Supplementary material

Title: Cell-based therapies for experimental chronic kidney disease: a systematic review and meta-analysis

Authors: Diana A. Papazova*, Nynke R. Oosterhuis*, Hendrik Gremmels*, Arianne van Koppen, Jaap A. Joles, Marianne C. Verhaar *Equal contribution

Affiliation: Department of Nephrology & Hypertension, University Medical Centre Utrecht, Netherlands

Table S1. Study characteristics (A- animal strain; G-gender; NV – number of animals in vehicle group; NC – number animals in cell-based treated group). Other abbreviations are listed in the legends of Tables S1 and S2.

Days after induction

Author, year	А	Strain	G	NV	NC	Model	Cell type	# cells	Route	Timing	Start therapy	End study
(Alexandre et		Fischer										
al., 2009)	rat	344	Μ	0	8	5/6 Nx	Lin ⁻ BM	$2*10^{6}$	Intravenous	Rescue	15	60
(Alexandre et		Fischer		0								
al., 2009)	rat	344	Μ		8	5/6 Nx	Lin ⁻ BM	$2*10^{6}$	Intravenous	Rescue	15, 30, 45	60
(Alexandre et		Fischer										
al., 2009)	rat	344	Μ	12	7	5/6 Nx	Lin ⁻ BM	$2*10^{6}$	Intravenous	Rescue	15	120
							MSC					
(Alfarano et al.,						Unx + IRI +	melatonin					
2012)	rat	Lewis	F	8	8	CsA	pretreated	3*10°	Parenchymal	Rescue	7	28
							MSC					
(Alfarano et al.,		. .	Б	0	0	Unx + IRI +	melatonin	2*106	D 1 1	D	14	20
2012)	rat	Lewis	F	8	8	CsA	pretreated	3*10°	Parenchymal	Rescue	14	28
(Bian et al., 2014)		Sprague-	м	(6	E/C N-	MSC	10*106	T	Decement	29	56
2014)	rat	Dawley	IVI	0	0	5/0 INX	MSC	10*10*	Intravenous	Rescue	28	- 30
(B1an et al., 2014)	rot	Sprague-	м	6	6	5/6 Ny	MSC	10*106	Introvonous	Pasaua	56	94
(Biop et al	Tat	Sprague	IVI	0	0	5/0 INX	MSC	10.10	Intravenous	Kescue	50	04
(D1a11 ct a1., 2014)	rat	Dawley	м	6	6	5/6 Nx	MSC	10*10 ⁶	Intravenous	Rescue	84	112
(Bian et al	Tat	Sprague-	101	Ŭ	0	5/0111	Mbe	10 10	Intravenous	Reseac	04	112
(D1a) et al., 2014)	rat	Dawley	м	6	6	5/6 Nx	MSC	$10*10^{6}$	Intravenous	Rescue	112	140
(Burst et al.				-	_		Lin					
2013)	rat	Lewis	F	7	7	Unx + IRI	CD90 ⁺ HSC	$1*10^{6}$	Intra-arterial	Prevention	0	7
(Caldas et al.,			-	-					Scaffold		_	-
2011)	rat	Wistar	F	~	5	2/3 Nx	MSC	$2,5*10^{6}$	kidney	Prevention	0	90
(Caldas et al.,				5					Scaffold			
2011)	rat	Wistar	F		5	2/3 Nx	BMMNC	$5*10^{6}$	kidney	Prevention	0	90
(Caldas et al.,									Scaffold			
2011)	rat	Wistar	F	5	5	5/6 Nx	MSC	$2,5*10^{6}$	kidney	Prevention	0	90
(Caldas et al.,				5					Scaffold			
2011)	rat	Wistar	F		5	5/6 Nx	BMMNC	$5*10^{6}$	kidney	Prevention	0	90
(Caldas et al.,												
2008)	rat	Wistar	Μ	5	5	5/6 Nx	BMMNC	$1,5*10^{6}$	Parenchymal	Prevention	0	119
(Caldas et al.,				5								
2008)	rat	Wistar	М		5	5/6 Nx	MSC	1,5*10°	Parenchymal	Prevention	0	119
(Cantaluppi et												
al., 2012)	rat	Wistar	М	6	6	Unx + IRI	EPC MV	30ug	Intravenous	Prevention	0	180
(Cao et al.,	mou			7	_						_	
2013)	se	Balb/c	М	· ·	7	Adriamycin	BM-M0	1*10°	Intravenous	Prevention	5	28

(Cao et al., 2013)	mou se	Balb/c	М		7	Adriamycin	BM-M2	1*10 ⁶	Intravenous	Prevention	5	28
(Cao et al.,	mou	D 11 /			7		CD MO	1*106	T .	D d	5	20
(Cao et al.,	se mou	Balb/c	м		/	Adriamycin	SP-M0	1*10°	Intravenous	Prevention	5	28
2013) (Castiglione et	se	Balb/c	М		7	Adriamycin	SP-M2	1*10 ⁶	Intravenous	Prevention	5	28
al., 2013)	rat	Wistar	М	10	10	DN	BMMNC	20*10 ⁶	Intravenous	Rescue	28	112
(Cavaglieri et al., 2009)	rat	Wistar	М	10	10	5/6 Nx	MSC	2*105	Subcapsular	Prevention	0	15
(Cavaglieri et al., 2009)	rat	Wistar	М	10	10	5/6 Nx	MSC	2*10 ⁵	Subcapsular	Prevention	0	30
(Chade et al., 2010)	pig	domestic	?	7	7	RAS	EPC	10*10 ⁶	Intrarenal artery	Rescue	42	70
(Chade et al., 2009)	pig	domestic	?	7	7	RAS	EPC	10*10 ⁶	Intrarenal artery	Rescue	42	70
(Challen et al	moli								Parenchymal/			
2006)	se	BALB/c	?	3	3	Adriamycin	MP	3*10 ⁵	artery	Prevention	0	7
(Challen et al.,	mou								Parenchymal/ intrarenal			
2006)	se	BALB/c	?	3	3	Adriamycin	SP	3*10 ⁵	artery	Prevention	0 14 28	7
(Chang et al.,		Sprague-					11490	4.44.06	-	D	42, 56,	
2012) (Chang et al.,	rat mou	Dawley	M	6	6	5/6 Nx Lupus	chMSC	1*10°	Intravenous	Prevention	70, 84, 98	112
2011)	se	NZB/W F1	F	8	8	nephritis	hU-MSC	1*10 ⁶	Intravenous	Prevention	61	244
(Chang et al., 2011)	se	NZB/W F1	F	8	7	nephritis	hU-MSC	1*10 ⁶	Intravenous	Rescue	183	244
(Chen et al., 2009)	mou se	Db/Db	М	-	6	DN	BMMNC db/m	1*10 ⁶	Intravenous	Rescue	112, 122, 132, 142	161
(Chen et al.,	mou	Dh/Dh	м	5	6	DN	BMMNC	1*100	Interview	Dagana	112, 122,	161
2009)	se	DD/DD	M		0	DN	BMMNC	1*10*	Intravenous	Rescue	132, 142	101
(Chen et al.	mou						db/db ex vivo				112 122	
2009)	se	Db/Db	М	4	5	DN	Ebselen	1*10 ⁶	Intravenous	Rescue	132, 142	161
							BMMNC db/db in					
(Chen et al., 2009)	mou se	Db/Db	м		5	DN	vivo Ebselen	1*10 ⁶	Intravenous	Rescue	112, 122, 132, 142	161
(Choi et al.,		Sprague-	-	2				1 10		D i		101
(Chung et al.,	rat	Dawley Sprague-	F	3	3	5/6 Nx	MSC	1*10°	Intravenous	Prevention	0,7,14,	60
2013)	rat	Dawley	М	8	8	CsA	hADMSC	3*10 ⁶	Intravenous	Prevention	21	28
al., 2014)	se	129sv/C57	F	10	10	Unx + IRI	GTC	2.5*10 ⁵	Intravenous	Prevention	0	42
(Donizetti- Oliveira et al.,	mou								Intraperitonea			
2012) (Donizetti	se	C57BL/6J	F	6	6	IRI	ADSC	2*10 ⁵	1	Prevention	0	42
Oliveira et al.,	mou		_					a 1 1 0 5	Intraperitonea	_		-0
2012)	se	C57BL/6J Sprague-	F	6	6	IRI	ADSC	2*10	1	Rescue	42	70
(Du et al., 2013) (Ebrahimi et al	rat	Dawley	М	3	3	IRI	hWJ-MSC	2*10 ⁶	Intravenous	Prevention	2	42
(Ebrahmi et al., 2012)	pig	Domestic	F	7	7	RAS	EPC	1*10 ⁶	artery	Rescue	42	70
(Eirin et al., 2014)	pig	Domestic	F	6	6	RAS	ADMSC	10*10 ⁶	Intrarenal artery	Rescue	42	77
(Eirin et al., 2013)	nig	Domestic	2	7	7	RAS	FOC	10*10 ⁶	Intrarenal	Rescue	42	70
(Eirin et al.,	. 115	D		,	, ,	RAS +	FOG	10 10	Intrarenal	D	42	70
2013) (Eirin et al.,	pıg	Domestic	?	7	1	PIKA	EUC	10*10°	artery Intrarenal	Rescue	42	/0
2012) (Ezquer et al	pig	Domestic	F	7	7	RAS	ADMSC	10*10 ⁶	artery	Rescue	42	70
(152quer et al., 2009)	se	C57BL/6J	М	8	8	DN	MSC	0,5*10 ⁶	Intravenous	Rescue	30, 51	119
(Fang et al., 2012)	rat	Sprague- Dawley	М	8	8	DN	ADMSC	10*10 ⁶	Intravenous	Rescue	28	84
(Franquesa et al., 2012)	rat	Lewis	М	4	4	CAN	BM	$0,5*10^{6}$	Intravenous	Rescue	77	84
(Franquesa et	rat	Lewis	М	4	7	CAN	MSC	10*10 ⁶	Intravenous	Rescue	77	84

