

Figure S1: Expression of *cxcr3.2* and its paralogs *cxcr3.1* and *cxcr3.3* in FACS-sorted phagocytes at 6 dpf. Graphs represent the relative induction fold of the macrophage marker *mpeg1* (A), the neutrophil marker *mpx* (B), and of the *cxcr3* paralogs (C) in FACS-sorted macrophages and neutrophils from the combined transgenic line Tg(mpeg1:mcherryF/mpx:eGFP) at 6 dpf. Expression of *cxcr3.2* and *cxcr3.3* could be detected in both macrophages and neutrophils, while *cxcr3.3* was not significantly enriched in the FACS-sorted populations when compared to the non-labeled cell fraction. Reference gene: *eif5*.

Figure S2: Protein sequence multiple alignment of human and zebrafish CXCR3 chemokine receptors. Residue color from blue to yellow indicates increasing degree of amino acid conservation. The alignment and the tree were obtained using CLC main workbench 6.8.4 by Neighbour Joining Algorithm. Gap costs were given with a penalty score of 10 for each gap open, and an additional score of 1 per each extension; no cost was associated to end gaps. Extracellular (light green bars), Transmembrane (black bars), and Intracellular (light blue bars) domains were predicted with CLC main workbench 6.8.4. Ligand binding domains (dark green bars) and conserved residues or similar residues within the binding domains (black asterisks) were predicted according to Trotta *et al.*, 2009 (Trotta *et al.*, 2009). The numbers at the tree nodes denote the bootstrap for 10000 replicates. Single alignment of the predicted zebrafish chemokine receptor proteins to the canonical isoform of CXCR3 (hsaCXCR3 isoform 1) were performed with clustalo algorithm (http://www.uniprot.org/align) and provided the following % of identity: dreCXCR3.1 (ENSDARG00000007358): 39.1%, dreCXCR3.2 (ENSDARG00000041041): 35.7%, dreCXCR3.3 (ENSDARG00000070669) isoform 1: 29.8% and dreCXCR3.3 isoform 2: 29.6%.

Figure S3: Macrophages are the predominant phagocyte cell type recruited to local hindbrain infection in 31-33 hpf embryos. Embryos were locally injected into the hindbrain cavity at 30 hpf with 100 CFU of *M. marinum* and fixed at 1 and 3 hpi. Double fluorescent *in situ* hybridization was performed with *mfap4* as a macrophage marker and *mpx* as a neutrophil marker (Zakrzewska *et al.*, 2010). The average number of *mfap4*-positive macrophages in the hindbrain at 1 or 3 hpi exceeds the average number of *mpx*-positive neutrophils approximately 10-fold and a significant difference between the time points was observed only for macrophages. Sample size (*n*): 17, 16. Error bars: median and interquartile range. ns, non-significant; **P<0.01.

Figure S4: Predicted molecular docking of NBI74330 into the transmembrane minor pocket of Cxcr3.2. The figure represents the high conservation of the transmembrane minor pocket of zebrafish Cxcr3.2 with human CXCR3. Side chains of proposed interacting residues are shown in black for CXCR3 (A) and in red for Cxcr3.2 (B). The ligand NBI74330 is shown in cyan. Suggested receptor/ligand interactions are depicted as colored lines. Polar and hydrogen bonding interactions are shown as pink lines, whereas aromatic interactions are shown as gray lines. C: overlay of the CXCR3 and Cxcr3.2 binding pocket. Prediction of ligand binding for CXCR3 is according to ref. (Scholten et al., 2014). Predictions of ligand binding for Cxcr3.2 is according to sequence alignment and amino acid similarity in the corresponding positions between CXCR3 and Cxcr3.2.

Figure S5: Phylogenetic tree of human and zebrafish chemokine protein sequences. The alignment and the tree were obtained using CLC main workbench 6.8.4 by Neighbour Joining Algorithm. Gap costs were given with a penalty score of 10 for each gap open, and an additional score of 1 per each extension; no cost was associated to end gaps. Additionally, the CXC motif of the chemokine was set as fixed alignment point. The numbers at the tree nodes denote the bootstrap for 10000 replicates. Light blue: Cxcl11-like cluster, containing human CXCL11 and seven zebrafish Cxcl11-like chemokines. Dark blue: human CXCL9 and CXCL10. Green: Cxcl8-like cluster, containing human CXCL8 (IL8) and zebrafish Cxcl8a (II8). Nomenclature according to ref. (Nomiyama et al., 2013).

