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Self-organization of plant vascular systems: claims and
counter-claims about the flux-based auxin transport model

Supplementary Text

C. Feller, E. Farcot, C. Mazza

Consider the system (3) of the main text

dai
dt

= αia − βiaai −
∑
j∼i

(D(ai − aj) + T (aipij − ajpji))

dpij
dt

= λPiΦ(Ji→j)− µpij
dPi
dt

= αp − βpPi +W
∑
j∼i

(µpij − λPiΦ(Ji→j)) (1)

where Ji→j = D(aj − ai) + T (aipij − ajpji) is the net flux between cell i and cell j.

Assume that

αp =
α0
p

ε
, βp =

β0
p

ε
and D = D0ε,

for a small parameter ε > 0. The main text claims that the system (1) is asymptotically equivalent as
ε→ 0 to the simplified system

dai
dt

= αia − βiaai +
∑
k∼i

T (akpki − aipik) , for i ∈ V

dpij
dt

= λ
αp
βp

Φ(T (aipij − ajpji))− µpij , for i, j ∈ V, i ∼ j
(St0)

We will provide more information on this limiting process in what follows, assuming for notational
convenience that T = 1.

S.1 Model simplification

Theorem S.1.1 below shows that for any solution x̄(t) = (ā(t), p̄(t)) of (St0) converging towards an
equilibrium, the related perturbed solution resulting from the addition of small enough diffusion will
remain asymptotically in a small neighbourhood of x̄.

Theorem S.1.1 Let (ā(t), p̄(t)) be the unique solution of the reduced problem (St0) for the initial condi-
tions (a0,p0) ∈ (0,∞)M × (0,∞)m. Let P̄ (t) be the unique solution of the boundary layer equation

dP

dt
(t) = α0

p − β0
pPi, P (0) = P 0

where P 0 > 0. Assume moreover that (a0,p0) lies in the basin of attraction of a locally asymptotically
stable equilibrium point of the slow equation (St0). Then, for every ν > 0, there exists δ > 0 such that,
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for any ε < δ, any solution (aε(t), pε(t), P ε(t)) of the perturbed problem (1), which starts with the same
initial condition, is defined for every t ≥ 0, and there exists t∗ > 0 (depending of ε) such that εt∗ < ν and

||aε(t)− ā(t)|| < ν, for t ≥ 0,

||pε(t)− p̄(t)|| < ν, for t ≥ 0,

||P ε(εt)− P̄ (t)|| < ν, for 0 ≤ t ≤ t∗,

||P ε(t)− αp/βp|| < ν, for t ≥ εt∗,

The proof is a consequence Tykhonov’s Theorem (1952), see, e.g. Lobry et al. (1998).

S.2 Uniqueness and interval of definition of solution of (St0)

We study the reduced system (St0) which corresponds to Stoma’s model (2008) without diffusion:

dai
dt

= αia − βiaai + T
∑
k∼i

(akpki − aipik) = Gi(a,p)

dpij
dt

= λ
αp
βp

Φ(Ji→j)− µpij = Fij(a,p)

(2)

for i, j ∈ V , i ∼ j.

Since F and G are continuous in C0(RM+m,RM ) resp. C0(RM+m,Rm), the general theory of o.d.e.’s
provides the existence of a solution defined over a right maximal interval 0 ∈ J ⊂ R+ for any initial
condition (a0,p0) ∈ RM+m

≥0 . Moreover, the solution is unique because F is locally Lipschitz as Φ is locally
Lipschitz.

Let (a(t),p(t)) be the solution of (2) with initial condition (a0,p0) ∈ RM+m
>0 . Assume there exists a time

t∗ ∈ J such that a component of the solution (a(t),p(t)) reaches 0 in t∗. Let δ ∈ J be the first time it
happens i.e. ai(δ) = 0 for a certain i or pij(δ) = 0 for i ∼ j. Assume the first possibility is true then

dai
dt

(δ) = αia − βiaai(δ) + T
∑
k∼i

(ak(δ)pki(δ)− ai(δ)pik(δ)) = αia +
∑
k∼i

Tak(δ)pki(δ) ≥ αia > 0

which is a contradiction with ai(t) > 0,∀t ∈ [0, δ) and ai(δ) = 0. As a consequence, there exist i, j ∈ V
such that i ∼ j and pij(δ) = 0. On the other hand, as

