central-digit task was identical to the original digit task: the subject performed a 1-back task on centrally 
positioned digits of size 0.3° x 0.3°. In the peripheral-digit task, the subject also performed a 1-back task on digits, but the digits 
were positioned 3.0° left of center and were enlarged to 0.75° x 0.75° to compensate for lower reading acuity in the periphery. 
The two tasks were performed in alternating runs until 10 runs were collected. The same physical stimulus (up to the location 
and size of the digits) was used for the two tasks. 
 
MRI data acquisition 
 
Functional MRI data were collected at the Stanford Center for Cognitive and Neurobiological Imaging using a 3T GE Signa 
MR750 scanner and a Nova 16-channel visual RF coil. In each scanning session, 26 oblique slices covering occipitotemporal 
cortex were defined: slice thickness 2 mm, slice gap 0 mm, field-of-view 160 mm x 160 mm, phase-encode direction anterior-
posterior. A T2*-weighted, single-shot, gradient-echo EPI pulse sequence was used: matrix size 80 x 80, TR 2006.553 ms, TE 
33 ms, flip angle 77°, nominal spatial resolution 2 mm x 2 mm x 2 mm. The TR was matched to the refresh rate of the display 
such that there are exactly 2 TRs for each 4-s trial (i.e. 240 refreshes). Measurements of the B0 magnetic field were performed 
for post-hoc correction of EPI spatial distortion. 
 
 
 
 



Data analysis 
 
Region-of-interest (ROI) definition 
 
All ROIs were defined in individual subjects based on each subject's native anatomical space and without spatial smoothing as 
in our prior studies [S3, S12]. Visual field maps were defined using retinotopic mapping scans. Subjects participated in 4–8 runs 
in which they viewed sweeps of bar apertures that contained a flickering checkerboard pattern while fixating on a central point 
[S4, S7]. These data were used to define V1, V2, V3, and hV4 [S13]. Face-selective regions were defined using functional-
localizer scans. Subjects participated in 2 runs of a block-design experiment in which images of faces, limbs, flowers, houses, 
cars, guitars, and scrambled objects were presented [S3]. Using these data, three face-selective regions were defined based on 
their significantly higher responses to faces compared to other stimuli (t > 3, voxel level, uncorrected) and their anatomical 
location and topological relationship to retinotopic areas and other high-level visual regions [S3, S12, S14]. The defined regions 
are the inferior occipital gyrus, IOG-faces/OFA (abbreviated IOG); posterior fusiform gyrus, pFus-faces/FFA-1 (abbreviated 
pFus); and middle fusiform gyrus, mFus-faces/FFA-2 (abbreviated mFus). Whether these face-selective regions in humans are 
retinotopically organized (as has been suggested for macaques [S15]) is an important question and is outside the scope of the 
present study. 
 
Data pre-processing 
 
The fMRI data were pre-processed by dropping the first five volumes of each run (to allow magnetization to reach steady-state) 
and performing slice time correction, spatial undistortion, and motion correction (both within and across scanning sessions). The 
combined effects of distortion and motion were corrected using a single cubic interpolation of the slice-time corrected volumes 
(for further details of pre-processing, see [S16]). No spatial smoothing was performed. Data were aligned to each subject’s 
native anatomical volume in order to identify voxels in each ROI. 
 
GLM analysis 
 
The pre-processed fMRI data were analyzed using GLMdenoise [S17] (MATLAB implementation available at 
http://kendrickkay.net/GLMdenoise/), a data-driven denoising method that derives estimates of correlated noise from the data 
and incorporates these estimates as nuisance regressors in a general linear model (GLM) analysis of the data. GLMdenoise 
uses polynomials to model the baseline signal level in each run and provides an estimate of the BOLD response amplitude of 
each voxel to each condition. Response amplitudes are converted to units of percent BOLD signal change by dividing by the 
mean signal intensity in each voxel, and error bars on response amplitudes are obtained by bootstrapping (resampling runs with 
replacement). Subsequent analyses involved analyzing these response amplitudes. For the interleaved-task experiment, the 
GLM included a set of finite impulse response regressors for each cue type (extending 0–20 s after cue onset) in order to 
account for any non-specific effects related to the cue or task preparation. 
 
Population receptive field (pRF) analysis 
 
pRF analysis was performed independently for each voxel. We modeled the response amplitudes from each voxel using the 
compressive spatial summation (CSS) model [S8] (MATLAB implementation available at http://kendrickkay.net/socmodel/), 
which is an extension of standard pRF analyses [S7]. The CSS model predicts voxel responses to stimuli presented at arbitrary 
locations in the visual field. Each voxel’s pRF is modeled using an isotropic 2D Gaussian combined with a static power-law 
nonlinearity. By fitting the model, we determine where and how large the pRF must be in order to generate the response 
amplitudes observed for a given voxel. The model includes two parameters (x, y) for the position of the Gaussian, a parameter 
(σ) for the size of the Gaussian, a parameter (n) for the exponent of the power-law nonlinearity, and a parameter (g) for the 
overall gain of the predicted responses. In the CSS model, stimuli are represented as contrast images (see Figure 1B) and the 
predicted response is obtained by computing a weighted sum of the stimulus with the Gaussian and then applying the power-law 
nonlinearity. 
 