Figure S6: Chemoattractive effects of recombinant chemokines on different phagocytes. (A) Chemoattraction of macrophages to the hindbrain ventricle. Recombinant proteins or buffer (mock) were injected into the hindbrain ventricle of wild type (AB/TL) embryos at 30 hpf and Lp-stained cells accumulating in 3 hours within the hindbrain limits were counted as macrophages. Cxcl11af but not Cxcl8a significantly attracted macrophages. Sample size (*n*): 106, 100, 94, 112. Error bars: median and interquartile range. (B-C) Chemo-attraction of neutrophils to the otic vesicle. Recombinant proteins or mock were injected into the otic vesicle of wild type (AB/TL) embryos (B) or *cxcr3.2*^{+/+} and *cxcr3.2*^{-/-} siblings (C) at 54 hpf and neutrophils accumulating in 3 hours within the otic vesicle were counted after Mpx activity staining. Neutrophil attraction by recombinant Cxcl8a (II8) (B) was in agreement with previous reports (Deng et al., 2013). Note that Cxcl11ae significantly recruited neutrophils in all zebrafish lines, while Cxcl11af (B), Cxcl11aa (C), and fMLP (C) did not exert significant neutrophil attraction above mock injections. Sample size (n) in B: 75, 77, 41, 62, 83. Sample size (*n*) in C: 44, 32, 27, 26, 35, 44, 39, 32, 26, 26. Error bars: median and interquartile range. ns, non-significant; **P<0.01; ***P<0.001.

Movie S1. Macrophage basal motility in *cxcr3.2*^{+/+} **embryos.** Paths of 5 representative macrophages of the trunk. Macrophages were followed contemporary for 3 hours and confocal time lapse images were taken every 6 minutes. The paths were followed and analyzed using Image J ManualTrack plugin. *cxcr3.2*^{-/-} macrophages (compare with supplementary material Movie S2) have a lower basal movement capability than *cxcr3.2*^{+/+} macrophages. See also Fig. 1J-L. Scale bar depicted in the first photogram: 20 μ m.

Movie S2. Macrophage basal motility in *cxcr3.2*^{-/-} embryos. Paths of 5 representative macrophages of the trunk. Macrophages were followed contemporary for 3 hours and confocal time lapse images were taken every 6 minutes. The paths were followed and analyzed using Image J ManualTrack plugin. *cxcr3.2*^{-/-} macrophages have a lower basal movement capability than *cxcr3.2*^{+/+} macrophages (compare with supplementary material Movie S1). See also Fig. 1J-L. Scale bar depicted in the first photogram: 20 μ m.

Movie S3. Macrophage recruitment following *M. marinum* infection in the otic vesicle in *cxcr3.2* ^{+/+} larvae. A Tg(mpeg1:gal4/UAS:kaede) *cxcr3.2* ^{+/+} larva was injected with 200 CFU of *M. marinum* into the otic vesicle (dotted line) at 4 dpf. The video represents the situation monitored from 1 to 5 hpi, with acquisition every 5 minutes. See also Fig 3. It should be noted that since acquisitions start at 1 hpi, a difference in macrophage number in the surrounding of the otic vesicle is already present between mutants and wt. Scale bar depicted in the first photogram: 250 µm.