al., 2012)												
(Franquesa et al., 2012)	rat	Lewis	М	7	5	CAN	BM	0,5*10 ⁶	Intravenous	Rescue	77	168
(Franquesa et al., 2012)	rat	Lewis	М	7	7	CAN	MSC	10*10 ⁶	Intravenous	Rescue	77	168
(Furuhashi et al., 2013)	rat	WKY/NCr i	F	_	13	anti-GBM GN	MSC	$2*10^{6}$	Intravenous	Prevention	0, 1, 2, 3, 4, 5	7
(Furuhashi et al., 2013)	rat	WKY/NCr i	F	7	7	anti-GBM GN	HASC	2*106	Intravenous	Prevention	0, 1, 2, 3, 4, 5	7
(Furuhashi et al., 2013)	rat	WKY/NCr j	F	7	7	anti-GBM GN	HASC	2*10 ⁶	Intravenous	Rescue	0, 1, 2, 3, 4, 5	14
(Furuhashi et al., 2012)	rot	WKY/NCr	Б	/	0	anti-GBM	LASC	2*10 ⁶	Introvonous	Pasaua	0, 1, 2, 3,	14
(Gatti et al.,	Tat	J Sprague-	Г		0	UN	LASC	2.10	Intravenous	Kescue	4, 5	14
2011)	rat	Dawley	М	6	6	UNX + IRI	hMSC MV	30ug	Intravenous	Prevention	0	182
(Gu et al., 2010)	se	MRL/lpr	F		8	nephritis	hU-MSC	1*106	Intravenous	Rescue	126	203
(Gu et al., 2010)	se	MRL/lpr	F	6	8	nephritis	hU-MSC	1*10 ⁶	Intravenous	Rescue	120, 155,	203
(Gu et al., 2010)	mou se	MRL/lpr	F		8	Lupus nephritis	MSC	1*10 ⁶	Intravenous	Rescue	126	203
(Guo et al., 2014)	rat	Sprague- Dawley	М	30	30	Adriamycin	MSC	2*10 ⁶	Intravenous	Rescue	14, 21	70
(Harrison et al.,	mou	Charlel	м	0	0	Continueta	LIEDC	1*106	Tutura	D	77	265
2013)	mou	Ctns(-/-)	IVI	9	0	Cystinosis	HSPC	1*10*	Intravenous	Kescue	11	303
(He et al., 2012)	se	C57BL6/J	?	6	10	5/6 Nx	MSC	1*106	Intravenous	Prevention	2	9
(He et al., 2012)	mou se	C57BL6/J	?		10	5/6 Nx	MSC MV	30ug	Intravenous	Prevention	2, 3, 5	9
(Huang et al., 2012)	rot	9	2		10	NCN	MSC	0.2*10 ⁵	Intrarenal	Provention	6	21
(Huang et al.,	Tat	1	2	10	10	INDIN	GDNF-	0,5*10	Intrarenal	rievenuon	0	21
2012)	rat	?	?		10	NSN	MSC	0,3*10 ⁵	artery	Prevention	6	21
(Hyun et al., 2012)	mou se	HIGA	F		5	IgAN	preonset disease	5*10 ⁶	Intravenous	Rescue	196, 182, 196, 210, 224, 238	252
(Hyun et al.,	mou			7			ADSC postonset				168, 182, 196, 210,	
2012)	se	HIGA	F		6	IgAN	disease	5*10°	Intravenous	Rescue	224,238	252
(Hyun et al., 2012)	mou se	HIGA	F		8	IgAN	hADSC	5*10 ⁶	Intravenous	Rescue	196, 210, 224, 238	252
(Jiao et al., 2011)	rat	Sprague- Dawley	F	15	15	Adriamycin	MMC	5-7*10 ⁶	Intravenous	Rescue	56	112
(Kunter et al.,	Tut								Intrarenal			
2007) (Lee et al	rat	Lewis Sprague-	М	10	10	Unx + aThy	MSC	2*10°	artery	Prevention	2	60
2010)	rat	Dawley	F		16	5/6 Nx	MSC	3*106	Intravenous	Prevention	1	56
(Lee et al., 2010)	rat	Sprague- Dawley	F	8	8	5/6 Nx	MSC	3*10 ⁶	Intravenous	Prevention	1, 7, 14, 21, 28	56
(Lee et al., 2010)	rat	Sprague- Dawley	F		16	5/6 Nx	MC	3*10 ⁶	Intravenous	Prevention	1	56
(Li et al., 2012)	rat	Wistar	F	10	10	CAAN	MSC	20*10 ⁶	Intravenous	Rescue	28	84
(Li et al., 2010)	mou se	C57BL/6	?	5	5	IRI	hADMSC	5*10 ⁵	Intravenous	Prevention	0	183
(Lv et al., 2013)	rat	Wistar	F	16	16	DN	MSC	2*10 ⁶	Intravenous	Rescue	56	112
(Ma, H. et al.,		Sprague-	м		(A .1		2*106	Tutura	Durantian	1	94
(Ma, H. et al.,	rat	Sprague-	IVI	6	0	Adrianiyeni	nu-msc	2*10	Intravenous	Prevention	1, 8, 15,	04
2013)	rat	Dawley	М		6	Adriamycin	hU-MSC	2*10 ⁶	Intravenous	Prevention	22	84
(Ma, Huann et al., 2013)	rat	Dawley	М		6	Adriamycin	hU-MSC	2*106	Intravenous	Prevention	1 8 15	28
al., 2013)	rat	Dawley	М	6	6	Adriamycin	hU-MSC	2*10 ⁶	Intravenous	Prevention	22	28
(Ma, Hualin et al. 2013)	rat	Sprague- Dawley	м	U	6	Adriamycin	hU-MSC	2*10 ⁶	Intraperitonea	Prevention	1, 8, 15,	28
(Ma, Hualin et al., 2013)	rat	Sprague- Dawley	M		6	Adriamycin	supernatant hU-MSC	2*10	Intravenous	Prevention	1, 8, 15, 22	28
(Masoad et al.,		,										
2012)	rat	?	М	10	10	DN	hUB-MNC	150*10°	Intravenous	?	?	8

(Ninichuk et al., 2006)	mou	COL4A3	2	10	10	Alport	MSC	1*10 ⁶	Intravenous	Rescue	42, 49, 56, 63	66
(Nur et al.,	mou	mawa		10	10	syndrome		1 10	-	Tesede	50,05	00
2008) (Oliveira-Sales	se	ТС КО	М	6	6	HSV	DFAT	5*10°	Intravenous	Prevention	0	21
et al., 2013)	rat	Wistar	М	8	7	2K-1C	MSC	2.5*10 ⁵	Intravenous	Rescue	21,35	42
(Park, J. H. et al., 2012)	rat	Sprague- Dawley	М	7	7	DN	hUB-SC	1*10 ⁶	Intravenous	Rescue	28	70
(Park, Jong Hee et al., 2012)	rat	Sprague- Dawley	М	7	7	DN	hUB-MSC	$0,5*10^{6}$	Intravenous	Prevention	2	28
(Ratliff et al., 2010)	mou se	Balb/c	?		6	Adriamycin	EPC	5*10 ⁵	Intravenous	Prevention	0	21
(Sangidorj et al., 2010)	mou se	C57BL/6	М	4	20	5/6 Nx	EPC	1*10 ⁶	Intravenous	Prevention	1,7	28
(Sangidorj et al., 2010)	mou se	C57BL/6	м	4	16	5/6 Nx	EPC	1*10 ⁶	Intravenous	Prevention	1.7	56
(Sangidorj et al.,	mou	05701 //	м	4	10	5 /(N	EDC	1*106	τ.	n d	1.7	0.4
(Sangidorj et al.,	mou	C3/BL/0	M	4	12	5/0 INX	EPC	1*10*	Intravenous	Prevention	1,7	84
2010) (Sangidorj et al.,	se mou	C57BL/6	М	4	8	5/6 Nx	EPC	1*10°	Intravenous	Prevention	1,7	112
2010)	se	C57BL/6	Μ	4	4	5/6 Nx	EPC	1*106	Intravenous	Prevention	1,7	140
(Semedo et al., 2010)	se	C57BL/6	F	5	5	IRI	BM-MNC	1*10 ⁶	l l	Prevention	0	42
(Semedo et al., 2009)	rat	Wistar	F	7	7	5/6 Nx	MSC	2*10 ⁵	Intravenous	Rescue	14	84
(Semedo et al., 2009)	rat	Wistar	F	7	7	5/6 Nx	MSC	2*10 ⁵	Intravenous	Rescue	14,28,42	56
(Shuai et al., 2012)	rot	Sprague-	Б		0	5/6 Ny	EDC	1*105	Introvonous	Pacaua	7	28
2012)	Tat	Dawley	1		0	5/0 112	empty	1 10	Intravenous	Rescue	1	20
(Shuai et al., 2012)	rat	Sprague- Dawley	F	8	8	5/6 Nx	plasmid- EPC	1*10 ⁵	Intravenous	Rescue	7	28
(Shuai et al., 2012)	rot	Sprague-	Б		Q	5/6 Nx	TEPT EDC	1*10 ⁵	Introvenous	Pacoua	7	28
(Shuai et al.,	141	Sprague-	1 [.]		0	5/0111	TERT-EIC	1 10	Intravenous	Keseue		20
2012)	rat	Dawley	F		8	5/6 Nx	EPC empty	1*105	Intravenous	Rescue	7	56
(Shuai et al., 2012)	rat	Sprague- Dawley	F	8	8	5/6 Nx	plasmid- EPC	1*10 ⁵	Intravenous	Rescue	7	56
(Shuai et al., 2012)	, in the second	Sprague-	г Г		0	5/6 N	TEDT EDG	1*105	T .	D		50
(Shuai et al.,	rat	Dawley Sprague-	F		8	5/6 Nx	TERT-EPC	1*105	Intravenous	Rescue	1	56
2012)	rat	Dawley	F		8	5/6 Nx	EPC	1*10 ⁵	Intravenous	Rescue	7	84
(Shuai et al., 2012)	rat	Sprague- Dawley	F	8	8	5/6 Nx	plasmid- EPC	1*10 ⁵	Intravenous	Rescue	7	84
(Shuai et al., 2012)	rat	Sprague- Dawley	F		8	5/6 Nx	TERT-EPC	1*10 ⁵	Intravenous	Rescue	7	84
(Togel et al., 2009)	rat	Sprague- Dawley	м	6	6	IRI	MSC	1 5*10 ⁶	Intra-arterial	Prevention	0	90
(Togel et al.,	iut	Sprague-		0		IDI	MGG	0.5*100		D		
(Togel et al.,	rat	Sprague-	IVI	6	0	IKI	MSC	0,5*10	Intra-arterial	Prevention	0	90
2009) (Togel et al.,	rat	Dawley Sprague-	М	0	6	IRI	MSC	2*106	Intra-arterial	Prevention	0	90
2009) (Togel et al.	rat	Dawley	М		6	IRI	MSC	5*10 ⁶	Intra-arterial	Prevention	0	90
2009)	rat	F334	М		6	IRI	MSC	0,5*10 ⁶	Intra-arterial	Prevention	0	90
(Togel et al., 2009)	rat	F334	М	6	6	IRI	MSC	2*106	Intra-arterial	Prevention	0	90
(Togel et al., 2009)	rat	F334	М		6	IRI	MSC	5*10 ⁶	Intra-arterial	Prevention	0	90
(Urbieta-									Intrarenal			
2012)	pig	Domestic	?	6	6	RAS	EPC	10*10 ⁶	artery	Rescue	42	70
(van Koppen et al., 2012b)	rat	Lewis	М	8	8	5/6 Nx	BM	50*10 ⁶	Intrarenal artery	Rescue	42	84
(van Koppen et al., 2012b)	rat	Lewis	М	0	7	5/6 Nx	BM	50*10 ⁶	Intrarenal artery	Rescue	42	140
(van Koppen et al., 2012b)	rat	Lewis	М		7	5/6 Nx	CKD BM	50*10 ⁶	Intrarenal artery	Rescue	42	140

