Supplemental Data Files

Supplemental Figures

Supplemental Figure 1. *mut5* is unable to SUMOylate stress-related proteins during prolonged heat stress at 42°C.

Supplemental Figure 2. Amino acid sequence alignments comparing verified *Saccharomyces cerevisiae* SUMO and ubiquitin E2 conjugases with putative SUMO and ubiquitin E2 conjugases from *C. reinhardtii*.

Supplemental Figure 3. Comparison of CrUBC9 and CrUBC3 mRNA levels in wild-type cells in response to heat shock.

Supplemental Figure 4. *mut5* fails to SUMOylate high molecular weight in response to diverse abiotic stresses.

Supplemental Figure 5. *mut5* fails to SUMOylate high molecular weight protein in response to carbon-source deprivation.

Supplemental Figure 6. Phenotypes of *mut5* under osmotic and salt stresses.

Supplemental Figure 7. Phenotypes of complemented *mut5*.

Supplemental Figure 8. Complementation of *mut5* with a CrUBC9-4XEAAAR-mCherry fusion

Supplemental Figure 9. CrUBC9 localizes to the nucleus at 25°C and 42°C

Supplemental Table 1. Identification of the closet orthologs to SUMO E2 conjugases and ubiquitin E2 conjugases in *S. cerevisiae* and *C. reinhardtii*.

Supplemental Table 2. Annotation of protein sequences used for generation of phylogenetic tree.

Supplemental Figure 1. *mut5* is unable to SUMOylate stress-related proteins during prolonged heat stress at 42°C. Whole cell extracts were prepared from wild-type and *mut5* cultures grown at 25°C (lanes 1 and 6) and after shifting cultures to 42°C for one, three, six and nine hours. Whole cell extracts were isolated after one, three, six, and nine hours at 42°C. Upper panel is an immunoblot using anti-SUMO antibodies, lower panel is a Reactive Brown stain of the blot showing equivalent loading of proteins into each lane.

Supplemental Figure 2. Amino acid sequence alignments comparing verified Saccharomyces cerevisiae SUMO and ubiquitin E2 conjugases with putative SUMO and ubiquitin E2 conjugases from C. reinhardtii. Alignment shows the CrUBC9 as well as three additional previously identified SUMO conjugase candidates (CrUBC3, Cre06.g292800, Cre16.g693700) aligned with yeast SUMO conjugase (ScUBC9) as well as known yeast ubiquitin conjugase enzymes (ScUBC2, ScUBC4, ScUBC5, ScUBC7, ScUBC11, ScUBC12). The amino acids that correspond to a five amino acid insertion noted on the human and mouse UBC9 proteins are indicated between the two arrows in the alignment. The green box contains a four amino acid insert present in SUMO E2 conjugases and absent from ubiquitin E2 conjugases.

Supplemental Figure 3. Comparison of *CrUBC9* **and** *CrUBC3* **mRNA levels in wild-type cells in response to heat shock.** RNA was isolated from wild-type *C. reinhardtii* cells before and after a heat stress at 42°, and the transcript abundance was calculated relative to *CrUBC9* mRNA levels at 25°C. Individual data points reflect separate biological replicates and vertical bars represent the range of mRNA abundance levels possible based on the standard deviation for technical triplicates at each data point.

Supplemental Figure 4. *mut5* fails to SUMOylate high molecular weight in response to diverse abiotic stresses. Immunoblot analysis of wild-type and *mut5* cells after exposure to (A)

37°C, (B) 175 mM NaCl, (C) 300 mM sorbitol, (D) 2 mM H_2O_2 . Whole cell extracts were prepared from cells grown in TAP at 25°C, and then at 30 minutes and 60 minutes after the start of each stress treatment. Extracts from equal numbers of cells were loaded in each lane and Reactive Brown staining was used to verify similar loading between lanes (lower panel).

Supplemental Figure 5. *mut5* fails to SUMOylate high molecular weight proteins in response to carbon-source deprivation. Wild-type and *mut5* cultures were washed twice in water, resuspended in TAP media with 8.7mM acetate instead of the usual 17.4mM acetate, and incubated in the dark to slowly deprive them of a carbon source. Whole cell extracts were prepared after 24 and 48 hours of carbon deprivation. Control wild-type cells were incubated in full strength TAP medium (17.4mM acetate) in the light (first lane) and in the dark (last two lanes). Equivalent numbers of cells were added to each lane of a bis-Tris SDS polyacrylamide gel. Reactive Brown stain of the protein blot demonstrated similar loading between lanes (lower panel).