Disease Models & Mechanisms | Supplementary Material

Movie S4. Macrophage recruitment following *M. marinum* infection in the otic vesicle in *cxcr3.2*^{-/-} larvae. A Tg(mpeg1:gal4/UAS:kaede) *cxcr3.2*^{-/-} larva was injected with 200 CFU of *M. marinum* in the otic vesicle (dotted line) at 4 dpf. The video represents the situation monitored from 1 to 5 hpi, with acquisition every 5 minutes. See also Fig 3. It should be noted that since acquisitions start at 1 hpi, a difference in macrophage number in the surrounding of the otic vesicle is already present between mutants and wt. Scale bar depicted in the first photogram: 250 µm

Protein	Amino acid position	Strain	Variant	PROVEAN score	Predicted effect
		Reference*	E	0.000	Neutral
Cxcr3 1	203	AB/TL	E/K	-0,945	Neutral
0,010.1	200	cxcr3.2*/*	E/K	-0,945	Neutral
		cxcr3.2	<u> </u>	0.000	Neutral
		Reference	E E	0.000	Neutral
Cxcr3.1	292	AB/1L		-1.803	Neutral
		$cxcr3.2^{-1}$	ĸ	-1 803	Neutral
		Reference	K	0.000	Neutral
	351	AB/TL	R	0.645	Neutral
Cxcr3.1		cxcr3.2 ^{+/+}	R	0.645	Neutral
		cxcr3.2 ^{-/-}	R	0.645	Neutral
		Reference	Y	0.000	Neutral
	40	AB/TL	Y	0.000	Neutral
Cxcr3.2	16	cxcr3.2 ^{+/+}	Y	0.000	Neutral
		cxcr3.2 [≁]	STOP	cxcr3.2 ^{hu6044}	Non-sense
		Reference	V	0.000	Neutral
Cxcr3.2	93	AB/TL	I	0.048	Neutral
	50	cxcr3.2	!	0.048	Neutral
		CXCI3.2	1	0.048	Neutral
		Reference		0.000	Neutral
Cxcr3.3	48	CYCr3 2+/+		0.332	Neutral
		$cxcr3.2^{-1}$		0.332	Neutral
•		Reference	C	0.000	Neutral
~ ~ ~		AB/TL	Č/P	-0.547	Neutral
Cxcr3.3	75	cxcr3.2*/*	C/P	-0.547	Neutral
		cxcr3.2 ^{-/-}	С	0.000	Neutral
		Reference	S	0.000	Neutral
Cvcr3 3	95	AB/TL	Т	2.931	Neutral
0.010.0	35	cxcr3.2*/*	Т	2.931	Neutral
-		cxcr3.2 ^{**}	<u>T</u>	2.931	Neutral
		Reference	E	0.000	Neutral
Cxcr3.3	236	AB/1L	E/D	-0.328	Neutral
		CXCI3.2	E/D E	-0.328	Neutral
		Doforonco		0.000	Neutral
			N/I	-0.611	Neutral
Cxcr3.3	238	cxcr3 2+/+	M/I	-0.611	Neutral
		cxcr3.2 ^{-/-}	M	0.000	Neutral
		Reference	M	0.000	Neutral
Cuer2 2	244	AB/TL	M/I	-0.473	Neutral
Cxcr3.3		cxcr3.2 ^{+/+}	M/I	-0.473	Neutral
		cxcr3.2 ^{-/-}	I	-0.473	Neutral
	297	Reference	Т	0.000	Neutral
Cxcr3.3		AB/TL	S	-0.463	Neutral
		cxcr3.2 ^{***}	S	-0.463	Neutral
		cxcr3.2	S	-0.463	Neutral
		Reference	L	0.000	Neutral
Cxcr3.3	327	AD/1L	L/Q	-2.302	Neutral
		$cxcr3.2^{-/-}$		2.502	Neutral
Cxcr3.3	346	Reference		0.000	Neutral
		AB/TL	D/F	0.000	Neutral
		cxcr3.2 ^{+/+}	D/E	0.098	Neutral
		cxcr3.2-/-	D	0.000	Neutral
Cxcr3.3		Reference	V	0.000	Neutral
	250	AB/TL	V/E/D	0.895/1.275	Neutral
	550	cxcr3.2 ^{+/+}	V/E/D	0.895/1.275	Neutral
		cxcr3.2 ^{-/-}	D	0.895	Neutral
		Reference	Q	0.000	Neutral
Cxcr3.3	378	AB/TL	Q/E	-0.077	Neutral
0.0013.3	510	cxcr3.2	Q/E	-0.077	Neutral
		CXCr3.2	E	-0.077	Neutral