(van Koppen et								50			42, 43,	
al., 2012a)	rat	Lewis	М	13	13	5/6 Nx	hMSC CM	μg/250 μl	Intravenous	Rescue	44,45	84
(van Koppen et	rot	Lowic	м	7	0	5/6 Ny	hMSC Evo	$7\mu g/250$	Introvonous	Pasaua	42,43,	91
(Villanueva et	Tat	Sprague-	IVI	/	0	5/0 112	IIWISC EXO	μι	Intravenous	Rescue	44,45	04
al., 2013)	rat	Dawley	М	7	7	5/6 Nx	hADMSC	0,5*10 ⁶	Intravenous	Prevention	0	35
(Villanueva et		Sprague-										
al., 2011)	rat	Dawley	М	7	7	5/6 Nx	MSC	0,5*10°	Intravenous	Rescue	35	42
(Wang et al., 2013)	rat	Sprague- Dawley	М	8	9	DN	MSC	2*10 ⁶	Intrarenal arterv	Rescue	28	56
(Yamaleyeva et		RH-				IRI +			, ,			
al., 2012)	rat	Foxn1rnu	М	2	4	gentamicin	hPKC	5*10 ⁶	Parenchymal	Rescue	126	210
(Yamaleyeva et		RH-				IRI +				_		
al., 2012)	rat	Foxn1rnu	М	2	4	gentamicin	F™hPKC	5*10°	Parenchymal	Rescue	126	210
(Y uen et al., 2013)	rat	F344	м		8	5/6 Nx	FOC	1*10 ⁶	Intravenous	Rescue	28	56
2013)	Tut	1311		9	0	SIGINA	Loc	1 10	Induvenous	Researc	28, 30,	50
(Yuen et al.,											32, 35,	
2013)	rat	F344	М		9	5/6 Nx	EOC CM	0.5 ml	Intravenous	Rescue	37, 39	56
(Yuen et al.,		5224			11	5/6 33	DICOLO	1*106	T	D	20	
2010) (Yuan at al	rat	F334	М		11	5/6 NX	BM CMC	1*10°	Intra-arterial	Rescue	28	56
(Yuen et al., 2010)	rat	F334	М	15	11	5/6 Nx	BM CMC	1*10 ⁶	Intravenous	Rescue	28	56
(Yuen et al.,		5224						1.4.1.06			20	
2010)	rat	F334	М		11	5/6 Nx	SC	1*10°	Intravenous	Rescue	28	56
(Zhang, Y. et al., 2013)	rat	Sprague- Dawley	М	10	10	DN	MSC	1*10 ⁶	Intravenous	Rescue	28	56
(Zhang, Y. et		Sprague-		10			microbubbl					
al., 2013)	rat	Dawley	М		10	DN	e MSC	1*106	Intravenous	Rescue	28	56
(Thong Latel		Same all a									84,112,	
(211) (Zhang, L. et al., 2013)	rat	Dawley	м	8	8	DN	hASC	5*10 ⁶	Intravenous	Rescue	140, 108,	224
(Zhang et al.,	mou	Durity		0	0	DIV	in ide	5 10	Induvenous	Researc	150	221
2012)	se	Db/Db	М	10	12	DN	EOC db/m	0,5*106	Intravenous	Rescue	56	84
(Zhang et al.,	mou			12								
2012)	se	Db/Db	М		12	DN	EOC db/db	$0,5*10^{6}$	Intravenous	Rescue	56	84
(Zhou et al.,	not	Sprague-	м		4	DN	MSC	2*106	Cardiac	Dagana	20	01
(7 hou et al.	rat	Sprague	IVI	4	4	DN	MSC I	2*10	Cardiac	Kescue	20	04
(2009)	rat	Dawley	М		4	DN	CsA	2*10 ⁶	infusion	Rescue	28	84
(Zhu et al.,									Intrarenal			
2013)	pig	Domestic	F	7	6	RAS	MSC	10*10 ⁶	artery	Rescue	42	70
(Zhu et al.,				/					Intrarenal			
2013)	pig	Domestic	F		6	RAS	EPC	10*10°	artery	Rescue	42	70
(Zoja et al., 2012)	rot	Lowic	м	4	А	Adrianavair	MSC	2*106	Introvenesse	Drovention	1, 2, 3, 5,	0
(Zoia et al	rat	Lewis	IVI	4	4	Adrianiyein	MSC	2~10	intravenous	Frevenuon	1235	9
2012)	rat	Lewis	М	4	4	Adriamycin	MSC	2*10 ⁶	Intravenous	Prevention	7,14	16
(Zoja et al.,									_	_	1, 2, 3, 5,	
2012)	rat	Lewis	Μ	4	4	Adriamycin	MSC	$2*10^{6}$	Intravenous	Prevention	7, 14, 21	30

References

Alexandre, C. S., Volpini, R. A., Shimizu, M. H., Sanches, T. R., Semedo, P., Jura, V. L. D., Câmara, N. O., Seguro, A. C. and Andrade, L. (2009). Lineage-negative bone marrow cells protect against chronic renal failure. *Stem Cells* **27**, 682.

Alfarano, C., Roubeix, C., Chaaya, R., Ceccaldi, C., Calise, D., Mias, C., Cussac, D., Bascands, J. L. and Parini, A. (2012). Intraparenchymal Injection of Bone Marrow Mesenchymal Stem Cells Reduces Kidney Fibrosis After Ischemia-Reperfusion in Cyclosporine-Immunosuppressed Rats. *Cell Transplantation* **21**, 2009.

Bian, X., Zhang, B., Guo, W., Liu, N., Bai, Y., Miao, J., Zhao, G., Liu, B., Wang, S., Ma, L. et al. (2014). Effects of Mesenchymal Stem Cells Transplanted at Different Time Points in a Rat Remnant Kidney Model. *American Journal of Nephrology* **39**, 75-84.

Burst, V., Putsch, F., Kubacki, T., Volker, L. A., Bartram, M. P., Muller, R. U., Gillis, M., Kurschat, C. E., Grundmann, F., Muller-Ehmsen, J. et al. (2013). Survival and distribution of injected haematopoietic stem cells in acute kidney injury. *Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association* **28**, 1131-1139.

Caldas, H. C., Fernandes, I. M. M., Kawasaki-Oyama, R. S., Baptista, M. A. S. F., Plepis, A. M. G., Martins, V. A., Coimbra, T. M., Goloni-Bertollo, E. M., Braile, D. M. and Abbud-Filho, M. (2011). Effect of stem cells seeded onto biomaterial on the progression of experimental chronic kidney disease. *Proceedings of the Society for Experimental Biology* and Medicine, ebm.2011.011024.

Caldas, H. C., Fernandes, I. M. M., Gerbi, F., Souza, A. C., Baptista, M. A. S. F., Ramalho, H. J., Kawasaki-Oyama, R. S., Goloni-Bertollo, E. M., Pavarino-Bertelli, E. C., Braile, D. M. et al. (2008). Effect of Whole Bone Marrow Cell Infusion in the Progression of Experimental Chronic Renal Failure. *Transplantation Proceedings* 40, 853.

Cantaluppi, V., Gatti, S., Medica, D., Figliolini, F., Bruno, S., Deregibus, M. C., Sordi, A., Biancone, L., Tetta, C. and Camussi, G. (2012). Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. *Kidney Int* 82, 412.

Cao, Q., Wang, Y., Zheng, D., Sun, Y., Wang, C., Wang, X. M., Lee, V. W. S., Zheng, G., Tan, T. K., Wang, Y. M. et al. (2013). Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo. *Kidney International*.

Castiglione, R. C., Maron-Gutierrez, T., Barbosa, C. M. L., Ornellas, F. M., Barreira, A. L., Dibarros, C. B. A., Vasconcelos-Dos-Santos, A., Paredes, B. D., Pascarelli, B. M., Diaz, B. L. et al. (2013). Bone marrow-derived mononuclear cells promote improvement in glomerular function in rats with early diabetic nephropathy. *Cellular Physiology and Biochemistry* **32**, 699-718.

Cavaglieri, R. C., Martini, D., Sogayar, M. C. and Noronha, I. L. (2009). Mesenchymal Stem Cells Delivered at the Subcapsule of the Kidney Ameliorate Renal Disease in the Rat Remnant Kidney Model. *Transplantation Proceedings* **41**, 947.

Chade, A. R., Zhu, X. Y., Krier, J. D., Jordan, K. L., Textor, S. C., Grande, J. P., Lerman, A. and Lerman, L. O. (2010). Endothelial progenitor cells homing and renal repair in experimental renovascular disease. *Stem cells (Dayton, Ohio)* **28**, 1039.

Chade, A. R., Zhu, X., Lavi, R., Krier, J. D., Pislaru, S., Simari, R. D., Napoli, C., Lerman, A. and Lerman, L. O. (2009). Endothelial Progenitor Cells Restore Renal Function in Chronic Experimental Renovascular Disease. *Circulation* **119**, 547-557.

Challen, G. A., Bertoncello, I., Deane, J. A., Ricardo, S. D. and Little, M. H. (2006). Kidney Side Population Reveals Multilineage Potential and Renal Functional Capacity but also Cellular Heterogeneity. *Journal of the American Society of Nephrology* **17**, 1896-1912.

Chang, J.-W., Hung, S.-P., Wu, H.-H., Wu, W.-M., Yang, A.-H., Tsai, H.-L., Yang, L.-Y. and Lee, O. K. (2011). Therapeutic Effects of Umbilical Cord Blood-Derived Mesenchymal Stem Cell Transplantation in Experimental Lupus Nephritis. *Cell Transplantation* **20**, 245-257.

Chang, J. W., Tsai, H. L., Chen, C. W., Yang, H. W., Yang, A. H., Yang, L. Y., Wang, P. S., Ng, Y. Y., Lin, T. L. and Lee, O. K. (2012). Conditioned mesenchymal stem cells attenuate progression of chronic kidney disease through inhibition of epithelial-to-mesenchymal transition and immune modulation. *Journal of Cellular and Molecular Medicine* **16**, 2935.

Chen, J., Li, H., Addabbo, F., Zhang, F., Pelger, E., Patschan, D., Park, H.-C., Kuo, M.-C., Ni, J., Gobe, G. et al. (2009). Adoptive Transfer of Syngeneic Bone Marrow-Derived Cells in Mice with Obesity-Induced Diabetes: Selenoorganic Antioxidant Ebselen Restores Stem Cell Competence. *The American Journal of Pathology* **174**, 701. Choi, S., Park, M., Kim, J., Hwang, S., Park, S. and Lee, Y. (2009). The role of mesenchymal stem cells in the functional improvement of chronic renal failure. *Stem Cells and Development* **18**, 521.

Chung, B. H., Lim, S. W., Doh, K. C., Piao, S. G., Heo, S. B. and Yang, C. W. (2013). Human Adipose Tissue Derived Mesenchymal Stem Cells Aggravate Chronic Cyclosporin Nephrotoxicity by the Induction of Oxidative Stress. *PLoS ONE* **8**, e59693.

De Chiara, L., Fagoonee, S., Ranghino, A., Bruno, S., Camussi, G., Tolosano, E., Silengo, L. and Altruda, F. (2014). Renal cells from spermatogonial germline stem cells protect against kidney injury. *Journal of the American Society of Nephrology* **25**, 316-328.

Donizetti-Oliveira, C., Semedo, P., Burgos-Silva, M., Cenedeze, M. A., Malheiros, D. M. A. C., Reis, M. A., Pacheco-Silva, A. and mara, N. O. S. (2012). Adipose Tissue-Derived Stem Cell Treatment Prevents Renal Disease Progression. *Cell Transplantation* **21**, 1727.

Du, T., Zou, X., Cheng, J., Wu, S., Zhong, L., Ju, G., Zhu, J., Liu, G., Zhu, Y. and Xia, S. (2013). Human Wharton's jelly-derived mesenchymal stromal cells reduce renal fibrosis through induction of native and foreign hepatocyte growth factor synthesis in injured tubular epithelial cells. *Stem Cell Research & Therapy* **4**, 59.

Ebrahimi, B., Li, Z., Eirin, A., Zhu, X.-Y., Textor, S. C. and Lerman, L. O. (2012). Addition of endothelial progenitor cells to renal revascularization restores medullary tubular oxygen consumption in swine renal artery stenosis. *American Journal of Physiology - Renal Physiology* **302**, F1478-F1485.

Eirin, A., Zhu, X. Y., Krier, J. D., Tang, H., Jordan, K. L., Grande, J. P., Lerman, A., Textor, S. C. and Lerman, L. O. (2012). Adipose tissue-derived mesenchymal stem cells improve revascularization outcomes to restore renal function in swine atherosclerotic renal artery stenosis. *Stem Cells* **30**, 1030.

Eirin, A., Zhang, X., Zhu, X. Y., Tang, H., Jordan, K. L., Grande, J. P., Dietz, A. B., Lerman, A., Textor, S. C. and Lerman, L. O. (2014). Renal vein cytokine release as an index of renal parenchymal inflammation in chronic experimental renal artery stenosis. *Nephrology Dialysis Transplantation* **29**, 274-282.

Eirin, A., Zhu, X.-Y., Li, Z., Ebrahimi, B., Zhang, X., Tang, H., Korsmo, M. J., Chade, A. R., Grande, J. P., Ward, C. J. et al. (2013). Endothelial Outgrowth Cells Shift Macrophage Phenotype and Improve Kidney Viability in Swine Renal Artery Stenosis. *Arteriosclerosis, Thrombosis, and Vascular Biology* **33**, 1006-1013.

Ezquer, F., Ezquer, M., Simon, V., Pardo, F., Yañez, A., Carpio, D. and Conget, P. (2009). Endovenous Administration of Bone Marrow-Derived Multipotent Mesenchymal

Stromal Cells Prevents Renal Failure in Diabetic Mice. *Biology of Blood and Marrow Transplantation* **15**, 1354.