Supplemental Figure 6. Phenotypes of *mut5* under osmotic and salt stresses. (A) Wild-type and *mut5* cultures were diluted spotted in a 1:4 dilution series on TAP and TAP+300mM sorbitol plates. Plates were incubated at 25°C to assess growth. (B) Wild-type and *mut5* cultures were diluted in a 1:4 dilution series and spotted on TAP and TAP+175mM NaCl plates. Plates were incubated at 25°C to assess growth.

Supplemental Figure 7. Phenotypes of complemented *mut5.* (A) Normalized cell cultures were spotted in a 1:4 dilution series on TAP and TAP+300mM sorbitol plates to assess growth under osmotic stress. (B) Cultures were shifted to TAP + 8.7mM acetate for 48 hours and whole cell extracts were analyzed by immunoblot analysis with anti-SUMO antibodies. Reactive Brown stain (lower panel) shows similar loading per lane.

Supplemental Figure 8. Complementation of *mut5* with a CrUBC9-4XEAAAR-mCherry

fusion (A) Diagram of the CrUbc9-4XEAAAR-mCherry expression cassette. The thin line indicates the second intron of *CrUBC9*. (B) Growth at 37°C of line #14 complemented with UBC9-4XEAAAR-mCherry fusion. Normalized cell cultures were spotted on two identical TAP plates, one of which was incubated at 37°C for three days, the other at 25°C. (C) SUMOylation patterns of wild-type cells, *mut5* and the *mut5* CrUBC9-4XEAAAR-mCherry transformant #14 grown at 25°C and under heat stress at 42°C for one hour. Whole cell extracts were analyzed by immunoblot with anti-SUMO antibodies (upper panel). Reactive brown stain (lower panel) shows equivalent loading.

Supplemental Figure 9. CrUBC9 localizes to the nucleus at 25°C and 42°C. Fluorescence microscopy of *mut5* cells complemented with CrUBC9-4XEAAAR-mCherry and incubated at 25°C or 42°C. Line #14 was shifted to 42°C and samples analyzed by fluorescence microscopy after 10, 30 and 60 minutes at 42°C. Row 1 shows *mut5* cells that have not been complemented. Row 2 shows Line #14 cells prior to the shift to 42°C. Rows 3-5 show Line #14 cells at 10, 30, and 60 minutes after shifting to 42°C, respectively. Each row shows (from left to right) transmitted light, chloroplast autofluorescence (in false green color), mCherry fluorescence, and a merged image of the chloroplast and mCherry signals. Scale bar shown in the upper right panel; magnification is the same for all panels shown.

Candidate <i>C. reinhradtii</i> SUMO Conjugase Proteins	Ortholog in S. cerevisiae	Percent Identity
CrUBC9	ScUBC9	61.78%
CrUBC3	ScUBC9	52.60%
Cre16.g693700	ScUBC4/ScUBC5	66.89%
Cre06.g292800	ScUBC4	80.27%

Supplemental Table 1. Identification of the closet orthologs to SUMO E2 conjugases and ubiquitin E2 conjugases in *S. cerevisiae* and *C. reinhardtii*. Comparison of candidate SUMO conjugase proteins with yeast SUMO conjugase and ubiquitin conjugase enzymes demonstrates that CrUBC9 and CrUBC3 are the closest orthologs to ScUBC9.

Symbol	Accession #	Organism	E2 Conjugase for:	Reference
AtUFC1	Q9SXC8	Arabidopsis thaliana	UFM1	