*Reference: according to ENSEMBL accessions

Table S1: Non-synonymous single nucleotide polymorphisms in *cxcr3.1, cxcr3.2,* and *cxcr3.3* coding sequences. Several non-synonymous single nucleotide polymorphisms (nsSNPs) are present in *cxcr3.1, cxcr3.2,* and *cxcr3.3* genes that are inherited in association with the ENU-mutagenized *cxcr3.2^{hu6044}* allele. Except for the Cxcr3.1 E292K variant, all the nsSNPs linked to the *cxcr3.2^{-/-}* fish did not differ from the ones represented also in the *cxcr3.2^{+/+}* fish. Furthermore, all nsSNPs, including the Cxcr3.1 E292K variant, were detected also in the AB/TL wt strain. Analysis using the PROVEAN software tool (<u>Protein Variation Effect Analyzer, http://provean.jcvi.org</u>) (Kumar et al, 2009; Choi et al., 2012), predicts that the nsSNPs are unlikely to have an impact on the protein functionality. The threshold to score the possibility of protein non functionality was set to -4.1 (Choi et al., 2012). Note: Amino acid notations for Cxcr3.3 are represented accordingly to their position in Cxcr3.3 splicing isoform 2. No additional amino acid replacements were specifically found in the splicing isoform 1.