Fang, Y., Tian, X., Bai, S., Fan, J., Hou, W., Tong, H. and Li, D. (2012). Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocininduced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway. *Int J Mol Med* **30**, 85-92.

Franquesa, M., Herrero, E., Torras, J., Ripoll, E., Flaquer, M., Gomà, M., Lloberas, N., Anegon, I., Cruzado, J. M., Grinyó, J. M. et al. (2012). Mesenchymal stem cell therapy prevents interstitial fibrosis and tubular atrophy in a rat kidney allograft model. *Stem Cells and Development* **21**, 3125-3135.

Furuhashi, K., Tsuboi, N., Shimizu, A., Katsuno, T., Kim, H., Saka, Y., Ozaki, T., Sado, Y., Imai, E., Matsuo, S. et al. (2013). Serum-Starved Adipose-Derived Stromal Cells Ameliorate Crescentic GN by Promoting Immunoregulatory Macrophages. *Journal of the American Society of Nephrology* 24, 587-603.

Gatti, S., Bruno, S., Deregibus, M. C., Sordi, A., Cantaluppi, V., Tetta, C. and Camussi, G. (2011). Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. *Nephrology Dialysis Transplantation*.

Gu, Z., Akiyama, K., Ma, X., Zhang, H., Feng, X., Yao, G., Hou, Y., Lu, L., Gilkeson, G., Silver, R. et al. (2010). Transplantation of umbilical cord mesenchymal stem cells alleviates lupus nephritis in MRL/lpr mice. *Lupus* **19**, 1502-1514.

Guo, J., Zou, Y., Wu, Z., Wu, W., Xu, Z., Hu, H., Huang, L., Dong, H., Chen, J., Lu, J. et al. (2014). Protective effects of mesenchymal stromal cells on adriamycin-induced minimal change nephrotic syndrome in rats and possible mechanisms. *Cytotherapy* **16**, 471-484.

Harrison, F., Yeagy, B. A., Rocca, C. J., Kohn, D. B., Salomon, D. R. and Cherqui, S. (2013). Hematopoietic stem cell gene therapy for the multisystemic lysosomal storage disorder cystinosis. *Molecular Therapy* **21**, 433-444.

He, J., Wang, Y., Sun, S., Yu, M., Wang, C., Pei, X., Zhu, B., Wu, J. and Zhao, W. (2012). Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. *Nephrology* **17**, 493.

Huang, Z.-Y., Hong, L.-Q., Na, N., Luo, Y., Miao, B. and Chen, J. (2012). Infusion of mesenchymal stem cells overexpressing GDNF ameliorates renal function in nephrotoxic serum nephritis. *Cell Biochemistry and Function* **30**, 139.

Hyun, Y. Y., Kim, I. O., Kim, M. H., Nam, D. H., Lee, M. H., Kim, J. E., Song, H. K., Cha, J. J., Kang, Y. S., Lee, J. E. et al. (2012). Adipose-derived stem cells improve renal function in a mouse model of IgA nephropathy. *Cell Transplantation* **21**, 2425-2439.

Jiao, Y. Q., Yi, Z. W., He, X. J., Liu, X. H., He, Q. N. and Huang, D. L. (2011). Does injection of metanephric mesenchymal cells improve renal function in rats? *Saudi journal of kidney diseases and transplantation : an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia* **22**, 501-510.

Kunter, U., Rong, S., Boor, P., Eitner, F., MÃ¹/aller-Newen, G., Djuric, Z., Van Roeyen, C. R., Konieczny, A., Ostendorf, T., Villa, L. et al. (2007). Mesenchymal stem cells prevent

progressive experimental renal failure but maldifferentiate into glomerular adipocytes. *Journal of the American Society of Nephrology* **18**, 1754.

Lee, S. R., Lee, S. H., Moon, J. Y., Park, J. Y., Lee, D., Lim, S. J., Jeong, K. H., Park, J. K., Lee, T. W. and Ihm, C. G. (2010). Repeated administration of bone marrow-derived mesenchymal stem cells improved the protective effects on a remnant kidney model. *Renal Failure* **32**, 840.

Li, K., Han, Q., Yan, X., Liao, L. and Zhao, R. C. (2010). Not a process of simple vicariousness, the differentiation of human adipose-derived mesenchymal stem cells to renal tubular epithelial cells plays an important role in acute kidney injury repairing. *Stem Cells and Development* **19**, 1267-1275.

Li, W., Jiang, H. and Feng, J. M. (2012). Isogenic mesenchymal stem cells transplantation improves a rat model of chronic aristolochic acid nephropathy via upregulation of hepatic growth factor and downregulation of transforming growth factor \hat{I}^{21} . *Molecular and Cellular Biochemistry* **368**, 137.

Lv, S.-S., Liu, G., Wang, J.-P., Wang, W.-W., Cheng, J., Sun, A.-L., Liu, H.-Y., Nie, H.-B., Su, M.-R. and Guan, G.-J. (2013). Mesenchymal stem cells transplantation ameliorates glomerular injury in streptozotocin-induced diabetic nephropathy in rats via inhibiting macrophage infiltration. *International Immunopharmacology* **17**, 275-282.

Ma, H., Wu, Y., Xu, Y., Sun, L. and Zhang, X. (2013). Human umbilical mesenchymal stem cells attenuate the progression of focal segmental glomerulosclerosis. *American Journal of the Medical Sciences*.

Ma, H., Wu, Y., Zhang, W., Dai, Y., Li, F., Xu, Y., Wang, Y., Tu, H., Li, W. and Zhang, X. (2013). The effect of mesenchymal stromal cells on doxorubicin-induced nephropathy in rats. *Cytotherapy*.

Masoad, R. E., Ewais, M. M. S., Tawfik, M. K. and Abd El-All, H. S. (2012). Effect of mononuclear cells versus pioglitazone on streptozotocin-induced diabetic nephropathy in rats. *Pharmacological Reports* **64**, 1223-1233.

Ninichuk, V., Gross, O., Segerer, S., Hoffmann, R., Radomska, E., Buchstaller, A., Huss, R., Akis, N., SchlĶndorff, D. and Anders, H. J. (2006). Multipotent mesenchymal stem cells reduce interstitial fibrosis but do not delay progression of chronic kidney disease in collagen4A3-deficient mice. *Kidney International* **70**, 121.

Nur, R., Fukuda, N., Matsumoto, T., Medet, J., Kano, K., Yamamoto, C., Maruyama, T., Endo, M. and Matsumoto, K. (2008). Implantation of dedifferentiated fat cells ameliorates habu snake venom-induced chronic renal dysfunction in tenascin-C-deficient mice. *Nephron - Experimental Nephrology* **110**, e91-e98.

Oliveira-Sales, E. B., Maquigussa, E., Semedo, P., Pereira, L. G., Ferreira, V. M., Câmara, N. O., Bergamaschi, C. T., Campos, R. R. and Boim, M. A. (2013). Mesenchymal Stem Cells (MSC) Prevented the Progression of Renovascular Hypertension, Improved Renal Function and Architecture. *PLoS ONE* **8**, e78464.

Park, J. H., Park, J., Hwang, S. H., Han, H. and Ha, H. (2012). Delayed Treatment With Human Umbilical Cord Blood-Derived Stem Cells Attenuates Diabetic Renal Injury. *Transplantation Proceedings* 44, 1123.

Park, J. H., Hwang, I., Hwang, S. H., Han, H. and Ha, H. (2012). Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine action. *Diabetes Research and Clinical Practice* **98**, 465.

Ratliff, B. B., Ghaly, T., Brudnicki, P., Yasuda, K., Rajdev, M., Bank, M., Mares, J., Hatzopoulos, A. K. and Goligorsky, M. S. (2010). Endothelial progenitors encapsulated in bioartificial niches are insulated from systemic cytotoxicity and are angiogenesis competent. *American Journal of Physiology - Renal Physiology* 299, F178.

Sangidorj, O., Yang, S. H., Jang, H. R., Lee, J. P., Cha, R. H., Kim, S. M., Lim, C. S. and Kim, Y. S. (2010). Bone marrow-derived endothelial progenitor cells confer renal protection in a murine chronic renal failure model. *American Journal of Physiology - Renal Physiology* 299.

Semedo, P., Donizetti-Oliveira, C., Burgos-Silva, M., Cenedeze, M. A., Avancini Costa Malheiros, D. M., Pacheco-Silva, A. and Camara, N. O. S. (2010). Bone marrow mononuclear cells attenuate fibrosis development after severe acute kidney injury. *Laboratory Investigation* **90**, 685.

Semedo, P., Correa-Costa, M., Cenedeze, M. A., Malheiros, D. M. A. C., Dos Reis, M. A., Shimizu, M. H., Seguro, A. C., Pacheco-Silva, A. and Ä[^]amara, N. O. S. (2009). Mesenchymal stem cells attenuate renal fibrosis through immune modulation and remodeling properties in a rat remnant kidney model. *Stem Cells* **27**, 3063.

Shuai, L., Li, X., He, Q., Dang, X., Chen, H., Zhou, P., Yi, Z. and He, X. (2012). Angiogenic Effect of Endothelial Progenitor Cells Transfected with Telomerase Reverse Transcriptase on Peritubular Microvessel in Five Out of Six Subtotal Nephrectomy Rats. *Renal Failure* **34**, 1270-1280.

Togel, F., Cohen, A., Zhang, P., Yang, Y., Hu, Z. and Westenfelder, C. (2009). Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury. *Stem Cells and Development* **18**, 475.

Urbieta-Caceres, V. H., Zhu, X.-Y., Jordan, K. L., Tang, H., Textor, K., Lerman, A. and Lerman, L. O. (2012). Selective improvement in renal function preserved remote myocardial microvascular integrity and architecture in experimental renovascular disease. *Atherosclerosis* **221**, 350.

van Koppen, A., Joles, J. A., van Balkom, B. W. M., Lim, S. K., de Kleijn, D., Giles, R. H. and Verhaar, M. C. (2012a). Human embryonic mesenchymal stem cell-derived conditioned medium rescues kidney function in rats with established chronic kidney disease. *PLoS ONE* 7(6), e38746. doi:10.1371/journal.pone.0038746

van Koppen, A., Joles, J. A., Bongartz, L. G., van den Brandt, J., Reichardt, H. M., Goldschmeding, R., Nguyen, T. Q. and Verhaar, M. C. (2012b). Healthy Bone Marrow Cells Reduce Progression Of Kidney Failure Better Than CKD Bone Marrow Cells In Rats With Established Chronic Kidney Disease. *Cell Transplant*. 21, 2299–2312.

Villanueva, S., Ewertz, E., Carrión, F., Tapia, A., Vergara, C., Céspedes, C., Sáez, P. J., Luz, P., Irarrázabal, C., Carreño, J. E. et al. (2011). Mesenchymal stem cell injection ameliorates chronic renal failure in a rat model. *Clinical Science* **121**, 489-499.

Villanueva, S., Carreño, J. E., Salazar, L., Vergara, C., Strodthoff, R., Fajre, F., Céspedes, C., Sáez, P. J., Irarrázabal, C., Bartolucci, J. et al. (2013). Human

mesenchymal stem cells derived from adipose tissue reduce functional and tissue damage in a rat model of chronic renal failure. *Clinical Science* **125**, 199-210.

Wang, S., Li, Y., Zhao, J., Zhang, J. and Huang, Y. (2013). Mesenchymal Stem Cells Ameliorate Podocyte Injury and Proteinuria in a Type 1 Diabetic Nephropathy Rat Model. *Biology of Blood and Marrow Transplantation* **19**, 538.

Yamaleyeva, L. M., Guimaraes-Souza, N. K., Krane, L. S., Agcaoili, S., Gyabaah, K., Atala, A., Aboushwareb, T. and Yoo, J. J. (2012). Cell Therapy with Human Renal Cell Cultures Containing Erythropoietin-Positive Cells Improves Chronic Kidney Injury. *Stem Cells Translational Medicine* 1, 373-383.