Intuitively, the CSS model predicts the response to a stimulus based solely on the spatial extent of the stimulus and its spatial 
overlap with the pRF (if the stimulus completely covers the pRF, it will produce the largest response; if it partially overlaps the 
pRF, it will produce an intermediate response; and if it does not overlap the pRF, it will produce no response). The power-law 
nonlinearity, which is typically compressive (n < 1), allows the model to exhibit tolerance to a range of changes in the position 
and size of the stimulus [S8]. In our data, the exponent of the power-law nonlinearity (n) is 0.53, 0.32, 0.22, 0.19, 0.20, 0.16, and 
0.23 in V1, V2, V3, hV4, IOG, pFus, and mFus, respectively (median across voxels). Note that the CSS model predicts larger 
responses for larger faces, since larger faces cover more of the pRF. Also, note that the CSS model does not account for 
response variations driven by stimulus type—for example, stronger responses to faces compared to phase-scrambled faces in 
face-selective regions (Figure S1B)—but extensions of the CSS model (as in [S16]) may be able to do so. In general, expanding 
the range of stimuli for which the model makes accurate predictions—such as a model that is fully computable for arbitrary 
images [S18]—is an important direction for future research. 
 
We define pRF size as σ/√n, which is the standard deviation of a 2D Gaussian that characterizes the response of the model to 
point stimuli [S8]. We visualize the location of a pRF by plotting a contour at ±2 pRF sizes away from the pRF center (Figure 1B). 



Finally, we quantify pRF gain by computing the maximum predicted response for the stimuli considered in the model fitting (this 
empirically observed gain is more robust than the raw gain parameter). 
 
Model fitting was performed using nonlinear optimization (MATLAB Optimization Toolbox). For the purposes of modeling, we 
rectified the response amplitudes observed at each voxel (negative response amplitudes were set to zero). In our experiments, 
negative BOLD responses  can be found in V1–V3, indicating that the presentation of a face can cause the BOLD signal in a 
voxel to drop below baseline. Such suppression may reflect early attentional filtering and may have a distinct physiological 
source [S19] compared to positive BOLD responses which are the focus of the present study. 
 
For the pRF-estimation experiment, several versions of the CSS model were fit. The Full model involved fitting the model to all 
three face sizes simultaneously; the Individual model involved fitting the model to each face size separately as well as the 
phase-scrambled faces separately; and the Generalize model involved fitting the model to two face sizes and predicting 
responses to the third face size (details below). The final parameter estimates for each voxel were those obtained from the Full 
model; the purpose of the other versions of the model was to assess the cross-validation accuracy of the model (Figure S1A) 
and to examine whether pRF estimates depend on the type of stimulus used (Figures S1B, S1C; comparison of pRFs obtained 
using small faces and pRFs obtained using phase-scrambled small faces). 
 
For the three experiments in which task was manipulated, the CSS model was fit separately to the response amplitudes 
measured under each task. Since the reduced number of stimuli in these experiments provide insufficient data to reliably 
estimate the exponent parameter (n), the exponent parameter was set to a fixed value (0.2). Note that any task-induced 
changes in response amplitudes reflect changes in evoked activity and not changes in baseline activity. This is because in the 
task experiment and peripheral-digits experiment, any shifts in the baseline signal level due to the task are explicitly modeled in 
the GLM (using a separate set of polynomial regressors for each run), and in the interleaved-task experiment, any non-specific 
effects related to task preparation are explicitly modeled in the GLM (using finite impulse response regressors). 
 
Cross-validation was used to estimate the accuracy of the CSS model. For the Full and Individual models, the response 
amplitudes for each face size were randomly split into ten groups, and each group was systematically left out and used as the 
testing set (thus, a total of 30 cross-validation iterations were performed). A different cross-validation scheme was used for the 
Generalize model: this model involved three cross-validation iterations in which each face size was left out and used as the 
testing set. In all cases, accuracy was quantified as the percentage of variance explained (R2) between the cross-validated 
predictions of the response amplitudes and the measured response amplitudes (variance was defined with respect to 0% BOLD 
signal change; see [S8, S16]). For comparison, we computed the noise ceiling for model predictions, i.e. the maximum possible 
performance given the level of noise in the data. This was accomplished through Monte Carlo simulations (see [S8] for details). 
We also computed, for comparison purposes, the accuracy of a flat-response (invariant or fully tolerant) model that simply 
predicts the same response regardless of the position and size of the face. Results of the cross-validation analysis are shown in 
Figure S1A. 
 