HsUFC1	NP_057490	Homo sapiens	UFM1	1
ScUBC12	P52491	Saccharomyces cerevisiae	RUB1	2
AtRCE1	Q9SDY5	Arabidopsis thaliana	RUB1	3
HsUBC12	NP_003960	Homo sapiens	NEDD8	4
SpHUS5	P40984	Schizosaccharomyces pombe	SUMO	5
DdUBC9	Q9NGP4	Dictyostelium discoideum	SUMO	
AtSCE1	Q42551	Arabidopsis thaliana	SUMO	6
PmUBC9	Q6Y1Z4	Pagrus major	SUMO	
DrUBC9B	Q9DDJ0	Danio rerio	SUMO	
MaUBC9	O09181	Mesocricetus auratus	SUMO	
CeUBC9	Q95017	Caenorhabditis elegans	SUMO	
DrUBC9A	Q9W6H5	Danio rerio	<u>SUMO</u>	7
HsUBC9	P63279	Homo sapiens	SUMO	8
RnUBC9	P63281	Rattus norvegicus	SUMO	
ScUBC9	P50623	Saccharomyces cerevisiae	SUMO	9
CrUBC9	XP_001694849	Chlamydomonas reinhardtii	SUMO	10
CrUBC3	XP_001703521	Chlamydomonas reinhardtii		
HsUBCH5	P51668	Homo sapiens	Ubiquitin	11
SpUBC4	P46595	Schizosaccharomyces pombe	Ubiquitin	
ScUBC4	P15731	Saccharomyces cerevisiae	Ubiquitin	12
ScUBC5	P15732	Saccharomyces cerevisiae	Ubiquitin	12
AtUBC3	Q9FKT3	Arabidopsis thaliana	Ubiquitin	13
Cre16.g693	XP_001699308	Chlamydomonas reinhardtii		
Cre06.g292	XP_001701577	Chlamydomonas reinhardtii		
MmUB2E2	Q91W82	Mus musculus	Ubiquitin	
DmUBCD2	P52485	Drosophila melanogaster	Ubiquitin	14
HsUBCH6	P51965	Homo sapiens	Ubiquitin	15
MmUBCM3	P52482	Mus musculus	Ubiquitin	14
HsUBCH9	Q969T4	Homo sapiens	Ubiquitin	16
HsUBCH8	Q96LR5	Homo sapiens	<u>Ubiquitin</u>	17
OsUBC5A	Q8S920	Oryza sativa	<u>Ubiquitin</u>	18
OsUBC5B	Q8S919	Oryza sativa	Ubiquitin	18
AtUBC28	Q94F47	Arabidopsis thaliana	Ubiquitin	13
SIUBC4	P35135	Solanum lycopersicum	Ubiquitin	
AtUBC11	P35134	Arabidopsis thaliana	Ubiquitin	13
AtUBC9	P35132	Arabidopsis thaliana	<u>Ubiquitin</u>	19
AtUBC8	P35131	Arabidopsis thaliana	Ubiquitin	20
AtUBC10	P35133	Arabidopsis thaliana	Ubiquitin	13
AtUBC1	P25865	Arabidopsis thaliana	<u>Ubiquitin</u>	21
ScUBC2	P06104	Saccharomyces cerevisiae	<u>Ubiquitin</u>	22
HsUBE2A	NP_003327	Homo sapiens	<u>Ubiquitin</u>	23
ScUBC11	P52492	Saccharomyces cerevisiae	<u>Ubiquitin</u>	
AtUBC19	Q9LJZ5	Arabidopsis thaliana	Ubiquitin	
HsUBCH10	O00762	Homo sapiens	<u>Ubiquitin</u>	24
ScUBC7	Q02159	Saccharomyces cerevisiae	Ubiquitin	25

Supplemental Table 2. Annotation of protein sequences used for generation of

phylogenetic tree. The table above shows the symbol used to annotate each sequence in the phylogenetic tree, the corresponding accession number for that sequence in GenBank, and the organism from which the sequence was obtained. The fourth column shows the protein for which the sequence is an E2 conjugase. The post-translational modification for enzymes for which E2 conjugase activity has been verified experimentally are underlined and bolded, and the reference for that verification can be found in the last column. References are listed below:

Supplementary Data References

- ¹Komatsu MK, Chiba T, Tatsumi K, Shun-ichiro I, Tanida I, Okazaki N, Ueno T, Kominami E, Natsume T, Tanaka K (2004) A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. *EMBO J* 23: 1977-1986
- ²Liakopoulos D, Doenges G, Matuschewski K, Jentsch S (1998) A novel protein modification pathway related to the ubiquitin system. *EMBO J* 17:2208-2214
- ³Dharmasiri S, Dharmasiri N, Hellmann H, Estelle M (2003) The RUB/Nedd8 conjugation pathway is required for early development in *Arabidopsis*. *EMBO J* **22**:1762-1770
- ⁴Gong L, Yeh ET (1999) Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. *J Biol Chem* 274: 12036-12042
- ⁵Ho JCY, Warr NH, Shimizu H, Watts FZ (2001) SUMO modification of Rad22, the Schizosaccharomyces pombe homologue of the recombination protein Rad52. Nucleic Acids Res 29: 4179-4186
- ⁶Saracco SA, Miller MJ, Kurepa J, Vierstra RD (2007) Genetic analysis of SUMOylation in Arabidopsis: conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. *Plant Physiol* **145:** 119-134
- ⁷Nowak M, Hammerschmidt M. (2006) Ubc9 Regulates Mitosis and Cell Survival during Zebrafish Development. *Mol Biol Cell* 17: 5324-5336