Name	Gene Accession	Protein Sequence
hsaCXCL9	ENSG00000138755	mkksgvlfilgiilvligvqgTPVVRKGRCSCISTNQGTIHLQSLKDLKQFAPSPSCEKIE <mark>II</mark> ATLKN GVQTCLNPDSADVKELIKKWEKQVSQKKKQKNGKKHQKKKVLKVRKSQRSRQKKTT
hsaCXCL10	ENSG00000169245	mnqtailiccliftlsgiqgVPLSRTVRCTCISISNQPVNPRSLEKLEIIPASQFCPRVEIIATMKKK GEKRCLNPESKAIKNLLKAVSKE <mark>R</mark> SKRSP
hsaCXCL11	ENSG00000169248	msvkgmaialavilcatvvqgFPMFKRGRCLCIGPGVKAVKVADIEKASIMYPSNNCDKIEVIIT LKENKGQRCLNPKSKQARLIIKKVERKNF
dreCxcl11aa	Gene ID: 798892	mktvtallivslavvaiegQHMKSQRCVCLGAGLNMVKPVLIEKIEILPSSPSCGHMEVIATLKN GAGKRCLNPKSKFTKKIIDKIEKNNRNAR
dreCxcl11ac	GenelD:100334604	mktlaafilitcliagkvngQDNTSRARCFCADKGINMVLLKNIEKVEIFPPSPSCNKNEIVVTLK NGAGQKCLNPDSKFTQNVVLKAIGK <mark>R</mark> MQQSVPHSTTTGTVKSSMTSSTSAPTAFK
dreCxcl11ad	Gene ID: 567656	mktlaavvllgyllvikvegQARAPRSRCLCADKGVNMVSPKLIEKVDIIPPTPSCGNLEIVVTLK NGAEPKCLSPDSKFTQKYLMKALEKRTLQK
dreCxcl11ae	ENSDARG0000092423	mktaaflvflaffifipgQKKFNRCSCVGKGLDRVALRNIEKFEIIHPSPSCGKQEIIVTMKSSEQ KCLNPESKFTQELIRRALEK
dreCxcl11af	ENSDARG00000094706	mktlaafillscliagevngQDRSSRARCFCVDKGLNMVLLKNLDKVEIFPPSPSCNKHEIVVTL KNGAGQKCLNPDSKFTKNVVLKAIGKRMQQSVPHSTTTGTVKSSMTSSTSAPTAFK
dreCxcl11ag	ENSDARG0000093779	mktlaafillscliagevngQDRSSRARCFCVDKGLNMVLLKNLEKVEIFPPSPSCNKHEIVVTL KNGAGQKCLNPDSKFTKNVVLKAIGKRMQQSVPHSTTTGTVKSSMTSSTSAPTAFK
dreCxcl11ah	ENSDARG00000095747	mktaaafvalgcfimvevkgKIPDLKNRCLCADKGANNVNLKTIEKIQIIHPSPSCKRLEIVVTLM KGAGKKCLNPESNLGKNILKALRKKKLTAVRRMNPA
dreCxcl8a	Gene ID: 100002946	mtskiisvcvivflafitiiegMSLRGLAVDPRCRCIETESRRIGKHIKSVELFPPSPHCKDLEIIATL MTTGQEICLDPSAPWVKKIIDRIIVNRKP
hsaCXCR3 isoform 1	ENSG00000186810	MVLEVSDHQVLNDAEVAALLENFSSSYDYGENESDSCCTSPPCPQDFSLNFDRAFLP ALYSLLFLLGLLGNGAVAAVLLSRRTALSSTDTFLLHLAVADTLLVLTLPLWAVDAAVQ WVFGSGLCKVAGALFNINFYAGALLLACISFDRYLNIVHATQLYRRGPPARVTLTCLAV WGLCLLFALPDFIFLSAHHDERLNATHCQYNFPQVGRTALRVLQLVAGFLLPLLVMAY CYAHILAVLLVSRGQRRLRAMRLVVVVVVAFALCWTPYHLVVLVDILMDLGALARNCG RESRVDVAKSVTSGLGYMHCCLNPLLYAFVGVKFRERMWMLLLRLGCPNQRGLQRQ PSSSRRDSSWSETSEASYSGL
hsaCXCR3 isoform 2	ENSG00000186810	MELRKYGPGRLAGTVIGGAAQSKSQTKSDSITKEFLPGLYTAPSSPFPPSQVSDHQVL NDAEVAALLENFSSSYDYGENESDSCCTSPPCPQDFSLNFDRAFLPALYSLLFLLGLL GNGAVAAVLLSRRTALSSTDTFLLHLAVADTLLVLTLPLWAVDAAVQWVFGSGLCKVA GALFNINFYAGALLLACISFDRYLNIVHATQLYRRGPPARVTLTCLAVWGLCLLFALPDF IFLSAHHDERLNATHCQYNFPQVGRTALRVLQLVAGFLLPLLVMAYCYAHILAVLLVSR GQRRLRAMRLVVVVVAFALCWTPYHLVVLVDILMDLGALARNCGRESRVDVAKSVT SGLGYMHCCLNPLLYAFVGVKFRERMWMLLLRLGCPNQRGLQRQPSSSRRDSSWS ETSEASYSGL
dreCxcr3.1	ENSDARG0000007358	MNVDSKTTFSMKDFSDYTDLYNYSDYNDNESYGAGAVCTQDSSMYFDSIFKPILYSLA AVVGLLGNGLVLIVLWKKRAGLNVTDIFILHLSLADILLLLTLPFWAVEAVKEWIFGTPLC KLTGAMFRINFYCGIYMLSCISLDRYLSIVHAVQMYSRKKPMAVHCCCMIVWFFCFLLS IPDWILLGANKDSRRQDRTECVNSEALSDFWVLVNRLIYHFLGFIIPAIMMVFCYTSILL RLLLGSKCMQKKRAIHVIVALVLAFFISWTPYNIALMADTIHTNRTDNNQTSCETRTTLD VAITATSTFAYMHCCVNPILYAFVGVKFRQHLLDMLRPLGFKLKGRAGLVSRKSSGWS ESVDTSHTSAF
dreCxcr3.2	ENSDARG00000041041	MDNSTTAAEVSAPTDYDYNSTSYDDDNPYAAPCSLTETWNFLGRFAPVAYILVFILAL VGNILVLCVIRRYRQSRHSPCSFSLTDTFLLHLAVSDLLLAATLPFFAVEWISEWVFGK VMCKITGALFSLNVYCGVLFLACISFDRYLAIVHAINISWRRKTCHAQLACAFIWVICLGL SMVDMHFRDLVEIPGMNRMVCQIVYSEQYSKQWQIGMQLVSMVLGFILPLLVMLYCY LHIFKALCHATRRQKRRSLRLIISLVIVFVISWAPYNALRMTDSLQMLGVIVKSCALNNV LDVGILVTESLGLAHCALNPLLYGLVGVKFRRELAQMCKAALGPQGCLGLVGWANGR GSSTRRPTGSFSSVETENTSYFSVMA
dreCxcr3.3 isoform 1	ENSDARG0000070669	MEVELHGLFEKNNSFDYDNYENKELDCQSKAVSDALGVFIPMLYSLGILLGLLGHGLV LAVLWHKWLNCSVMDIFIFHLSLIDSLLLLSMPLWAVDAVKGWIMGSGLCKLAGVLFK MNFYCSMLMLAFISVDCYLSIVHGVQKLSRKKPMVVHGCCLIIWLVCLLLSIPEWIFLKS ISDSTDQVKDECIYFYPDDSWHRSSRFPHHVIFGVGTLVLLFCCTSIMLKLQRESMCQ QKKMGRKTAIIAVLVLVFLICWTPYSIAFIVNTGARPVHIDPLTGESECEWRQWTATKIT AIFGLLHCTINPVIYFCFSKEFRRRSLAVIKFNACESNNNDGSLWDSTAVNVNTTVQEE QGPLQQVNELKPKVQTQQQDT
dreCxcr3.3 isoform 2	ENSDARG0000070669	MAAPSNMEVELHGLFEKNNSFDYDNYENKELDCQSKAVSDALGVFIPMLYSLGILLGL LGHGLVLAVLWHKWLNCSVMDIFIFHLSLIDSLLLLSMPLWAVDAVKGWIMGSGLCKL AGVLFKMNFYCSMLMLAFISVDCYLSIVHGVQKLSRKKPMVVHGCCLIIWLVCLLLSIP EWIFLKSISDSTDQVKDECIYFYPDDSWHRSSRFPHHVIFGVGTLVLLFCCTSIMLKLQ RESMCQQKKMGRKTAIIAVLVLVFLICWTPYSIAFIVNTGARPVHIDPLTGESECEWRQ WTATKITAIFGLLHCTINPVIYFCFSKEFRRRSLAVIKFNACESNNNDGSLWDSTAVNV NTTVQEEQGPLQQVNELKPKVQTQQQDT