dpij
dt

= λ
αp
βp

Φ(Ji→j)− µpij

then

pij(t) = e−µt

pij(0) +

∫ t

0

λ
αp
βp

Φ(Ji→j(τ))︸ ︷︷ ︸
≥0

eµτdτ

 > 0, ∀t ∈ J

as pij(0) > 0. Thus pij(δ) cannot be zero.
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In what follows, we suppose that βia > 0, ∀i ∈ V . Assume there exists δ <∞ such that |(a(t),p(t))| → ∞
as t→ δ and Φ is bounded i.e. there exists N > 0 such that 0 ≤ Φ(x) < N for every x ∈ R. As

0 < pij(t) = e−µt

pij(0) +

∫ t

0

λ
αp
βp

Φ(Ji→j(τ))︸ ︷︷ ︸
0≤···≤N

eµτdτ


≤ e−µt

(
pij(0) +Neµt

∫ t

0

λ
αp
βp
dτ

)
≤ pij(0)e−µt +Nλ

αp
βp

<∞, ∀t ∈ J

i.e. every pij is bounded in J . As there exists δ < ∞ such that |(a(t),p(t))| → ∞ as t → δ, it implies
that supt∈J ai(t) = ∞ for at least one i ∈ V and thus supt∈J

∑
i ai(t) = ∞, i.e there exists a sequence

(tn)n∈N in J with tn ↑ δ such that
∑
i ai(tn) ↑ ∞ as n → ∞. It implies the existence of a sequence

(sn)n∈N in J such that sn ↑ δ,
∑
i ai(sn)→∞ as n→∞ and

∑
i ȧi(sn) > 0 for every n ∈ N. But:∑

i

dai
dt

(sn) =
∑
i

(
αia − βiaai(sn) + T

∑
k∼i

(ak(sn)pki(sn)− ai(sn)pik(sn))

)
=
∑
i

αia︸ ︷︷ ︸
<∞

−
∑
i

βiaai(sn)︸ ︷︷ ︸
→∞

→ −∞, as n→∞,

which contradicts
∑
i ȧi(sn) > 0 for every n ∈ N. As a consequence, J = [0,∞) if Φ is bounded and

βia > 0, ∀i ∈ V .

S.3 Divergence in finite time

We here provide a simple example where the exact solution can be given in closed form: Assume that
the graph G is a circle, and that Φ(x) = x2Ix≥0(x). Set

ai(0) = a0, pi,i+1(0) = p+0 and pi,i−1(0) = p−0 ,

with p+0 > p−0 ≥ 0. From symmetry, ai(t) = aj(t) ≡ a(t), pi,i+1(t) = pj,j+1(t) ≡ p+(t) and pi,i−1(t) =
pj,j−1(t) ≡ p−(t). Suppose that αia = αa, βia = βa > 0, ∀i ∈ V and a0 = αa

βa
. Then,

a(t) =
αa
βa

+

(
a0 −

αa
βa

)
e−βat = a0, p

−(t) = p−0 e
−µt,

and

p+(t) = p−0 e
−tµ − (p−0 − p

+
0 )e−tµ

1 + a20c(p
−
0 − p

+
0 )− a20c(p

−
0 − p

+
0 )e−tµ

,

when p+0 , p
−
0 ≥ 0 and where

c :=
λ

µ

αp
βp
. (3)

If the difference in the initial PIN concentration between the left and right membrane is high enough,
that is, if p+0 − p

−
0 > 1

a20c
, the function p+(t) is well-defined when

t 6= δ =
1

µ
ln

(
a20c(p

+
0 − p

−
0 )

a20c(p
+
0 − p

−
0 )− 1

)
> 0.

In that case, p+(t) is thus only defined on [0, δ) since p+(t)→∞ when t→ δ.
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S.4 A Poisson equation to describe critical points of (St0)

Let G∗ be an oriented sub-graph of G of the type defined previously. For quadratic response functions
Φ(x) = x2I{x≥0}(x), the equilibria of (St0) can be studied using a Poisson equation, which is defined
using the Laplace operator associated with the oriented graph G∗

Lij = −Ii→j if j ∼ i and Lii =
∑
j←i

1 = −
∑
j 6=i

Lij , (4)

where Ii→j = 1 if the directed edge (i → j) belongs to the edge set of G∗, and vanishes otherwise. We
look for an equilibrium X = (a,p) of (St0): we will show in what follows that X is an equilibrium if and
only if

• pij = 1
ca2i
Ii→j ,∀i, j,

• a is obtained by solving the following Poisson equation

QT b = cβa
1

b
− αac, (5)

where b = 1/a, Q = −L.