⁸Tatham MH, Jaffrah E., Vaughan OA, Desterro JM, Botting CH, Naismith JH, Hay RT

(2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. *J Biol Chem* **276**: 35368-35374

- ⁹Johnson ES, Blobel G (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. *J Biol Chem* **272**: 26799-26802
- ¹⁰Wang Y, Ladunga I, Miller AR, Horken KM, Plucinak T, Weeks DP, Bailey CP (2008) The small ubiquitin-like modifier (SUMO) and SUMO-conjugating system of *Chlamydomonas reinhardtii*. *Genetics* **179**: 177-192
- ¹¹Scheffner M, Huibregtse JM, Howley PM (1994) Identification of a human ubiquitin conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53. *Proc Natl Acad Sci USA* 91:8797-8801
- ¹²Seufert W, Jentsch S (1990) Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. *EMBO J* 9:543-550
- ¹³ Kraft E, Stone SL, Ma L, Su N, Gao Y, Lau O-S, Deng X-W, Callis J (2005) Genome analysis and functional characterization of the E2 and RING-Type E3 ligase ubiquitination enzymes of *Arabidopsis*. *Plant Physiol* **139**: 1597-1611
- ¹⁴Matuschewski K, Hauser HP, Treier M, Jentsch S (1996) Identification of ubiquitin conjugating enzymes with distinct amino-terminal extensions. J Biol Chem 271:2789 2794
- ¹⁵Nuber U, Schwarz S, Kaiser P, Schneider R, Scheffner M (1996) Cloning of Human Ubiquitin-conjugating Enzymes UbcH6 and UbcH7 (E2-F1) and Characterization of their Interaction with E6-AP and RSP5 *J Biol Chem* **271**:2795-2800
- ¹⁶Ito K, Kato S, Matsuda Y, Kimura M, Okana Y (1999) cDNA cloning, characterization, and chromosome mapping of UBE2E3 (alias UbcH9) encoding an N-terminally extended human ubiquitin-conjugating enzyme. *Cytogenet Cell Genet* 84:99-104
- ¹⁷Kimura M, Hattori T, Matsuda Y, Yoshioka T, Sumi N, Umeda Y, Nakashima S, Okano Y (1997) cDNA cloning, characterization, and chromosome mapping of UBE2E2 encoding a human ubiquitin-conjugating E2 enzyme. *Cytogenet Cell Genet* **78**:107-111

- ¹⁸Taka R, Matsuda N, Nakano A, Hasegawa K, Akimoto C, Shibuya N, Minami E (2002) EL5, a rice N-acetylchitooligosaccharide elicitor-responsive RING-H2 finger protein, is a ubiquitin ligase which functions in vitro in co-operation with an elicitor-responsive ubiquitin-conjugating enzyme, OsUB5b. *Plant J* **30**:447-455
- ¹⁹Yanagawa Y, Sullivan JA, Komatsu S, Gusmaroli G, Suzuki G, Yin J, Ishibashi T, Saijo Y, Rubio V, Kimura S, Wang J, Deng XW (2004) *Arabidopsis* COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes *Genes Dev* 18:2172-2181
- ²⁰Girod PA, Carpenter TB, van Nocker S, Sullivan ML, Vierstra RD (1993) Homologs of the essential ubiquitin conjugating enzymes UBC1, 4, and 5 in yeast are encoded by a multigene family in *Arabidopsis thaliana*. *Plant J* **3**:545-552
- ²¹Girod PA, Vierstra RD (1993) A major ubiquitin conjugation system in what germ extracts involves a 15-kDa ubiquitin-conjugating enzyme (E2) homologous to the yeast Ubc4/UBC5 gene products. *J Biol Chem* **268**:955-960
- ²²Reynolds P, Weber S, Prakash L (1985) RAD6 gene of Saccharomyces cerevisiae encodes a protein containing a tract of 13 consecutive aspartates. Proc Natl Acad Sci USA 82:168-172
- ²³Sarcevic B, Mawson A, Baker RT, Sutherland RL (2002) Regulation of the ubiquitin conjugating enzyme hHR6A by CDK-mediated phosphorylation. *EMBO J* 21:2009-2018
- ²⁴Townsley FM, Aristarkhov A, Beck S, Hershko A, Ruderman JV (1997) Dominant-negative cyclin-selective ubiquitin carrier protein E2-C/UbcH10 blocks cells in metaphase. *Proc Natl Acad Sci USA* 94: 2362-2367

²⁵Yamakazi RK and Chau VC (1996) Bacterial expression of the *Saccharomyces cerevisiae* Ubiquitin conjugating Enzyme Ubc7. *Protein Expr Purif* **7**:122-127