Table S2. List of chemokines and chemokine receptors used in this work with accession codes and protein sequences. Red letters: amino acids at the splicing sites of the mRNA; blue letters: conserved CXC-chemokine motifs. Part in gray: active chemokine upon removal of the signal peptide

Primers used in qRT-PCR reactions

Gene Name	Gene Accession	Sequence (5'-3')
cxcr3.1	ENSDARG0000007358	Fw: CTTTCCTGCATCAGTCTCGACC
		Rv: TGACGTCTGGAGTCCTTGTTGG
cxcr3.2	ENSDARG00000041041	Fw: CCTCTGTTGGTAATGCTGTATTGC
		Rv: ACACGATGACTAAGGAGATGATGAG
cxcr3.3	ENSDARG00000070669	Fw: GCTCTCAATGCCTCTCTGGG
		Rv: GACAGGTAGCAGTCCACACT
ppiab	ENSDARG00000042247	Fw: ACACTGAAACACGGAGGCAAAG
		Rv: CATCCACAACCTTCCCGAACAC
cxcl11aa	Gene ID: 798892	Fw: ACTCAACATGGTGAAGCCAGTGCT
		Rv: CTTCAGCGTGGCTATGACTTCCAT
cxcl11ac	Chr5: 44501563-44502267 (-)	Fw: TCTGACCTGCCTGATCGCTGGA
		Rv: TGCCTTTGTCAGCACAGAAGCACC
cxcl11ad	Gene ID: 567656	Fw: AGGCCAGGCGAGAGCTCCAA
		Rv: TCCACAAGAAGGGGTCGGTGGT
cxcl11ae	ENSDARG00000092423	Fw: AGGGTTGCACTGAGGAACATTGAGA
		Rv: AGCCCTCCTGATTAATTCCTGGGT
cxcl11af/ag	ENSDARG00000094706	Fw: GCTGGAGAGGTCAACGGTCAGGA
	ENSDARG0000093779	Rv: TGCAAGATGGACTCGGAGGGAAGA
cxcl11ah	ENSDARG0000095747	Fw: GAGGTGAAAGGCAAAATA
		Rv: TGCTCCTTTATCAGCACACAAACA