This holds true since (a,p) is a non-negative critical point of (St0) with a > 0 and associated directed
sub-graph G∗ if and only if

βiaai = αia +
∑
j→i

1

caj
−
∑
j←i

1

cai

⇔ c

(
βia

1

bi
− αia

)
=
∑
j→i

bj −
∑
j←i

bi =
∑
j

Qjibj +Qiibi

⇔ (QT b)(i) = c

(
βia

1

bi
− αia

)
where b = 1/a, Q = −L and L the following Laplace operator associated to G∗:

Lij = −Ii→j if j ∼ i and Lii =
∑
j←i

1 = −
∑
j 6=i

Lij .

S.5 Locally asymptotically stable configurations for quadratic response func-
tions

We recall the Instability result provided in the Main Text, the proof of which is given in what follows:

Theorem S.5.1 Consider the system (St0) with Φ(x) = x2. Assume that αia, µ, c > 0, and βia ≥ 0,
∀i ∈ V . Let (a∗,p∗) ∈ (0,∞)M × (0,∞)m\E0 be an equilibrium of the system (St0) of associated oriented
sub-graph G∗. Then,

• If G∗ contains no sink cells, then (a∗,p∗) is unstable.
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• If (a∗,p∗) is stable, then G∗ is an oriented sub-graph of G composed of trees directed from leaves to
roots such that every cell i ∈ V has at out-degree ≤ 1.

Theorem S.5.1 shows that the possibly stable equilibria of (St0) are such that G∗ is composed of tree
directed from leaves to the root such that every cell i has at most one descendent, i.e., ]{k ← i} ≤ 1,
containing therefore at least one source and one sink cell. The Poisson equation (5) rewrites as

∑
j→i

1

aj
− 1

ai
= cβiaai − αiac, (6)

when i is not a sink, while ∑
j→i

1

aj
= cβiaai − αiac, (7)

for sink cells i.

When βia > 0, ∀i ∈ V , we deduce from (7) that auxin concentration at a sink cell is obtained from the
formula

ai =
αia +

∑
j→i

1
caj

βia
. (8)

We get a finite number of equilibria, which can be computed recursively from the source cells (choosing
one of the two above values for each source) to the sink cells by using the formula

ai =
αia +

∑
j→i

1
caj
±
√

(αia +
∑
j→i

1
caj

)2 − 4βia
1
c

2βia

if

(αia +
∑
j→i

1

caj
)2 − 4βia

1

c
≥ 0, (9)

since ]{j ← i} = 1.

S.6 Proof of the instability criterion

We compute first the Jacobian matrix of the system (St0) (or (2)). Let

Gi = αia − βiaai +
∑
k∼i

(akpki − aipik)

Fij = λ
αp
βp

Φ (aipij − ajpji)− µpij

and L the matrix with coefficients:

Lij = Ii→j and Lii = −
∑
j

Ii→j = −]{j ← i}.
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Let Γ the adjacency matrix of G i.e. γij = 1 if and only if (i, j) ∈ E (i.e i ∼ j) and γij = 0 otherwise.

We find
(
∂Gi

∂ak

)
k,i

= −diag(βia) + diag( 1
c(a∗i )

2 )L and ( ∂Gi

∂pkl
)kl,i is a block matrix with blocks:

1 i j M( )
ij 0 · · · 0 −a∗i 0 · · · 0 a∗i 0 · · · 0
ji 0 · · · 0 a∗j 0 · · · 0 −a∗j 0 · · · 0

For F we obtain that (
∂Fij

∂pkl
)kl,ij is a block-diagonal matrix with blocks:(

∂Fij

∂pij

∂Fji

∂pij
∂Fij

∂pji

∂Fji

∂pji

)
=

(
µ 0
? −µ

)
if i→ j or

(
−µ 0
0 −µ

)
if i ∼ j but i 6→ j and j 6→ i

and (
∂Fij

∂ak
)k,ij is a block matrix with vertical blocks:

(
∂Fij
∂ak

∂Fji
∂ak

)
k=1,··· ,L

=



0 0
...

