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Supplementary Methods 

Two-stage pattern pruning 

A huge number of frequent patterns are, in general, generated by frequent pattern mining methods, but 

many of these patterns may be indiscriminative or uninformative regarding the given class labels, i.e., 

recurrence vs. non-recurrence 
1
. Examining the entire frequent patterns may not be time- and space- 

effective. Hence, it is instructive to eliminate the uninformative patterns prior to constructing 

classification model while retaining the informative ones, called discriminative patterns. To attain the 

discriminative patterns, we adopt a two-stage pruning method. In the first stage, the frequencies of the 

patterns between the entire recurrence and non-recurrence subjects are compared via log-odds ratio test. 

Odds ratio measures how strongly the frequency of a pattern is associated with cancer recurrence. 

Formally, odds ratio is the ratio of the odds of a pattern present in one group to the odds of its presence in 

another group. The number of the occurrence of a pattern in the entire recurrence subjects and non-

recurrence subjects can be written in the form of a contingency table 

 Pattern Exist Pattern not exist 

Recurrence n11 n10 

Non-recurrence n01 n00 

 

where n11 and n01 denote the number pixels matching the pattern in the recurrence and non-recurrence 

subjects, respectively. n10 and n00 represent the number of pixels which do not own the pattern in the 

recurrence and non-recurrence subjects, respectively. Then log odds ratio can be computed as  
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Computing the log odds ratio, only the significant patterns (p-value<0.01) proceed to the next stage. In 

the second stage, we compare the frequencies of a pattern among the subjects in recurrence and non-

recurrence classes by applying Wilcoxon rank-sum test. It tests if the frequencies of a pattern among the 

subjects in one group (e.g., recurrence) are larger than those in the other group (e.g., non-recurrence). 

Ordering the whole subjects by the frequencies of a pattern, a statistic U can be computed as counting the 

number of subjects in one group which are ranked higher than each subject in the other group. The 

patterns, of which frequencies among the subjects in one group are significantly larger (p-value<0.01) 

than those in the other, are designated as discriminative patterns. The most discriminative top m patterns 

are reported (We set m=100).  

Search for the most similar patients 

In order to predict the outcome of an individual patient (query), we search for the most similar recurrence 

case and non-recurrence control to the query patient from the training dataset and use them to evaluate the 

query patient. To find the most similar patients, we compute the similarity between the query patient and 

each of the entire patients as the inverse of Euclidean distance between clinical variables – age at surgery, 

Gleason sum, and pathologic stages. Age and Gleason sum are continuous variables. Pathologic stages are 

considered as discrete variables; for pTNM staging, T2a = 0, T2b = 1, T3a = 2, and T3b = 3; for surgical 

margin status, extra capsular extension, seminal vesicle involvement, and lymph node involvement, no (or 

negative) = 0 and yes (or positive) = 1. Prior to computing the similarities, each variable is normalized so 

that the entire values of the variable range from 0 to 1.  

Independence of IR score 

The association between IR score and cancer recurrence in consideration of the conventional clinical 

variables is examined by adopting a logistic regression model. We fit a logistic regression model using IR 

score and other clinical variables (age at surgery, Gleason grade, pathologic stage, and PSA level) as 

covariates:  



4 
 

   
      

      
                                     

where Y is a binary outcome indicating recurrence (1) and non-recurrence (0) and         are 

parameters. IR, AGE, GRADE, STAGE, and PSA denote IR score, age at surgery, Gleason grade, 

pathologic stage, and PSA level, respectively. Here,         estimate conditional odds ratios for the 

corresponding variables. A conditional odds ratio is odds ratio between a variable and outcome Y as the 

other variables are held fixed. IR score is added as either continuous or categorical variables. As a 

continuous variable, the log odds ratio for IR score is estimated as the increase (or change) in the log odds 

of being recurrence for a one-unit increase in IR score as fixing the other covariates:  

   
                         

                         
    

                         

                         
 

where    is an arbitrary value         and    is    increased by one-unit in IR score. As a 

categorical variable, patients are assigned to quartiles (1-4) by IR score; the higher IR score, the larger 

quartile is assigned. Fixing the other covariates, the odds ratio is computed for each of the three quartiles 

(2-4) compared to the lowest quartile (1); for example, the odds ratio for the highest quartile is estimated 

as the ratio of the odds of being recurrence for that quartile to the odds of being recurrence for the lowest 

quartile:  
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Supplementary Figures 

Figure S1. 