Yuen, D. A., Connelly, K. A., Advani, A., Liao, C., Kuliszewski, M. A., Trogadis, J., Thai, K., Advani, S. L., Zhang, Y., Kelly, D. J. et al. (2010). Culture-modified bone marrow cells attenuate cardiac and renal injury in a chronic kidney disease rat model via a novel antifibrotic mechanism. *PLoS ONE* **5**.

Yuen, D. A., Connelly, K. A., Zhang, Y., Advani, S. L., Thai, K., Kabir, G., Kepecs, D., Spring, C., Smith, C., Batruch, I. et al. (2013). Early outgrowth cells release soluble endocrine antifibrotic factors that reduce progressive organ fibrosis. *Stem Cells* **31**, 2408-2419.

Zhang, L., Li, K., Liu, X., Li, D., Luo, C., Fu, B., Cui, S., Zhu, F., Zhao, R. C. and Chen, X. (2013). Repeated systemic administration of human adipose-derived stem cells attenuates overt diabetic nephropathy in rats. *Stem Cells Dev* 22, 3074-3086.

Zhang, Y., Yuen, D. A., Advani, A., Thai, K., Advani, S. L., Kepecs, D., Kabir, M. G., Connelly, K. A. and Gilbert, R. E. (2012). Early-Outgrowth Bone Marrow Cells Attenuate Renal Injury and Dysfunction via an Antioxidant Effect in a Mouse Model of Type 2 Diabetes. *Diabetes* 61, 2114-2125.

Zhang, Y., Ye, C., Wang, G., Gao, Y., Tan, K., Zhuo, Z., Liu, Z., Xia, H., Yang, D. and Li, P. (2013). Kidney-Targeted Transplantation of Mesenchymal Stem Cells by Ultrasound-Targeted Microbubble Destruction Promotes Kidney Repair in Diabetic Nephropathy Rats. *BioMed Research International* **2013**, 13.

Zhou, H., Tian, H. M., Long, Y., Zhang, X. X., Zhong, L., Deng, L., Chen, X. H. and Li, X. Q. (2009). Mesenchymal stem cells transplantation mildly ameliorates experimental diabetic nephropathy in rats. *Chinese Medical Journal* **122**, 2573.

Zhu, X.-Y., Urbieta-Caceres, V., Krier, J. D., Textor, S. C., Lerman, A. and Lerman, L. O. (2013). Mesenchymal Stem Cells and Endothelial Progenitor Cells Decrease Renal Injury in Experimental Swine Renal Artery Stenosis Through Different Mechanisms. *STEM CELLS* **31**, 117.

Zoja, C., Garcia, P. B., Rota, C., Conti, S., Gagliardini, E., Corna, D., Zanchi, C., Bigini, P., Benigni, A., Remuzzi, G. et al. (2012). Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy. *American Journal of Physiology - Renal Physiology* **303**, F1370-F1381.

BM	EPC	MSC	HSC	Embryonic	Organ specific	Cell product	Other
BM	BM CMC	ADSC	HSPC	DFAT	GTC	EOC CM	BM-M0
BMMNC	EOC	chMSC	Lin ⁻ BM		hPKC	EPC MV	BM-M2
hUB-MNC	EPC	hADMSC	Lin ⁻ CD90 ⁺ HSC		ММС	hMSC CM	SP-M0
		hADSC			МР	hMSC Exo	SP-M2
		hHASC			SP	hMSC MV	
		hLASC				hU-MSC supernatant	
		hUB-MSC				MSC MV	
		hUB-SC					
		hU-MSC					
		hWJ-MSC					
		MSC					
		SC					

Table S2. Pooled cell types.

Abbreviations: ADSC, adipose-tissue derived stem cell; BM, bone marrow cells; BMMNC, bone marrow mononuclear cells; BM-CMC, bone marrow-derived culture modified cells; BM-M0, bone marrow derived macrophage; BM-M2, bone marrow derived activated macrophage; chMSC, conditioned human mesenchymal stem cell; DFAT, dedifferentiated fat cells; EOC, endothelial outgrowth cell; EOC CM; endothelial outgrowth cell derived conditioned medium; EPC, endothelial progenitor cell; EPC MV, endothelial progenitor cell derived micro vesicle; GTC, germline cell derived tubular-like cells; hPKC, human primary kidney cells; hUB-MNC, human umbilical cord blood mononuclear cell; hU-MSC, human umbilical cord MSC; hADMSC, human adipose tissue derived mesenchymal stem cell; hADSC, human adipose tissue derived stem cell; hHASC, human high serum level cultured adiposetissue derived stromal cells; hLASC, human low serum level cultured adipose-tissue derived stromal cells; hMSC CM, human mesenchymal stem cell derived conditioned medium; hMSC Exo, human MSC derived exosomes; hMSC MV, human mesenchymal stem cell derived microvesicle; HSPC, hematopoietic stem and progenitor cell; hUB-MSC, human umbilical cord blood derived mesenchymal stem cell; hUB-SC, human umbilical cord blood derived stem cell; hWJ-MSC, human wharton's jelly derived mesenchymal stem cell; Lin⁻BM, lineage negative bone marrow cells; Lin⁻CD90⁺HSC, lineage negative CD90 positive hematopoietic stem cell, MMC, metanephric mesenchymal cell; MP, main population kidney cells; MSC, mesenchymal stem cell; MSC MV, MSC derived micro vesicles; SC, stromal cell; SP, side population kidney cells; SP-M0, spleen derived macrophage; SP-M2, spleen derived activated macrophage.

Table S3. Pooled models.

Subtotal nephrectomy	Ischemia reperfusion	Diabetes	Toxic	Genetic non-diabetes	Hypertension
1 5	1 5				
2/3 Nx	IRI	DN (Db/Db)	Adriamycin	Alport syndrome	2K-1C
5/6 Nx	IRI + gentamicin	DN	Anti-GBM GN	Cystinosis	RAS
	Unx + IRI		CAAN	IgAN	RAS + PTRA
	Unx + IRI + CsA		CAN	Lupus nephritis	
			CsA		
			HSV		
			NSN		
			Unx + aThy		

Abbreviations: 2K-1C, two kidney-one clip; Anti-GBM GN, anti glomerular basement membrane glomerulonephritis; aThy; anti-Thy-1; CAN, chronic allograft nephropathy; CAAN, chronic aristolochic acid nephropathy; CsA, cyclosporine; DN, diabetic nephropathy; HSV, habu snake venom; IgAN, IgA nephropathy; IRI, ischemia reperfusion injury; NSN, nephrotoxic serum nephritis; Nx, nephrectomy; Unx, uninephrectomy; RAS, renal artery stenosis; PTRA, percutaneous transluminal renal angioplasty.

Fig. S1. Effect of cell-based treatment in CKD on plasma creatinine.

Forest plot, right side shows improvement by cell-based therapy. Data are presented as SMDs and 95% CI

Author and Year	Animal	Cell Type	Plasma creatinine Reduction	SMD & 95% CI
Cao Q (2013) Cao Q (2013) Cao Q (2013) Cao Q (2013) Chang JW (2011) Chang JW (2011) De Chiara L (2013)	mouse mouse mouse mouse mouse mouse	Other Other Other Other MSC Orran specific		-0.03 [-1.69 , 1.62] -0.13 [-1.79 , 1.53] -0.08 [-1.73 , 1.58] 1.76 [-0.09 , 3.61] 0.23 [-0.75 , 1.22] 0.23 [-0.78 , 1.25] 0.37 [-0.51] 1.25]
Donizettie–Oliveira C (2012) Donizettie–Oliveira C (2012) Gu Z (2010) Gu Z (2010) Gu Z (2010)	mouse mouse mouse mouse mouse	MSC MSC MSC MSC MSC MSC MSC		0.66 [-0.51, 1.82] 1.97 [0.59, 3.35] 2.38 [0.51, 4.24] 2.19 [0.36, 4.01] 2.45 [0.56, 4.33]
Harrison F (2013) He J (2012) He J (2012) Ninichuk V (2006) Ratliff BB (2010)	mouse mouse mouse mouse mouse	HSC MSC Cell product MSC EPC		1.13 [0.11 , 2.16] 1.74 [0.29 , 3.19] 1.74 [0.29 , 3.19] -0.03 [-0.91 , 0.84] 1.19 [-0.04 , 2.42]
Sangidorj O (2010) Sangidorj O (2010) Sangidorj O (2010) Sangidorj O (2010) Sangidorj O (2010) Sangidorj O (2010)	mouse mouse mouse mouse mouse	EPC EPC EPC EPC EPC EPC		$\begin{array}{c} 0.00 \begin{bmatrix} -1.07 \\ -1.07 \\ 0.00 \begin{bmatrix} -1.10 \\ -1.10 \end{bmatrix} \\ 1.20 \begin{bmatrix} -0.01 \\ 2.80 \begin{bmatrix} 1.16 \\ .4.44 \end{bmatrix} \\ 2.60 \begin{bmatrix} 0.72 \\ .4.49 \end{bmatrix} \\ -132 \begin{bmatrix} -2.69 \\ -2.69 \end{bmatrix} \\ \begin{array}{c} 0.05 \end{bmatrix}$
Alfarano C (2012) Alfarano C (2012) Bian X (2014) Bian X (2014) Bian X (2014)	rat rat rat rat rat rat	MSC MSC MSC MSC MSC MSC MSC		0.84 [-0.18, 1.86] 0.28 [-0.70, 1.27] 1.20 [-0.03, 2.43] 1.20 [-0.03, 2.43] 0.47 [-0.68, 1.62]
Bian X (2014) Burst V (2013) Caldas HC (2008) Caldas HC (2008) Cantaluppi V (2012) Cantaluppi V (2012)	rat rat rat rat rat	MSC HSC BM MSC Cell product		-0.06 [-1.19, 1.07] -0.04 [-1.08, 1.01] 1.37 [-0.30, 3.04] 1.02 [-0.59, 2.62] 4.20 [2.17, 6.22]
Cavaglieri RC (2009) Cavaglieri RC (2009) Chang JW (2012) Chung BH (2013) Fang Y (2012)	rat rat rat rat rat rat	MSC MSC MSC MSC MSC MSC MSC		2.05[0.97, 3.13] 0.83[-0.08, 1.75] 0.58[-0.58, 1.73] -0.12[-1.10, 0.86] 4.04[2.33, 5.75]
Franquesa M (2012) Franquesa M (2012) Furuhashi K (2013) Furuhashi K (2013) Furuhashi K (2013) Furuhashi K (2013)	rat rat rat rat rat	BM MSC MSC MSC MSC MSC		0.93 [-0.50 , 2.37] 1.26 [-0.13 , 2.65] 0.87 [-0.34 , 2.09] 0.81 [-0.52 , 2.14] 0.00 [-1.28 , 1.28] 0.36 [-0.01 , 1.62]
Gatti S (2011) Guo J (2013) Huang ZY (2012) Huang ZY (2012) Jiao YQ (2011)	rat rat rat rat rat rat	Cell product MSC MSC MSC Organ specific		1.09 [-0.12, 2.31] 3.45 [2.65, 4.25] 5.55 [3.29, 7.81] 9.69 [6.06, 13.32] 0.28 [-0.44, 1.00]
Kunter U (2007) Lee SR (2010) Lee SR (2010) Lee SR (2010) Li W (2012) Ma H (2013)	rat rat rat rat rat	MSC MSC Organ specific MSC MSC		0.96[0.03,1.88] 0.83[-0.49,2.15] 1.19[-0.29,2.66] -0.27[-1.57,1.03] 7.20[4.80,9.60] 0.04[-1.35,143]
Ma H (2013) Ma H (2013) Ma H (2013) Ma H (2013) Ma H (2013) Ma H (2013)	rat rat rat rat rat rat	MSC MSC MSC MSC Cell product		-0.05 [-1.44 , 1.33] 0.24 [-1.56 , 2.03] 0.47 [-1.33 , 2.28] -0.02 [-1.81 , 1.77] 0.56 [-1.25 , 2.37]
Masoad HE (2012) Oliveira-Sales EB (2013) Park JH (2012) Park JH (2012) Semedo P (2009) Semedo P (2009)	rat rat rat rat rat	BM MSC MSC MSC MSC MSC		4.55 [2.89 , 6.22] -0.43 [-1.46 , 0.60] 1.06 [-0.06 , 2.18] 0.00 [-1.05 , 1.05] -0.14 [-1.19 , 0.91] 0.97 [-0.14 , 2.08]
Toegel F (2009) Toegel F (2009) Toegel F (2009) Toegel F (2009) Toegel F (2009) Toegel F (2009)	rat rat rat rat rat	MSC MSC MSC MSC MSC MSC		0.63 [-1.00 , 2.26] 1.58 [-0.20 , 3.35] 0.82 [-0.83 , 2.46] 0.46 [-1.15 , 2.08] -0.30 [-1.91 , 1.31] 7.10 [2.27 , 10.22]
van Koppen A (2012) van Koppen A (2012) van Koppen A (2012) van Koppen A (2012) van Koppen A (2012)	rat rat rat rat rat rat	MSC BM BM Cell product Cell product		1.0[5.27 , 0.93] 1.21 [0.14 , 2.27] 0.51 [-0.69 , 1.72] 0.37 [-0.83 , 1.56] 0.71 [-0.08 , 1.50] 0.37 [-0.65 , 1.40]
Villanueva S (2013) Villanueva S (2011) Yamaleyeva LM (2012) Yamaleyeva LM (2012) Yuen DA (2010) Yuen DA (2010)	rat rat rat rat rat rat	MSC MSC Organ specific Organ specific EPC EPC		7.07 [4.25 , 9.89] 2.51 [1.11 , 3.91] 3.30 [0.77 , 5.82] 2.21 [0.10 , 4.32] 0.67 [-0.41 , 1.75] 1.01 [-0.10 , 2.13]
Yuen DA (2010) Zhang L (2012) Zoja C (2012) Zoja C (2012) Eirin A (2014) Eirin A (2014)	rat rat rat rat pig	MSC MSC MSC MSC MSC MSC		0.19 [-0.86 , 1.25] 1.64 [0.51 , 2.77] -1.36 [-2.90 , 0.18] -2.43 [-4.25 , -0.60] 0.92 [-0.27 , 2.11]
Eirin A (2013) Eirin A (2012) Urbieta-Caceres VH (2012) Zhu XY (2013) Zhu XY (2013)	pig pig pig pig pig	EPC EPC MSC EPC MSC EPC		0.50 [-1.05 , 1.05] 0.71 [-0.37 , 1.79] 0.65 [-0.43 , 1.72] 0.52 [-0.63 , 1.67] 1.53 [0.04 , 3.02] 0.49 [-0.85 , 1.82]
RE Model			•	0.98 [0.73 , 1.24] p-value = 3.23e-14
			-Deterioration : Improvement->	$\tau = 1.04$ $l^2 = 72.96\%$
			-5.00 0.00 5.00 10.00	