...
0 0

2µ
c(a∗i )

3 Ii→j 0

0 0
...

...
0 0


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In summary, the Jacobian matrix J is: JT =

(
∂Fij

∂pkl

∂Gi

∂pkl
∂Fij

∂ak
∂Gi

∂ak

)
i,j,k,l∈V,i∼j,k∼l

JT =

ij ji i j k l



. . .

Lij µ 0 0 · · · 0 −a∗i 0 · · · 0 a∗i 0 · · · 0 0

Lji −2µ
a∗j
a∗i

−µ 0 · · · 0 a∗j 0 · · · 0 −a∗j 0 · · · 0 0

. . .

· · · 0 0 · · ·
...

...

Li · · · 2µ
c(a∗i )

3 0 · · · βia −
]{l←i}
c(a∗i )

2
1

c(a∗i )
2

1
c(a∗i )

2

...
...

0 0

Lj 0 0 0 βja −
]{l←j}
c(a∗j )

2
1

c(a∗j )
2

0 0
...

...
0 0

(10)

where i→ j, i→ k and j → l. Note that to simplify the presentation the following terms are not shown above but are non-zero in general:

• on row Li the ikth term is equal to 2µ
c(a∗i )

3 as i→ k,

• on row Lj the jlth term is equal to 2µ
c(a∗j )

3 as j → l.

Note also that for an isolated cell i, for any j with i ∼ j the rows Lij , Lji, Li and Lj differ from above as follows:

• the 2× 2 block on rows and columns (ij, ji) is

(
−µ 0
0 −µ

)
instead of

(
µ 0

−2µ
a∗j
a∗i
−µ

)
.

• the only non-zero term of row Li is the ith and it is βia instead of βia −
]{l←i}
c(a∗i )

2 .
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We can observe that the lower left block
(
∂Fij

∂ak

)
k∈V, ij∈E

of JT is non-zero only at entries of the form

(i, ij) where i and j are such that i→ j. In particular, for any i without successor (i.e. i is a sink or an
isolated cell), the first m terms of row Li are zero.
For any i with a successor ji, on the other hand, the first m entries of row iji are zero except the diagonal
entry iji which is equal to µ. Hence, the rows iji of the matrix JT − µI are of the form:

Liji − µδiji = (0, · · · , 0|0, · · · , 0,−a∗i , 0, · · · , 0, a∗i , 0, · · · , 0).

So, if for all i with successors we choose one of them, say ji, and exchange the rows Li−µδi and Liji−µδiji
of the matrix JT − µI we obtain a block triangular form

J̃ =

 A ?
0 B

 of dimensions
(

m×m m×M
M ×m M ×M

)
(11)

where the matrix B is given by

Bik = −a∗i δik + a∗i δjik, if ]{k ← i} 6= 0, (12)

Bik =

(
−βa −

1

c(a∗i )
2
]{k ← i} − µ

)
δik +

∑
j

1

c(a∗i )
2
Ii→jδjk

= (−βa − µ)δik, if ]{k ← i} = 0. (13)

Notice that we chose a single ji for every i with successors and that different choices will lead to different
matrices A and B. However, we will show the following.

Proposition S.6.1 Assume that every non-isolated i ∈ V \ I∗ has at least a successor (i.e. there is no
sink). Then, for any choice of successors ji, the resulting matrix B is singular.

Let the vector v ∈ RM be defined by vi = 1 for i ∈ V \ I∗ and vi = 0 for i ∈ I∗. Since we are considering
an equilibrium different from E0, there must be at least one non-isolated cell and thus v is non-zero.
Also, in the absence of sink for any i ∈ V \ I∗ there exists a ji such that i → ji. For any choice of ji
indices, the corresponding matrix B satisfies

(Bv)i =
∑
k

(−a∗i δik + a∗i δjik) = −a∗i + a∗i = 0, ∀i ∈ V \ I∗

and for i ∈ I∗ the ith row of B is zero and thus (Bv)i = 0. In other terms, we have Bv = 0 and thus B
is singular. �

It follows that |det(JT − µI)| = |det(A)||det(B)| = 0, and thus µ is an eigenvalue of J and (a∗,p∗) is
unstable.