 

Figure S1. IR feature map. Metrics associated with the IR stroma features are shown. Each row 

represents an IR feature. Each column denotes a metric. 34 metrics are ordered as appeared in Table S2. 

Bins are marked with different colors. 
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Supplementary Tables 

Table S1. Odds ratios for cancer recurrence by quartiles of IR score. 

Quartile 1 (low) 2 3 4 (high) P trend 

IR 

OR (95% CI) 

1 

6.485 

(1.315-46.838) 

10.863 

(2.022-86.781) 

21.307 

(4.150-168.446) 

0.020 

CAPRA-S 

OR (95% CI) 

1 

 

3.248 

(0.758-15.041) 

1.260 

(0.282-5.318) 

6.132 

(1.116-40.342) 

0.270 

KATTAN 

OR (95% CI) 

1 

0.811 

(0.198-3.100) 

1.509 

(0.350-6.514) 

1.928 

(0.379-10.186) 

0.111 

OR and CI denote odds ratio and confidence interval, respectively. 

 

Table S2. Description of metrics. 

Metric Type Numerator 

Position  

or Region (cm
-1

) 

Denominator 

Position  

or Region (cm
-1

) 

IR Feature 

(Yes/No) 

Assignment 

Absorbance Ratio 3088 1400 Yes O-H stretching 
2
, 

N-H stretching, 

Protein 
3
 

 

Absorbance Ratio 3088 1450 Yes 

Absorbance Ratio 3288 1400 Yes 

Absorbance Ratio 3288 1544 Yes 

Absorbance Ratio 3288 1652 Yes 

Peak-to-Area Ratio 3288 1504–1586 Yes 

Area-to-Peak Ratio 3030–3600 1544 Yes 

Area-to-Area Ratio 3030–3600 1592–1738 Yes 
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Center of Gravity 3200–3400  Yes 

Center of Gravity 3030–3600  Yes 

Absorbance Ratio 1042 1450 Yes C-O stretching, 

Oligosaccharide 
4
 Absorbance Ratio 1042 1544 Yes 

Absorbance Ratio 1042 1652 Yes 

Area-to-Peak Ratio 992–1110 1544 Yes 

Center of Gravity 998–1052  Yes 

Center of Gravity 998–1132  Yes 

Absorbance Ratio 966 1544 Yes C-O stretching,  

Nucleic acid 
5
 Peak-to-Area Ratio 966 1504–1586 Yes 

Absorbance Ratio 1080 1450 Yes Symmetry phosphate stretching, 

Nucleic acid 
6
, Glycogen 

7
 Absorbance Ratio 1080 1652 Yes 

Peak-to-Area Ratio 1170 1504–1586 Yes Nucleic acid 
8
 

Area-to-Peak Ratio 1150–1176 1544 Yes 

Absorbance Ratio 1336 1080 Yes CH2 wagging 
9
, 

Collagen 
10

 Absorbance Ratio 1334 1652 Yes 

Peak-to-Area Ratio 1336 1504–1586 Yes 

Area-to-Peak Ratio 1326–1348 1544 Yes 

Absorbance Ratio 1388 1652 Yes COO- symmetric stretching, 

fatty acids and amino acids 
11

 Peak-to-Area Ratio 1390 1504–1586 Yes 

Center of Gravity 1366–1426  Yes 

Absorbance Ratio 1462 1400 Yes CH2 scissoring 
12

, CH2 bending, 

amino acids 
13

 Absorbance Ratio 1452 1652 Yes 

Area-to-Peak Ratio 1424–1474 1544 Yes 

Peak-to-Area Ratio 1564 1504–1586 Yes Amide II 
14
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Peak-to-Area Ratio 1652 1504–1586 Yes Amide I 
15

 

Absorbance Ratio 3430 1080 No O-H stretching 
2
, 

N-H stretching, 

Protein 
3
 

 