Primers used for amplification and sequencing of cxc3.1, cxcr3.2 and cxcr3.3 - Amplification of genomic DNA templates

Gene Name		Sequence (5'-3')
cxcr3.1	Set 1	Fw: GTTGTAAAACGACGGCCAGTATGAATGTTGACTCAAAAACAAC
		Rv: CAGGAAACAGCTATGACCTATTATCCAAAAACATTCTTTCCTCAC
cxcr3.1	Set 2	Fw: GTAAAACGACGGCCAGGGGAAACGGCTTGGTTCTGA
		Rv: CAGGAAACAGCTATGACTGTATGCATGAAACAGCAAAGAGAA
cxcr3.1	Set 3	Fw: GTAAAACGACGGCCAGGATTTGGAACAACCTTTTTCAGCA
		Rv: CAGGAAACAGCTATGACCTTGAAGCCCAGAGGTCGTA
cxcr3.1	Set 4	Fw: GTTGTAAAACGACGGCCAGTCTTCATTTGCATCTTCTTCATCAG
		Rv: CAGGAAACAGCTATGACCTCAGAAAGCAGATGTGTGGG
cxcr3.2		Fw: GTAAAACGACGGCCAGGGCGCCTTATAATGCTCTGC
		Rv: CAGGAAACAGCTATGACCCATGGAAAGCTTCAGTTTTTAC
cxcr3.3	Set 1	Fw: GTAAAACGACGGCCAGTTCCCAGCAGATGCGTTACA
		Rv: CAGGAAACAGCTATGACGTGCGCAAGCAAACGTAAAC
cxcr3.3	Set 2	Fw: GTAAAACGACGGCCAGGTTCCGCCAACTGCTTTACTTT
		Rv: CAGGAAACAGCTATGACTAAACAGCGTCTTTACCAGATCCC
cxcr3.3	Set 3	Fw: GTAAAACGACGGCCAGGACTGCTACCTGTCCATCGTT
		Rv: CAGGAAACAGCTATGACGCTCATGTCTAAATACAGTTTGCTG

- Amplification of cDNA templates

Gene Name	Sequence (5'-3')
cxcr3.2	Fw: GTTGTAAAACGACGGCCAGTATGGACAACTCAACAACAGCCGCAG
	Rv: CAGGAAACAGCTATGACCTCAGGCCATGACAGAAAGTACGAAGTG
cxcr3.3 isoform2 Fw	Fw: GTTGTAAAACGACGGCCAGTATGGCAGCACCTTCAAACATGG
cxcr3.3 isoform1 Fw	Fw: GTTGTAAAACGACGGCCAGTATGGAGGTAGAGCTTCACGG
cxcr3.3 common Rv	Rv: CAGGAAACAGCTATGACCTCATGTATCCTGCTGCTGGG

- Primers used for sequencing

Gene Name	Sequence (5'-3')
M13 universal Fw	Fw: GTAAAACGACGGCCAG
M13 universal Rv	Rv: CAGGAAACAGCTATGAC
Cxcr3.2 E1 cDNA Rv	Rv: CGCCAGGATAAACACCAG
Cxcr3.3 cDNA Rv	Rv: GGCAGTCCAGTTCTTTGTTC

Table S3. List of q-RTPCR, amplification, and sequencing primers used in this work.

References

Please see the main article for references not listed below:

Trotta, T., Costantini, S. and Colonna, G. (2009). Modelling of the membrane receptor CXCR3 and its complexes with CXCL9, CXCL10 and CXCL11 chemokines: putative target for new drug design. *Mol. Immunol.* 47, 332-339.