We will now prove the following result:

Proposition S.6.2 For a set of parameters of Lebesgue measure 1, µ is an eigenvalue of the Jacobian
matrix J at (a∗,p∗) if and only if at least one of the two following assertions is true:

(i) G∗ contains subgraph γ which is an oriented cycle.

(ii) There exists a cell i with at least two successors, i.e. ]{k ∈ V | k ← i} ≥ 2.
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In fact we will show that there exists a choice of successors ji to non-sink nodes i such that the block-
triangular matrix (11) verifies det(B) = 0 ⇐⇒ the condition (i) is satisfied, while there exists a choice
such that det(A) = 0 ⇐⇒ (ii) is satisfied.

To begin with, we prove the direction ”⇐” of the first equivalence.

Let Iγ = {i1, · · · in} be the node set of the cycle γ. For each ik ∈ Iγ , we chose the successor jik = ik+1

where in+1 denotes i1. For every other node i with a successor, we chose ji ← i arbitrarily. Let us now
define the following partition of V into three node sets:

I0 = Iγ , I1 = I∗, and I2 = V \ (I∗ ∪ Iγ) ,

where in general I1 and I2 may be empty sets.

From the construction of B, a non-diagonal element Bij is non-zero if and only if j = ji, and there is
exactly one ji for each i ∈ I0 ∪ I2 and none for i ∈ I1. Furthermore, since I0 corresponds to the cycle, we
have that ji ∈ I0 for all i ∈ I0. On the other hand for i ∈ I2, ji may be in I0 or I2.

It follows that if we order the nodes in such a way that all nodes I0 come first, followed by nodes in I1
and finally nodes in I2, the resulting matrix B is block-triangular, of the form: B0 0 0

0 B1 0
B20 0 B2



Similarly to the previous proof, one can see that B0 is singular: each row Li contains exactly one term
a∗i off diagonal and −a∗i on the diagonal, so that the vector with all entries equal to 1 is in its kernel.
It thus follows that det(B) = det(B0) det(B1) det(B2) = 0.

For the other direction ”⇒”, we will proceed by contraposition. Suppose that the graph G∗ contains no
cycle and let i 7→ ji be a map selecting an arbitrary successor for any node i having at least one. The
graph of this map has the same node set V as G∗, and at most one edge (i, ji) for each node i. It is thus
a subgraph of G∗ with out-degree ≤ 1 (see e.g. ? for terminology on digraphs), which can be seen to be
a collection of trees directed from leaves to roots, with no more than one successor per node.
These trees can be decomposed into isolated nodes and chains of the form i1 7→ i2 7→ · · · 7→ in where
ik+1 = jik . Then, grouping each nodes from the same chain, ordered as in the chain, with an extra set
for isolated nodes, we get a partition of V . This partition is not unique in general, but any choice allows
to write B in a block-triangular form, where the block associated to I∗ is diagonal with diagonal terms
βia − µ, off-diagonal blocks correspond to chains which are incident (i.e. such that two nodes i and k
from different chains have the same successor, ji = jk), and each block associated to a chain of the form
i1 7→ i2 7→ · · · 7→ in is on the diagonal and has the form:

−a∗i1 a∗i1 0
. . .

. . .

−a∗in−1
a∗in−1

0 0 −a∗in

 .

From the form above, it thus appear that B is then not only block-triangular but triangular and its
determinant is a product of terms βia − µ and −a∗i .
It is easily seen from (St0) that if ai = 0 then ȧi > 0 and thus a steady state must satisfy a∗i > 0, ∀i.
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Except for the set of parameters (of measure 0) satisfying equalities of the form βia = µ, we have
det(B) 6= 0.

We now prove that (ii) is equivalent to the existence of a choice of successors ji such that det(A) = 0.

As seen earlier, the matrix A can be arranged in pairs of rows, of the form

ij ji( )
ij 0 · · · 0 −2µ 0 0 · · · 0
ji 0 · · · 0 0 −2µ 0 · · · 0

if i ∼ j but i 6→ j and j 6→ i,

iji jii( )
iji 0 · · · 0 2µ

c(a∗i )
3 0 0 · · · 0

jii 0 · · · 0 0 −2µ 0 · · · 0
for the chosen successor ji ← i,

and
ij ji( )

ij 0 · · · 0 0 0 0 · · · 0

ji 0 · · · 0 −2µ
a∗ji
a∗i

−2µ 0 · · · 0
for any other j ← i, j 6= ji.