Standardized Mean Difference

Fig. S2. Effect of cell-based treatment in CKD on glomerular filtration rate (GFR).

-

Forest plot, right side shows improvement by cell-based thereapy. Data are presented as SMDs and 95% CI.

Author and Year	Animal	Cell Type	Method	Increase in GFR	SMD & 95% CI
Cao Q (2013)	mouse	Other	Creatinine	; B	0.20 [-1.46 , 1.86]
Cao Q (2013)	mouse	Other	Creatinine	⊢∎1	0.00 [-1.66 , 1.66]
Cao Q (2013)	mouse	Other	Creatinine	⊢	0.07 [-1.59 , 1.72]
Cao Q (2013)	mouse	Other	Creatinine		1.40 [-0.38 , 3.18]
Harrison F (2013)	mouse	HSC	Creatinine	┝╌┋╋╾╌┥	0.23 [-0.72 , 1.19]
Alexandre CS (2009)	rat	HSC	Inulin	, ⊢_, ■]	0.20 [-1.00 , 1.41]
Alexandre CS (2009)	rat	HSC	Inulin		0.00[-1.20, 1.20]
Coldon HC (2011)	rat	HSC	Inulin		1.80 [0.71 , 2.89]
Caldas HC (2011)	rat	MSC BM	Creatinine		0.79[-0.78 2.36]
Caldas HC (2011)	rat	MSC	Creatinine		1.16[-0.47, 2.79]
Caldas HC (2011)	rat	BM	Creatinine	k <u>−</u>	1.51 [-0.19 , 3.21]
Caldas HC (2008)	rat	BM	Creatinine		1.07 [-0.54 , 2.68]
Caldas HC (2008)	rat	MSC	Creatinine	⊢_	0.11 [-1.41 ,1.62]
Castiglione RC (2013)	rat	BM	Creatinine	⊢ ∎ I	-0.59 [-1.49 , 0.31]
Chang JW (2012)	rat	MSC	Creatinine	<u>∶</u> ⊢ _∎ I	2.08 [0.67 , 3.48]
Chung BH (2013)	rat	MSC	Creatinine		-0.08 [-1.06 , 0.90]
Huang ZY (2012)	rat	MSC	Creatinine	÷ ⊢-∎1	2.23 [0.89 , 3.56]
Huang ZY (2012)	rat	MSC	Creatinine	; _ ⊢ − − − − − − − − − − − − − − − − −	4.38 [2.48 , 6.28]
Sido FQ (2011) Kunter II (2007)	rat	Organ specific	Creatinine	· [-==-1	
$1_{\rm V}$ SS (2013)	rat	MSC	Creatinine		_0.30 [-1.25 , 0.32] _1.82 [_2.64 _1.00]
Semedo P (2009)	rat	MSC	Inulin		1.02 [2.04, 1.00] 1.10 [-0.03, 2.22]
Shuai L (2012)	rat	FPC	Creatinine	; — ; ;⊢— —— →	2.08 [0.44 , 3.73]
Shuai L (2012)	rat	EPC	Creatinine	÷ +	3.99 [1.80 , 6.18]
Shuai L (2012)	rat	EPC	Creatinine	· · · · · · · · · · · · · · · · · · ·	4.74 [2.30 , 7.18]
Shuai L (2012)	rat	EPC	Creatinine	÷ +	3.23 [1.28 , 5.18]
Shuai L (2012)	rat	EPC	Creatinine	: ⊢∎ -	2.88 [1.03 , 4.72]
Shuai L (2012)	rat	EPC	Creatinine	÷ +	
Shuai L (2012)	rat	EPC	Creatinine	÷ +•	→ 7.43 [3.98 , 10.87]
Shuai L (2012)	rat	EPC	Creatinine	· · · · · · · · ·	4.75 [2.30 , 7.20]
Silual E (2012) Toogol E (2000)	rat	EPC	Creatinine		0.81 [0.37 1.00]
Toegel F (2009)	rat	MSC	Creatinine		0.01[-0.37, 1.99] 0.43[-1.19, 2.04]
Toegel F (2009)	rat	MSC	Creatinine		0.27[-1.34, 1.87]
Toegel F (2009)	rat	MSC	Creatinine		0.11 [-1.49 , 1.71]
Toegel F (2009)	rat	MSC	Creatinine		0.41 [-1.20 , 2.03]
Toegel F (2009)	rat	MSC	Creatinine		-0.48 [-2.09 , 1.14]
Toegel F (2009)	rat	MSC	Creatinine	■	2.89 [0.76 , 5.03]
van Koppen A (2012)	rat	BM	Inulin	: ┝──₩──┤	1.38 [0.29 , 2.47]
van Koppen A (2012)	rat	BM	Inulin	<u> </u>	1.10 [-0.16 , 2.37]
van Koppen A (2012)	rat	BM	Inulin		0.13 [-1.05 , 1.32]
van Koppen A (2012)	rat	Cell product	Inulin		
Wang S (2013)	rat	MSC	Inulin Creatinino		-4.48[-6.26, -2.70]
Yuen DA (2013)	rat	FPC			1.08 [-0.15 , 2.31]
Yuen DA (2013)	rat	Cell product	Inulin	'. ■ ' ∲ ₽ 4	1.15 [-0.06 , 2.36]
Zhang L (2012)	rat	MSC	Creatinine	; ; ; }∎	1.42 [0.32 , 2.51]
Zhou H (2009)	rat	MSC	Creatinine	⊢	-0.43 [-2.14 , 1.29]
Zhou H (2009)	rat	MSC	Creatinine	⊢ ∎┊ I	-0.46 [-2.18 , 1.26]
Chade AR (2010)	pig	EPC	MDCT	}∎1	1.25 [0.10 , 2.39]
Chade AR (2009)	pig	EPC	MDCT	F i -∎−-1	0.73 [-0.36 , 1.81]
Ebrahimi B (2012)	pig	EPC	MDCT	⊨≓∎1	0.33 [-0.72 , 1.39]
Eirin A (2014)	pig	MSC	MDCT		1.89 [0.53 , 3.25]
EIIII A (2013) Eirin Δ (2013)	pig	EPC	MDCT		0.93[-0.17, 2.03]
EINTA (2013) Eirin A (2012)	pig	EPC	MDCT		0.51[-0.50, 1.57]
Urbieta-Caceres VH (2012)	2) pig	IVISC EPC			0.91 [-0.28 2 09]
Zhu XY (2013)	_, pig pia	MSC	MDCT		2.18 [0.54 , 3.82]
Zhu XY (2013)	pig	EPC	MDCT		0.89 [-0.49 , 2.27]
PE Model	-	-	-	▲	
				▼	p–value = 7.27 e–08
				otorioration Improvement	$\tau = 1.29$
			<-L		I ⁻ = /9.1%
				1 1	
			-5.00	0.00 5.00	10.00

Standardized Mean Difference

Fig. S3. Correlations between renal functional parameters and tissue injury parameters.

Decrease in urinary protein vs. decrease in glomerulosclerosis, GS (A);

decrease in urinary protein vs. decrease in intersitial fibrosis, IF (B);

decrease in plasma creatinine vs. decrease in GS (C);

decrease in plasma creatinine vs. decrease in IF (D);

Decrease in GS (SMDs)

increase in glomerular filtration rate, GFR vs. decrease in GS (E); increase in GFR vs. decrease in IF (F).

Decrease in IF (SMDs)

Fig. S4. Subgroup analysis of cell-based treatment related factors. Plasma creatinine (A), plasma urea (B), glomerular filtration rate, GFR (C), blood pressure, BP (D), urinary protein (E), glomerulosclerosis, GS (F) and interstitial fibrosis, IF (G). Right side shows improvement by cell-based therapy. Data are presented as SMDs and 95% Cl.