Absorbance Ratio 3288 1080 No 

Absorbance Ratio 3208 1080 No 

Absorbance Ratio 3288 1400 No 

Absorbance Ratio 3088 1544 No 

Absorbance Ratio 3088 1652 No 

Peak-to-Area Ratio 3088 1504–1586 No 

Area-to-Peak Ratio 3030–3140 1544 No 

Absorbance Ratio 1080 1400 No Symmetry phosphate stretching, 

Nucleic acid 
6
, Glycogen 

7
 Absorbance Ratio 1080 1544 No 

Absorbance Ratio 936 1544 No  

Peak-to-Area Ratio 936 1544–1586 No  

Absorbance Ratio 1170 1080 No Nucleic acid 
8
 

Absorbance Ratio 1336 1544 No CH2 wagging 
9
, 

Collagen 
10

 Area-to-Area Ratio 1326–1348 1592–1738 No 

Absorbance Ratio 1388 1080 No COO- symmetric stretching, 

fatty acids and amino acids 
11

 Absorbance Ratio 1390 1544 No 

Area-to-Peak Ratio 1372–1422 1544 No 

Area-to-Area Ratio 1372–1422 1592–1738 No 

Absorbance Ratio 1462 1450 No Methylene deformation 
16

, CH2 

scissoring 
12

, CH2 bending, 

amino acids 
13

 

Absorbance Ratio 1462 1544 No 

Absorbance Ratio 1452 1080 No 

Absorbance Ratio 1450 1544 No 

Peak-to-Area Ratio 1450 1504–1586 No 
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Peak-to-Area Ratio 1462 1504–1586 No 

Area-to-Area Ratio 1424–1474 1592–1738 No 

Center of Gravity 1426–1470  No 

Absorbance Ratio 1564 1544 No Amide II 
14

 
17

 

Absorbance Ratio 1562 1652 No 

Absorbance Ratio 1536 1652 No 

Peak-to-Area Ratio 1536 1592–1738 No 

Peak-to-Area Ratio 1544 1592–1738 No 

Area-to-Peak Ratio 1504–1586 1544 No 

Center of Gravity 1504–1584  No 

Absorbance Ratio 1656  No Amide I 
15 18 14

 

Absorbance Ratio 1648  No 

Absorbance Ratio 1632  No 

Absorbance Ratio 1630  No 

Area-to-Peak Ratio 1592–1738 1544 No 

Center of Gravity 1592–1738  No 

Absorbance Ratio 1720 1652 No  

Absorbance Ratio 1718 1544 No  

Absorbance Ratio 1402 1080 No Asymmetric CH3 bending of 

methyl groups of protein
19

, C-N 

stretching, N-H deformation, C-

H deformation
20

 

Absorbance Ratio 1402 1652 No 

Absorbance Ratio 1400 1544 No COO- group, fatty acids and 

amino acids 
16

. Peak-to-Area Ratio 1400 1504–1586 No 

Absorbance Ratio 1312 1080 No Amide III band components of 
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Absorbance Ratio 1312 1544 No proteins
19

 

Peak-to-Area Ratio 1312 1504–1586 No 

Area-to-Peak Ratio 1302–1326 1544 No 

Area-to-Area Ratio 1302–1326 1592–1738 No 

Absorbance Ratio 1280 1080 No Amide III
21

, collagen
6
 

Absorbance Ratio 1280 1544 No 

Peak-to-Area Ratio 1280 1504–1586 No 

Absorbance Ratio 1236 1544 No Amide III, asymmetric 

phosphodiester stretching, 

mainly from nucleic acids
18

 

Peak-to-Area Ratio 1236 1504–1586 No 

Area-to-Peak Ratio 1206–1290 1544 No Amide III
7
 
21

, collagen
22

 
8
 

Area-to-Area Ratio 1206–1290 1592–1586 No 

Center of Gravity 1194–1218  No Amide III
21

, collagen
22

 

Center of Gravity 1194–1286  No 

Absorbance Ratio 1160 1544 No C-O stretching
23

 

Absorbance Ratio 1120 1080 No ?(1000–1150 cm
-1

 nucleic 

acids
21

) 

Absorbance Ratio 1062 1544 No Ribose/deoxyribose C-O 

stretching
24

 Center of Gravity 1050–1100  No 

Metric definitions and assignments of the numerator bands are provided. IR Feature column shows 34 

metrics which were selected and used to generated IR stromal features.  
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