The indices of matrix A are all indices ij and ji for pairs i ∼ j of adjacent cells. For each i ∼ j, there
is exactly one non-zero entry for both ij and ji, on the diagonal, except for entries ij where i → j and
j 6= ji. So, clearly det(A) = 0 iff the latter occurs, i.e. iff there exists i such that ]{k ∈ V | k ← i} ≥ 2.

�

Remark S.6.3 The Theorem remains true for Φ(θ)(x) = xθIx≥0 for θ > 1. In that case,

Fij = λ
αp
βp

Φ(θ)(Ji→j)− µpij with Ji→j = aipij − ajpji

and

∂Fij
∂ai

= µ
θ

a∗i (c(a
∗
i )
θ)1/(θ−1)

Ii→j
∂Fij
∂pij

= θµIi→j − µ

∂Fij
∂aj

= 0
∂Fij
∂pji

= −θµIi→j
a∗j
a∗i

We can show that (θ − 1)µ > 0 is an eigenvalue of the Jacobian matrix at (a∗,p∗) if and only G∗ is not
a graph composed of trees directed from leaves to the root such that every cell i has at most one output
i.e. ]{k ← i} ≤ 1. The proof is similar as for the case θ = 2.

In fact, the proof of the theorem relies on the occurrence of terms equal to µ (or more generally (θ − 1)µ
for Φ(θ)(x) = xθIx≥0) on the diagonal of the Jacobian matrix at steady state.

To assess whether the result would still hold for other choices of the function Φ, one can leave this
function unspecified and look for cases where the same diagonal terms as above are constant. This leads
to a differential equation of the form

ca∗iΦ
′(a∗i p

∗
ij) = K for a constant K,
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and we also have p∗ij = cΦ(a∗i p
∗
ij) from the steady state equation. Now assuming Φ locally invertible (at

the steady state), the two equalities lead to

1

Φ′(a∗i p
∗
ij)

=
(
Φ−1

)′
(Φ(a∗i p

∗
ij)) =

(
Φ−1

)′
(p∗ij/c) =

ca∗i
K

=
1

K

Φ−1(p∗ij/c)

p∗ij/c
.

So, if we define the function f : x 7→ Φ−1
(
x
c

)
this implies f ′(p∗ij) =

f(p∗ij)

Kp∗ij
.

If this holds for an open set of values for p∗ij, the function f must satisfy the differential equation f ′(x)
f(x) =

1
Kx =⇒ ln f =

∫
1
Kx = ln

(
x

1
K

)
+constant. In other words, f must be a function of the form x

1
K and

so does Φ.

S.7 Stability criterion

We know that every stable critical point (a∗,p∗) of the system (St0) is associated to an oriented graph
G∗ composed of trees directed from leaves to the root such that every cell i ∈ V has at most one output
i.e. ]{k ← i} ≤ 1. We will now characterize the set of such oriented graphs which give rise to a stable
critical point.

Theorem S.7.1 Sufficient stability criterion
Consider the system (St0) with Φ(x) = x2Ix≥0(x), T = 1 and parameters αia, µ, c > 0 but βia ≥ 0, ∀i ∈ V .

Let G∗ be an oriented graph composed of trees directed from leaves to the root such that every cell i ∈ V
has at most one output i.e. ]{k ← i} ≤ 1. Assume there exists a non-negative critical point (a∗,p∗) of
the system (St0) associated the orientation G∗, different from E0. Then, (a∗,p∗) is locally asymptotically
stable if every non-sink/non-isolated cell i ∈ V verifies one of two following conditions:

• 0 ≤ βia <
µ
2 and a∗i < ac := − 1

c
(
βi
a−3µ+2

√
2
√
µ(−βi

a+µ)
) ,

• βia ≥
µ
2 and a∗i <

√
1
cβi

a
.

For the proof, we need the following definition.

Definition S.7.2 Let G∗ be an oriented graph with node set V . The ancestors of i ∈ V are all the nodes
j such that there exists a path j → j1 → j2 → . . . → jn → i from j to i. Reciprocally, i is called a
successor or descendent of j.