А

Cell-based treatment related factors in plasma creatinine

Factor	# Study Cohorts	P-value Subgroup vs 0	SMD D Effect)	SMD & 95% CI
BM	8	0.066	⊢ ∎	0.90 [-0.06 , 1.86]
Cell product	6	0.022	⊢ -∎1	1.31 [0.19 , 2.43]
EPC	8	0.025	⊢ -∎	1.10 [0.14 , 2.05]
HSC	2	0.56	<u>⊢∔</u> ∎1	الله 0.55 [–1.28 , 2.38]
MSC	55	8.6e-09	HE	No. 1.10 [0.73 , 1.48]
Organ specific	5	0.17	i≟_∎I	0.88 [-0.37 , 2.13]
Other	4	0.64	↓I	0.35 [–1.11 , 1.81]
Multiple	29	0.002	+∎-	0.77 [0.28 , 1.26]
Single	59	6.1e-11	-	ο 1.16 [0.81 , 1.51]
Healthy	81	1.2e-10		0.97 [0.68 , 1.27]
Pretreated	5	0.011	⊢_ ∎	မီ 1.61 [0.36 , 2.86]
Sick	2	0.038		හී 2.02 [0.11 , 3.92]
Within species	63	8.9e-10		П 1.04 [0.71 , 1.38]
Xenotransplant	25	3e-04	⊦∎⊣	හි 0.99 [0.45 , 1.53]
Intra-arterial non-rena	al 8	0.096	i <mark>. ∎</mark> l	0.86 [-0.15 , 1.86]
Intraperitoneal	4	0.62	⊢_ ∎1	0.34 [-1.01 , 1.69]
Intrarenal artery	6	0.00059	⊢∎ −{	ی 2.00 [0.86 , 3.14]
Intravenous	62	1.9e-08		ਲ੍ਹੋ 0.97 [0.63 , 1.31]
Parenchymal/subcaps	ular 8	0.0064	┝╼╾┥	1.34 [0.38 , 2.30]
			<-Deterioration Improvement->	
			-500 000 500	10.00

Cell-based treatment related factors in plasma urea

Factor ;	# Study Cohorts	P–value Subgroup vs 0	SMD Effect)		SMD and 95% CI
ВМ	5	0.0065	├──■ ──┤	1	2.07 [0.58 , 3.56]
Cell product	5	0.48	⊢		0.52 [–0.93 , 1.96]
EPC	5	0.18	⊢ ∎1		0.98 [-0.45 , 2.42]
HSC	1	0.84	F	Ц Ц	0.31 [–2.78 , 3.40]
MSC	31	0.00012	H∎⊣	766	1.16 [0.57 , 1.75]
Organ specific	2	0.88	F		0.17 [-1.99 , 2.33]
Embryonic	1	0.36	F1		1.51 [–1.70 , 4.72]
Multiple	23	0.029	₽₽₽	P=0	0.70 [0.07 , 1.32]
Single	27	1.6e-06	⊦∎⊣	.098	1.42 [0.84 , 2.00]
Healthy	44	1.4e-05	H		1.04 [0.57 , 1.51]
Pretreated	4	0.061	⊢ −−+	ы Ш	1.49 [–0.07 , 3.05]
Sick	2	0.18	⊢ − − − 1	808	1.48 [–0.68 , 3.63]
Within species	32	0.00011	F∎t	P=0	1.05 [0.52 , 1.59]
Xenotransplant	18	0.0024	⊨∎⊣	.821	1.16 [0.41 , 1.91]
Intraperitoneal	3	0.28	⊢		-0.92 [-2.57 , 0.74]
Intrarenal artery	6	0.00052	├─■ →1	P≞0.	2.07 [0.90 , 3.24]
Intravenous	39	1.4e-06	HE	027	1.11[0.66 , 1.57]
Parenchymal/subcaps	ular 2	0.81	⊢		0.23 [-1.65 , 2.12]
			<-Deterioration Improvement->	-	

В

Cell-based treatment related factors in GFR

Factor	# Study Cohorts	P-value Subgroup vs 0	SMD Effect)		SMD & 95% CI
BM	7	0.17	↓ ↓ = - 1		0.73 [–0.31 , 1.77]
Cell product	3	0.36	⊢ _ ∎I		0.71 [–0.80 , 2.22]
EPC	10	9.4e-13	⊢╼┥	P	3.86 [2.80 , 4.92]
HSC	4	0.41	⊢_∎ 1	.47 6	0.56 [–0.77 , 1.89]
MSC	21	0.14	÷ È ⊞ -1	9-05	0.47 [-0.15 , 1.08]
Organ specific	1	0.37	⊢		1.17 [–1.37 , 3.70]
Other	4	0.59	⊢_ ∎1		0.40 [-1.07 , 1.88]
Multiple	8	0.17	⊨ F - ∎	P=(0.82 [-0.34 , 1.98]
Single	42	2e-05	HEH	0.58	1.18 [0.64 , 1.72]
Healthy	47	3.1e-05	H	<u>م</u>	1.04 [0.55 , 1.53]
Pretreated	2	0.0099	⊢ I	0.19	3.15 [0.76 , 5.54]
Sick	1	0.93	⊢	00	0.13 [–3.05 , 3.31]
Within species	45	1.6e-05	HEH	РIJ	1.15 [0.63 , 1.67]
Xenotransplant	5	0.25	⊢	.714	0.86 [-0.60 , 2.32]
Intra-arterial non-rena	al 9	0.54	⊢∎1		0.37 [-0.81 , 1.54]
Intrarenal artery	7	0.34	<u>⊢</u>	РЩ U.	0.62 [-0.66 , 1.91]
Intravenous	28	8e-06	⊢∎⊣	317	1.51 [0.85 , 2.18]
Parenchymal/subcaps	ular 6	0.17	⊢ _ ∎I		1.00 [-0.43 , 2.43]
			<-Deterioration Improvement->		10.00

C

Cell-based treatment related factors in BP

Factor #	[♯] Study Cohorts	P–value	S	MD		SMD & 95% CI
	(5	Subgroup vs () Effect)	:		
BM	4	0.00032		┝╼═╌┤		1.55 [0.70 , 2.39]
Cell product	3	0.09		: !∎ 1		0.76 [–0.12 , 1.65]
EPC	3	0.19	H	 -1	P=0.	0.62 [–0.31 , 1.56]
MSC	8	0.001		⊦∎⊣	564	0.97 [0.39 , 1.54]
Organ specific	1	0.67	H	 1		0.39 [–1.36 , 2.13]
Multiple	5	0.007		┝╼═╾┤	P	0.99 [0.27 , 1.71]
Single	14	1.7e-05		H	.937	0.95 [0.52 , 1.39]
Healthy	18	4.2e-07		ł	PL	0.98 [0.60 , 1.36]
Sick	1	0.45	F).701	0.64 [-1.02 , 2.31]
Within species	16	1.9e-05		H ann H	P L	0.88 [0.48 , 1.28]
Xenotransplant	3	0.0023		┝╼═╾┥	1.328	1.36 [0.48 , 2.23]
Intra-arterial non-rena	al 2	0.55	F			0.31 [-0.71 , 1.34]
Intrarenal artery	4	0.052		┝╌═╾┤	P=0.	0.72 [0.00 , 1.44]
Intravenous	11	2.2e-05		H∎H	143	0.97 [0.52 , 1.42]
Parenchymal/subcapsu	ılar 2	0.00019		┝╌┳╌┥		1.92 [0.91 , 2.93]
			<-Deterioration	Improven	nent->	
			-5.00 0.	00 5	5.00 10.0	00

D

Cell-based treatment related factors in urinary protein

Factor ;	# Study Cohorts	P–value Subgroup vs 0	SMD D Effect)		SMD & 95% CI
BM	13	0.0041	⊦_∎_ -		1.56 [0.49 , 2.62]
Cell product	8	0.17	⊢− −1		0.93 [-0.41 , 2.28]
EPC	16	0.0014	⊢■→		1.58 [0.61 , 2.55]
HSC	2	0.33	FI	0 = 0.	1.29 [–1.29 , 3.87]
MSC	51	2.4e-08	⊦∎⊦	66	1.49 [0.97 , 2.02]
Organ specific	7	0.11	<u>;</u> <u></u> ∎		1.21 [-0.27 , 2.69]
Other	4	0.23	⊢		1.18 [-0.76 , 3.13]
Multiple	34	0.00085	⊦∎⊣	P=0	1.06 [0.44 , 1.68]
Single	67	1e-12	HE	.169	1.59 [1.15 , 2.03]
Healthy	91	5.4e-12			1.31 [0.94 , 1.69]
Pretreated	6	0.0053	⊢ − − −1	ы В	2.10 [0.62 , 3.57]
Sick	4	0.0034	├─── ─┤	213	2.72 [0.90 , 4.54]
Within species	75	4.8e-13	H	P=0	1.52 [1.11 , 1.93]
Xenotransplant	26	0.0032	⊦∎⊣	.314	1.09 [0.37 , 1.82]
Intra-arterial non-rena	al 3	0.012	⊢ I		2.91 [0.64 , 5.18]
Intraperitoneal	2	0.43	⊢		1.11 [-1.68 , 3.89]
Intrarenal artery	8	0.001	⊢− −1	Ь.	2.07 [0.84 , 3.30]
Intravenous	74	6.8e-09	H a t	125	1.24 [0.82 , 1.66]
Parenchymal/subcaps	ular 14	0.00055	┝╼═╾┥		1.74 [0.75 , 2.73]
			<-Deterioration Improvement->]	
			-500 000 500	10.00	

Ε

Cell-based treatment related factors in GS

Factor #	# Study Cohorts (٤	P-value Subgroup vs 0	Effect)	SMD			SMD and 95% CI
BM	7	0.013		⊦∎⊣			0.67 [0.14 , 1.20]
Cell product	4	0.0056		┝╼┥			0.80 [0.23 , 1.37]
EPC	8	0.0033		⊦∎⊦			0.66 [0.22 , 1.10]
HSC	2	0.038		}_∎ _		Р Щ	1.00 [0.06 , 1.93]
MSC	23	2.6e-11				0.86	0.92 [0.65 , 1.18]
Organ specific	4	0.036		; } 		ω	0.74 [0.05 , 1.43]
Other	4	0.58		⊢∎−−1			0.25 [-0.61 , 1.10]
Embryonic	1	0.32		┝╧╼──┤			0.63 [-0.60 , 1.86]
Multiple	17	6e-06				Рщ	0.67 [0.38 , 0.96]
Single	36	2.8e-15				.364	0.84 [0.63 , 1.04]
Healthy	49	1.1e-18				P "	0.78 [0.61 , 0.96]
Pretreated	2	0.046		┝╼╌┤		±0.70	1.02 [0.02 , 2.02]
Sick	2	0.35		l <u>∔</u> ∎l		ັດ	0.45 [-0.49 , 1.39]
Within species	42	3.5e-16				РщO	0.80 [0.60 , 0.99]
Xenotransplant	11	7.5e-05		⊦ ∎-1		.747	0.73 [0.37 , 1.09]
Intra-arterial non-rena	al 1	0.18		 _			0.75 [-0.36 , 1.86]
Intrarenal artery	4	0.05		⊦∎-1		P=0	0.55 [0.00 , 1.10]
Intravenous	40	2.4e-15				85	0.80 [0.60 , 1.00]
Parenchymal/subcaps	ular 8	0.00052		⊦∎⊣			0.85 [0.37 , 1.32]
			<-Deteriorat	ion Improv	vement->]	
			_5.00	0.00	5 00	10.00	

F

Cell-based treatment related factors in IF

Factor #	# Study Cohorts	P-value	SMD	SMD & 95% CI
	(5	Subgroup vs 0) Effect)	
BM	5	0.56	⊢ ∎ ⊣	0.21 [-0.49 , 0.91]
Cell product	4	0.065	⊨∎-1	0.66 [-0.04 , 1.37]
EPC	8	7.3e–05	⊦∎⊣	1.11 [0.56 , 1.67]
MSC	16	0.0017	H	0.61 [0.23 , 1.00]
Organ specific	2	0.042	<u>}</u> ∎	1.68 [0.06 , 3.30]
Multiple	12	0.0026	ŀ∎t	ច្ច 0.68 [0.24 , 1.13]
Single	23	2.9e-05	Henry Contraction of the second se	0.73 [0.39 , 1.08]
Healthy	31	2.4e-06		0.67 [0.39 , 0.94]
Pretreated	3	0.0022	┝╼╾┥	L 1.54 [0.55 , 2.52]
Sick	1	0.91	⊢	۵ –0.09 [–1.61 , 1.42]
Within species	22	0.00019		ד 0.64 [0.30 , 0.97]
Xenotransplant	13	0.00026	H∎H	0.85 [0.39 , 1.30]
Intra-arterial non-rena	ıl 1	0.014	┝──■──┤	1.85[0.37,3.33]
Intrarenal artery	4	0.7		р U 0.13 [–0.53 , 0.79]
Intravenous	25	5.7e-08		0.83 [0.53 , 1.13]
Parenchymal/subcapsu	ılar 5	0.29	HEA	0.35 [–0.31 , 1.01]
			<-Deterioration Improvement->	
			-5.00 0.00 5.00	10.00

Cell type

Regime

Origin Condition

Route

Fig. S5. Subgroup analysis of model related factors. Plasma creatinine (A), plasma urea (B), glomerular filtration rate, GFR (C), blood pressure, BP (D), urinary protein (E), glomerulosclerosis, GS (F) and interstitial fibrosis, IF (G). Right side shows improvement by cell-based therapy. Data are presented as SMDs and 95% Cl.

