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Supplemental Figure 1 Genotyping and gene expression analysis of the tic56-3 
mutant (A) Border sequence of the tic56-3 T-DNA insertion toward the 3’ end of the 
TIC56 gene. (B) Genotype analysis by PCR. The schematic representation of the 
TIC56 gene structure shows the position of the tic56-3 T-DNA insertion and the 
binding sites of primers used for PCR (below). Black boxes, exons; lines, introns; 
grey boxes, untranslated regions. (C) RT-PCR analysis of TIC56 expression in 
wild-type and tic56-3. The schematic representation of the TIC56 transcript shows 
the position of the tic56-3 T-DNA insertion and the binding sites of primers used for 
RT-PCR. The data presented confirms previous data on the location of the T-DNA 
insertion in tic56-3 (Kikuchi et al., 2013) and shows the occurrence of a TIC56 tran-
script that doesn´t encode the full-length protein. We tried left- and right-border 
primer as well as a TAIL-PCR approach with TIC56-specific primer to obtain the 
sequence of the other T-DNA junction but failed. This could be due to a T-DNA trun-
cation or rearrangement at the right border frequently occurring in T-DNA insertion 
mutants.



Supplemental Figure 2
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Supplemental Figure 2 Phenotypes 
of the mutants ppi2 and tic56-1 compa-
red to wild-type. Observation of ppi2, 
tic56-1 and wild-type (wt) seedlings 
grown for 2.5, 5 and 8 weeks under 
short day conditions on MS agar sup-
plemented with 0.8% sucrose. (Scale 
bars: 2 mm).
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Supplemental Figure 3 Comparison of experimental and theoretical processing sites and 
resulting N-terminal amino acids. (A) Sequence logos were created using the sequences of 
all proteins of all three plant lines without duplicates, whose start position matched with the 
prediction (upper panel) or was shifted by one amino acid (lower panel). For these, ten 
amino acids upstream and downstream of the experimentally observed starting position 
were included. (B) All nucleus-encoded plastid proteins determined as correct processed 
mature proteins of the whole TAILS experiment were combined and the frequency of occur-
rence of a certain amino acid at the N-terminus was determined. The experimental frequen-
cy is shown in black, and compared to the theoretical frequency with the same set of 
proteins, shown in grey.
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Supplemental Figure 4

Supplemental Figure 4 Plastid proteins in/of tic56-1 are protected during thermolysin treatment. A 
crude plastid pellet of wild-type and tic56-1 was treated (+) or not (-) with thermolysin followed by 
proteome analysis. (A) The vertical bars/columns represent the protein length of nucleus-encoded plastid 
proteins (top) or non-plastid proteins (bottom) identi�ed by mass spectrometry. Here, the protein length 
from N- to C-terminus is displayed in percent. The PSM density illustrates the distribution and amount of 
matched peptides within the proteins. The very low PSM density in the N-terminal part of plastid proteins 
can be interpreted as a sign of transit peptide removal. The high PSM density distributed over the other 
parts of plastid proteins, even in the thermolysin treated samples, hints to protection of the proteins 
against proteolysis. In (B) and (C) the distribution of the minimal starting positions of the proteins is 
shown. In all three samples the bulk of plastid proteins appear to lack their N-terminal targeting sequen-
ces (B). In contrast to the (contaminant) non-plastid proteins the distribution of the starting ranges is 
unchanged for plastid proteins by thermolysin treatment, indicating protection of plastid proteins 
against proteolysis as well as e�cacy of the enzyme treatment. 



Supplemental Methods 

Genotyping and gene expression analysis of the tic56-3 mutant.  

RNA or genomic DNA was extracted from seedlings or leaves frozen in liquid nitrogen 

according to the protocols by Onate-Sanchez and Vicente-Carbajosa (2008) and Edwards et 

al. (1991). For RNA extraction plants were grown on half-strength Murashige and Skoog 

(MS) agar supplemented with 0.8% (w/v) sucrose for 28 days under short-day conditions. For 

first strand cDNA synthesis 1 µg of RNA, the RevertAid H Minus First Strand cDNA 

Synthesis Kit (Thermo Scientific) and oligo(dT)18 primer was used. Sequences of primers 

used for genotyping and RT-PCR: 579LP 5’ ACTGGAATCTGATCACATGCC 3’, 

56rev1 5’ CTTCAGGTCCTCTTCTCTCAGC 3’, 56rev2 5’ CTATGGATCCCCATCTTTTT

TGGAGTTGC 3’, 579RP 5’ TATCGCCACTTAACATTTCGG 3’, 56for 5’ GTATAAGATC

TCAACAATGTCGTCGATGAACTTCAATCC 3’ and Tag5 5’ CTACAAATTGCCTTTTC

TTATCGAC 3’. 

 

Thermolysin treatment and proteome analysis of tic56-1 plastids 

Protoplasts from 5 weeks old wild-type and tic56-1 plants grown on ½ MS-medium 

containing 3% (w/v) sucrose were isolated as described (Material and Methods: Transient 

expression of eGFP fusion proteins in Arabidopsis protoplasts). The breakage of protoplasts 

was done according to (Fitzpatrick and Keegstra, 2001) omitting BSA in the breakage buffer. 

Plastids were enriched by centrifugation at 2.000xg for 5 min. The crude plastid samples were 

washed with HS buffer (50 mM Hepes KOH pH 8.0, 330 mM sorbitol). For the protease 

protection assay 200 µg protein of each wild-type sample and 27 µg protein of tic56-1 sample 

was used. The crude plastid samples were treated with 100 µg/ml thermolysin in a final 

volume of 200 µl HS buffer for 30 min at 4°C according to (Froehlich, 2011). As a control a 

wild-type sample was treated in parallel without protease added. After quenching plastids 

were collected by centrifugation at 3.000xg for 5min and washed twice with HS buffer. 

Proteins were extracted and acetone-methanol-precipitated (Doucet et al., 2011). The protein-

pellets were subjected to an in-solution digest with trypsin using RapiGest (Waters) according 

to the manufacturer’s instructions. Peptide samples were measured on the LTQ Orbitrap 

Velos (Thermo Scientific) as described (Material and Methods: Terminal amine isotopic 

labeling of substrates) but with a modified chromatography method (0 150 min 5 40% B, 150 

155 min 40 80 % B, 155 160 min 80 % B, A= water with 0.1 % formic acid, B=acetonitrile 

with 0.1 % formic acid). The RAW-files were analysed using the Proteome Discoverer 1.2 

(Thermo Scientific), the search engine SEQUEST and the TAIR10 database. As variable 



modifications N-terminal acetylation and as fixed modifications carbamidomethylation of 

cysteine were allowed. The precursor mass tolerance was set to 7 ppm and the fragment mass 

tolerance to 0.8 Da. For further analysis only peptides with a maximal FDR of 5% were used. 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository 

(Vizcaino et al., 2013) with the dataset identifier PXD001207. 
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