Proof :
Let λ be an eigenvalue of the Jacobian matrix J at (a∗,p∗), i.e. det(J̃) = 0 where we define J̃ = JT −λI
(see the structure of JT in (10)). Due to the assumptions about G∗ and the proof of the Instability
criterion, we know that λ 6= µ.
For a non-sink and non-isolated cell i ∈ V there exists a unique ji ∈ V with i → ji. Then, the ith and
(ij)th rows of J̃ are almost everywhere equal to 0 except

(Li)iji = 2µ
c(a∗i )

3 , (Li)i = −βia − 1
c(a∗i )

2 − λ, (Li)ji = 1
c(a∗i )

2 ,

(Liji)iji = µ− λ, (Liji)i = −a∗i , (Liji)ji = a∗i .
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It follows that the row L̃i := Li −
2µ

c(a∗i )
3(µ− λ)

Liji , is zero everywhere except

(L̃i)i = −βia −
1

c(a∗i )
2
− λ− 2µ

c(a∗i )
3(µ− λ)

(−a∗i ) = −βia − λ+
λ+ µ

c(µ− λ)(a∗i )
2

=: Bii

(L̃i)ji =
1

c(a∗i )
2
− 2µ

c(a∗i )
3(µ− λ)

a∗i =
−(λ+ µ)

c(µ− λ)(a∗i )
2

=: Biji

i.e. Bii = −βia − λ−Biji .

If i is a sink or an isolated cell then Li is almost everywhere equal to 0 except:

(Li)i = −βia − λ =: Bii

and we don’t transform it (i.e. L̃i = Li).

After the changes of rows L̃i ← Li above, the matrix J̃ becomes block-triangular, of the form:

J̃ =

(
A ?
0 B

)
, (14)

where all the non-zero terms in B have been noted above, and A is block-diagonal with 2 × 2 blocks of
the form:

ij ji( )
ij −µ− λ 0
ji 0 −µ− λ

if i ∼ j but i 6→ j and j 6→ i,

iji jii( )
iji µ− λ 0

jii −2µ
a∗ji
a∗i

−µ− λ
for the unique successor ji ← i,

Note that the block-triangular form (14) is possible only because λ 6= µ, and thus det(A) = 0 only for
λ = −µ, which is thus an eigenvalue of the Jacobian J . From the form (14), other eigenvalues are exactly
characterized by the condition det(B) = 0.
In the case where Biji > 0 for every i ∈ V and ji ← i (i.e. λ < −µ < 0 or λ > µ), then B is
diagonally dominant and has a vanishing determinant only if there exists i0 ∈ V such that λ = −βi0a ≤ 0.
Consequently, −βia (for i ∈ V ) is an eigenvalue of the Jacobian matrix if βia > µ. Moreover, none of the
eigenvalues of the Jacobian is larger than µ.

Assume now that λ ∈ [−µ, µ) (i.e. Biji ≤ 0 and B is not diagonally dominant). Now, det(B) = 0 iff
there exists a non-zero vector v ∈ RM such that Bv = 0.
For each node i without successor (i.e. i is a sink or an isolated cell) we have

(Bv)i = −(βia + λ)vi = 0 =⇒ vi = 0 or λ+ βia = 0,

so that λ = −βia is an eigenvalue if i is a sink or an isolated node. Then, for λ 6= −βia to be an eigenvalue,
the non-zero coordinates of v must correspond to nodes i with a successor ji. For such nodes,

(Bv)i = Biivi +Bijivji = −
(
βia + λ− λ+ µ

c(µ− λ)(a∗i )
2

)
vi −

λ+ µ

c(µ− λ)(a∗i )
2
vji = 0.
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It follows that unless

βia + λ− 1

c(a∗i )
2

λ+ µ

µ− λ
= 0, which implies vji = 0, (15)

we have

vi =
−(λ+ µ)

c(βai + λ)(µ− λ)(a∗i )
2 − (λ+ µ)

vji .

Hence, all ancestors of a node ji such that vji = 0 will be zero themselves unless condition (15) is satisfied.