Model-based decoding analysis 
 
The purpose of the model-based decoding analysis is to assess how well a collection of pRFs represent spatial information. The 
decoding analysis is applied separately to pRFs observed under different tasks; this helps us understand why task-induced 
changes in pRF properties might be useful. In the decoding analysis, we quantify how well a simple linear classifier can 
discriminate faces at two different positions based on the distributed pattern of responses across the collection of pRFs in a 
region of interest. 
 
First, we used the pRFs to predict the response patterns that would be produced by a small-sized face (1.6° diameter) at 
different visual field positions. Then, for each position and a given reference position, we calculated how well an optimal linear 
decoder can discriminate the two face positions based on the response patterns. We assumed that response patterns are 
affected by additive, independent Gaussian noise with standard deviation 0.05*√n where n is the number of pRFs (scaling by the 
square root of the number of pRFs compensates for differences in the number of pRFs in different regions). Example maps of 
discrimination performance are shown in Figure 4A. Finally, to summarize discrimination performance, we calculated the square 
root of the area of the 75%-correct contour of each map. We refer to the result as the spatial uncertainty, as it indicates the 
distance below which shifts in face position cannot be well discriminated. Intuitively, the larger the contour, the more uncertain 
the position of the face. 
 
To disregard differences in gain across voxels, we fixed the gain of all pRFs observed under the digit task to 1. We then set the 
gains of pRFs observed under the dot and face tasks according to the scaling that was observed (e.g., if the gain under the digit 
task for a given voxel was 0.8% BOLD change and the gain under the face task was 1.2% BOLD change, then the gain of the 
pRF under the face task would be set to 1.5). To avoid the influence of outliers, gain scalings were subjected to 50% 
Winsorization (gain scalings below the 25th percentile were set to the 25th percentile and gain scalings above the 75th 
percentile were set to the 75th percentile). 
 
In Figures 4B, 4C, and S4A, we show results for reference positions located at 16 equally spaced angles at two different 
eccentricities, 1° and 5°. The median and error across angular positions is plotted. 
 



Direct decoding analysis 
 
The model-based decoding analysis described above provides the ability to control the amount and type of noise present, to 
explore stimulus configurations beyond the particular ones used in the experiment, and to identify the specific characteristics of 
representation that influence decoding performance. However, the analysis relies on the validity of the models that are fit to the 
data. We performed an alternative decoding analysis in which decoding is performed directly from the data, without an 
intervening modeling step. First, we analyzed the time-series data from the task experiment using a GLM in which a separate set 
of BOLD response amplitudes is estimated for each run. This produced four independent sets of response amplitudes for each 
face position and task. Next, response amplitudes were converted into t units. Finally, for each region and task, we quantified 
how well response patterns discriminate each face position from all other face positions. This was done by performing nearest-
centroid classification using a split-half cross-validation scheme. For example, response patterns from runs 1 and 2 are 
averaged together, producing one centroid for the reference face position and one centroid for the target face position. Then, 
response patterns from runs 3 and 4 for the target face position are averaged together and classified by determining the nearest 
centroid. All possible training/testing splits of the runs were performed (a total of six), and classification performance was 
aggregated across splits. 
 
Voxel selection 
 
Voxels in each region of interest (ROI) were pooled across subjects. Unless otherwise indicated, all figure plots use median as a 
measure of central tendency and error bars (68% confidence intervals) were obtained using bootstrapping. Error bars reflect 
variability across voxels in each ROI (Figures 2A, 3, S1, S2), across trials (Figures 1C, S3B), or across angular position (Figures 
4B, 4C, S4A). For quantification of pRF properties, to avoid noisy unreliable voxels, we selected voxels with a goodness-of-fit R2 

of at least 50%. For quantification of task effects, we selected voxels with a goodness-of-fit R2 of at least 50% for at least one of 
the tasks (with the exception of Figures 3B–3C where a cutoff of 80% was used in order to improve visibility). 
 
Behavioral analysis 
 
Button responses within two seconds of each behavioral event of interest were analyzed. Behavioral performance was 
quantified using the d' sensitivity index [S20]. In some cases, no misses (all hits) or no false alarms (all correct rejections) were 
observed. To ensure finite d' values for these cases, the minimum number of misses or false alarms was set to 1. In the pRF-
estimation experiment, d' was 2.9, 3.1, and 5.1 for Subjects 1, 2, and 3, respectively. In the task experiment, d' for the digit, dot, 
and face tasks was [2.3, 2.6, 1.3], [2.0, 3.8, 1.2], and [3.1, 4.7, 2.5] for Subjects 1, 2, and 3, respectively (mean across subjects: 
[2.5, 3.7, 1.7]). 
 
Eye-tracking analysis 
 
Eye tracking was performed during the task experiment. For each run, time-series of horizontal and vertical eye positions were 
obtained. Blinks were detected based on outlier values, and data within ±0.1 seconds of each blink were excised. A line was fit 
and removed from each time-series to compensate for instrumental drift. Eye-tracking results show that all subjects were able to 
maintain central fixation in each of the three tasks (Figures S3D–S3F). Due to calibration error, the absolute units for horizontal 
and vertical eye positions may be inaccurate for Subject 1. 
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