1	
F	4
	•

Model related factors in plasma creatinine

	Factor	# Study Cohorts	P–value Subaroup vs 0 l	SI Effect)	MD		SMD & 95% CI
		(-	<u></u>		:		
ecies	mouse	23	0.00064		┝╋┤	<u>م</u>	0.91 [0.39 , 1.44]
	pig	7	0.15	H	: 	= 0.70	0.67 [-0.24 , 1.58]
S S	rat	65	5.1e-11			ū	1.05 [0.74 , 1.37]
<u>_</u>	?	6	8.5e-05		┝╌┳╌┤	P	2.29 [1.15 , 3.43]
apue	F	23	0.0035		⊢∎ ⊣	=0.00	0.80 [0.26 , 1.34]
Ğ	М	59	1.1e-08			67	1.00 [0.66 , 1.35]
	Diabetes	6	0.0017		├──■──┤		1.71 [0.64 , 2.78]
	Genetic non-diabetes	s 7	0.038		<u>}</u>		1.06 [0.06 , 2.07]
	Hypertension	1	0.74	⊢		- g	-0.43 [-2.94 , 2.08]
Moo	Ischemia reperfusion	17	0.0024		┝╼╋╌┥	0.69	1.05 [0.37 , 1.72]
	Subtotal nephrectomy	y 31	2.1e-05		H∎H	4	1.02 [0.55 , 1.50]
	Toxic	26	0.00092		⊦∎⊣		0.92 [0.37 , 1.46]
bu	Preventive	52	1.3e-06		H a H	Рщ	0.92 [0.55 , 1.30]
Ē	Rescue	36	9.6e-08		H ₩ H	.406	1.16 [0.74 , 1.59]
				<-Deterioration	Improvement-	>	
				-5.00 0.	00 5.00	0 10.00	

В

Model related factors in plasma urea

	Factor	# Study Cohorts	P-value	SM	ID		SMD and 95% CI
		(5	Subgroup vs 0 E	Effect)			
cies	mouse	16	0.1			P=0.1	0.61 [–0.13 , 1.35]
Spe	rat	34	6.2e-07		H∎H	27	1.31 [0.80 , 1.83]
<u>ـ</u>	?	5	0.0068		┝──■──┤		1.93 [0.53 , 3.33]
iende	F	15	0.095		È-∎-1	P=0.26	0.66 [-0.12 , 1.43]
G	Μ	30	3.5e-05		H∎H	ы Ш	1.17 [0.62 , 1.73]
	Diabetes	4	0.00013		⊢ I		2.99 [1.46 , 4.53]
<u>–</u>	Genetic non-diabetes	s 5	0.1	ł			1.11 [-0.22 , 2.43]
Mod	Ischemia reperfusion	6	0.99	μ	: ₽ :	° <u>⊣</u> 0.0	0.01 [-1.16 , 1.18]
	Subtotal nephrectomy	/ 19	0.0017		⊢-⊞- 1	57	1.06 [0.40 , 1.73]
	Toxic	16	0.0049		⊢-⊞- -1		1.08 [0.33 , 1.83]
ing	Preventive	27	1e-04		⊦∎⊣	P=0	1.20 [0.59 , 1.80]
Timi	Rescue	23	0.0023		⊦₩-	.613	0.97 [0.35 , 1.60]
				<-Deterioration	Improvement->		
				-5.00 0.	00 5.00	10.00	1

С

Model related factors in GFR

	Factor	# Study Cohorts	P-value	S	MD		SMD & 95% CI
		(5	Subgroup vs 0 E	Effect)	·		
ies	mouse	5	0.6	H	a 1		0.36 [–0.99 , 1.72]
Spec	pig	10	0.033		: } ∎- - :)=0.5	0.99 [0.08 , 1.90]
	rat	45	7.4e-07		H an t	6	1.15 [0.69 , 1.60]
ler	?	2	0.0031		├	Ţ	3.20 [1.08 , 5.32]
3enc	F	16	5.3e-09		┝╼╋╾┥	3e	2.37 [1.58 , 3.17]
0	Μ	32	0.12		: : :	05	0.40 [-0.11 , 0.91]
	Diabetes	6	0.1	├ ─ ■	: 	-	-0.98 [-2.15 , 0.19]
-	Genetic non-diabete	6 1	0.87			ן די	0.23 [-2.47 , 2.93]
∕lod€	Ischemia reperfusion	7	0.31	F	 -1	0.00	0.58 [-0.55 , 1.72]
2	Subtotal nephrectom	/ 27	2.2e-09		⊢⊞ -1		1.78 [1.20 , 2.36]
	Toxic	9	0.061		; ∲∎1 ;		0.92 [-0.04 , 1.89]
bu	Preventive	22	0.018		┝╼╋╾┥	P=0	0.89 [0.15 , 1.63]
Timi	Rescue	28	0.00012		┝╼╋╾┥	.426	1.29 [0.63 , 1.95]
-				<-Deterioration	Improvement->		
				-5.00 0.	00 5.00	10.00	

D

Model related factors in BP

	Factor	# Study Cohorts	P-value	SMD		SMD & 95% CI
		(5	Subgroup vs 0 E	Effect)		
cies	pig	12	0.76		P=2e	0.06 [-0.30 , 0.41]
Spe	rat	19	1.4e-10		04	0.93 [0.65 , 1.21]
der	F	3	0.053		PL	1.03 [-0.02 , 2.07]
Gen	Μ	16	2.2e-06	H a t).894	0.95 [0.56 , 1.35]
	Diabetes	1	3.3e-05	⊢ ∎−-		3.03 [1.60 , 4.46]
e	Hypertension	1	0.083	k <u>−</u> ∎−−1	۳	1.11 [-0.15 , 2.37]
Mod	Ischemia reperfusion	1	0.52	⊢ I	-0.016	0.43 [-0.88 , 1.73]
	Subtotal nephrectom	y 15	4.3e-08			0.94 [0.60 , 1.27]
	Toxic	1	0.89	⊢	-	-0.07 [–1.15 , 1.01]
ing	Preventive	8	1.8e-05	⊢∎-I	РЩ	1.24 [0.68 , 1.81]
Tin	Rescue	11	0.0011	H∎H	.204	0.77 [0.31 , 1.23]
				<-Deterioration Improvement->		
				-5.00 0.00 5.00	10.00)

Disease Models & Mechanisms | Supplementary Material

Model related factors in urinary protein

Factor	# Study Cohorts	P-value	SI	MD		SMD & 95% CI
	(5	Subgroup vs 0 E	Effect)	:		
mouse	23	3.3e-10		⊦∎⊣		2.33 [1.60 , 3.06]
pig	5	0.76	⊢	: := :	l 0.0	0.21 [-1.17 , 1.60]
rat	78	1.5e-09			05	1.14 [0.77 , 1.51]
?	7	3.5e-07		┝─┲─┤	Γ	3.57 [2.20 , 4.95]
F	30	0.0024		⊢∎⊣	<u>ال</u> .0	0.93 [0.33 , 1.53]
Μ	64	5.4e-11		H∎H	3	1.41[0.99 , 1.83]
Diabetes	18	1.3e-06		┝╼╉╌┥		2.04 [1.21 , 2.86]
Genetic non-diabete	s 6	0.0011		├──■ ──┤		2.50 [1.00 , 4.00]
Hypertension	1	0.88	ŀ	 1	P	0.25 [-3.02 , 3.51]
Ischemia reperfusion	4	0.0053		├── ∎───┤	0.108	2.64 [0.78 , 4.50]
Subtotal nephrectom	у 40	4.6e-06		⊦∎⊣		1.29[0.74 , 1.83]
Toxic	32	0.0042		┝╼╋╾┥		0.91 [0.29 , 1.54]
Preventive	45	5.9e-07		⊦∎⊣	P=0	1.41 [0.86 , 1.97]
Rescue	56	5.4e-09		H ≣ -1	976	1.43[0.95,1.90]
			<-Deterioration	Improvement->		
			-5.00 0.0	00 5.00	10.00)

Disease Models & Mechanisms | Supplementary Material

Species

Gender

Model

Timing

F

Model related factors in GS

	Factor	# Study Cohorts	P-value	S	MD		SMD & 95% CI
		(5	Subgroup vs 0 E	Effect)	·		
ies	mouse	18	6.4e-05			-	0.60 [0.30 , 0.89]
Spec	pig	4	0.015		┝╼┥		0.67 [0.13 , 1.21]
	rat	35	1.4e-16			86	0.87 [0.67 , 1.08]
er	?	1	0.79	F	<u>-</u> 1		0.12 [-0.76 , 1.00]
àend	F	16	1.1e-09		HEH	0.1	0.99 [0.67 , 1.31]
0	Μ	36	2.7e-12			ω	0.73 [0.53 , 0.93]
	Diabetes	3	2.1e-05		┝━┤		1.23 [0.66 , 1.79]
-	Genetic non-diabetes	s 6	0.042		⊧∎-I	P	0.49 [0.02 , 0.96]
Jod€	Ischemia reperfusion	4	3e-04		┝╼┥	0.206	1.21 [0.55 , 1.87]
2	Subtotal nephrectomy	/ 29	1.7e–11			0	0.76 [0.54 , 0.98]
	Toxic	11	0.0061		┝╋┥		0.63 [0.18 , 1.09]
бu	Preventive	26	8.7e-09			PH	0.74 [0.49 , 1.00]
Limir	Rescue	27	2.4e-12			.693	0.81 [0.58 , 1.04]
				<-Deterioration	Improvement->	> 	
				-5.00 0.	00 5.00) 10.00	

Disease Models & Mechanisms | Supplementary Material

G

	Factor	# Study Cohorts	P-value	SMD		SMD & 95% CI
		(5	Subgroup vs 0 E	Effect)		
S	mouse	6	0.003	┝╼┤		0.97 [0.33 , 1.61]
ecie	pig	9	0.0011	⊦∎⊣	ച്ച.	0.83 [0.33 , 1.32]
Sp	rat	29	6.3e-06		07	0.65 [0.37 , 0.93]
<u>ب</u>	?	1	0.015	⊢		2.29 [0.44 , 4.13]
ende	F	2	0.084	⊢_ −−1	² = 0.10	1.00 [-0.14 , 2.14]
Ğ	Μ	32	2.3e-06		96	0.65 [0.38 , 0.92]
	Diabetes	1	0.23	⊢		0.86 [-0.53 , 2.25]
lel	Ischemia reperfusion	6	0.00015	⊢∎⊣	PH	1.42 [0.69 , 2.15]
Moe	Subtotal nephrectomy	/ 20	0.00045		.229	0.59 [0.26 , 0.92]
	Toxic	8	0.046	-- 1		0.58 [0.01 , 1.16]
bu	Preventive	17	0.002	HEH	P=0	0.60 [0.22 , 0.98]
Timi	Rescue	18	2.1e-05	H≣t	.423	0.82 [0.44 , 1.20]
				<-Deterioration Improvement->		
				-5.00 0.00 5.00	10.00	

Fig. S6. Quality assessment score.

Fig. S7. Funnel plots for plasma creatinine (A), plasma urea (B), GFR (C), BP (D), urinary protein (E), GS (F) and IF (G).

Fig. S8. Imputed missing studies (open symbols) for plasma creatinine (A), urinary protein (B) and GFR (C).