Then Bv = 0 with v 6= 0 if and only there exists a cell i0 ∈ V with

βi0a + λ− 1

c(a∗i0)2
λ+ µ

µ− λ
= 0 (16)

and such that for every ancestor i of i0:

βia + λ− 1

c(a∗i )
2

λ+ µ

µ− λ
6= 0

Finally, the condition (16) is verified with λ ∈ (0, µ) if and only if one of two following conditions is
fulfilled:

• 0 ≤ βi0a < µ
2 and ac ≥ a∗i0 ,

• βi0a ≥
µ
2 and a∗i0 >

√
1

cβ
i0
a

.

with λ = 0 if and only if βia > 0 and a∗i0 =
√

1

cβ
i0
a

. �

S.8 Sink-driven systems

We study the stable patterns in the extreme case where there is a single primordium, which is located at
some site i0 such that

βia = 0, ∀i 6= i0 and βi0a > 0.

i0 is evacuating auxin at positive rate while the other cells (of the L1 layer) do not degrade auxin. Each
cell i produces auxin at rate αia ≥ 0. We will in this way obtain exact solutions that permit to determine
if really, within the modelling framework given by (St0), auxin is depleted in surrounding cells. Notice
that βia = 0 and a∗i < +∞ when i 6= i0 implies that i 6∈ I∗, that is, the graph is a spanning forest When
i 6= i0, the equation (7) shows that i can’t be a sink, and therefore i0 must necessarily be the unique sink
of G∗. Let G∗i be the directed rooted sub-tree of G∗ which points to i, of node set V ∗i , and let

αa(i) =
∑
j∈V ∗i

αja,

be the global auxin production rate associated with the sub-tree G∗i . Let µi = 1
cai

. Then, for i 6= i0, we
deduce from (6):

µi =
∑
j→i

µj + αia,
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and a direct computation shows that µi = αa(i), which shows that the steady state auxin concen-
tration are given by the exact formula

ai =
1

cαa(i)
, i 6= i0. (17)

Starting from a source node of the rooted tree G∗, the sums αa(i) increase along the unique path to i0:
one deduces then that the auxin concentration decreases along the veins as long as i 6= i0, so that the
veins are directed against auxin gradients. This also implies that the existence of auxin depleted zones
inside canals in the neighbourhood of the primordium i0. Concerning i0, the Poisson equation (8) leads
to

ai0 =
αi0a +

∑
j→i0

1
caj

βi0a
=
αa(i0)

βi0a
.

S.9 Source-driven system

We assume that there is a distinguished cell i0, like a primordium, whose auxin production rate is larger
than the production rates of the other cells. Mathematically, we assume here that

βia = β, ∀i ∈ V, αia = α > 0, ∀i 6= i0,

and that
αi0a ≥ 2

√
β/c > α. (18)

The Instability criterion implies that, to be stable, the oriented graph G∗ associated to a has to be
composed of oriented trees pointing to roots. It contains thus at least one source. As regard of condition
(10) of the main paper

(αia +
∑
j→i

1

caj
)2 − 4βia

1

c
≥ 0, (19)

and (18), one gets that i0 is the unique source and that the vein G∗ must be a linear chain

i0 −→ i1 −→ i2 −→ · · · −→ in,

that is, must be a directed line with no vascular strands, which terminates in a sink in.

Consider the critical point a given by: ai = α
β for i 6∈ {i0, . . . , in} and:

ai0 =
αi0a −

√
(αi0a )2 − 4βa

1
c

2βa
, aik =

α+ 1
caik−1

−
√

(α+ 1
caik−1

)2 − 4βika
1
c

2β
and ain =

α+ 1
cain−1

β

for k = 1, . . . , n− 1.

Assume that β > µ
2 .

• When −cα
2+3β

cα2−4β α+ 2
√

c2α4β−10cα2β2+25β3

c(cα2−4β)2 ≤ α0 ≤ cα2+β
cα and c ≤ β

α2 , the auxin flux increases along

the vein, and takes values that are larger than the background auxin level α/β:

α

β
≤ ai0 ≤ ai1 ≤ . . . ≤ ain−1

, (20)
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with n ≤ L− 1 such that ain−1
≤ ãc :=

2
√
β/c+α

4β−cα2 . This parameter regime is illustrated in green in
figure 9.

• if α0 >
cα2+β
cα and c ≤ β

α2 or α0 > 2
√

β
c and β

α2 < c < 4 β
α2 then n ≤ L−1 can be chosen arbitrarily

and a has the property:
α

β
≥ ai0 ≥ ai1 ≥ . . . ≥ ain−1 ≥ 0.

In both cases, a is locally asymptotically stable (by Theorem S.7.1).

References

C. Lobry, T. Sari, and S. Touhami. On tykhonovs theorem for convergence of solutions of slow and fast
systems. Electronic Journal of Differential Equations, 1998(19):1–22, 1998.


