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ABSTRACT Protein-igand reaction rates are often lim-
ited by the rate of difuonal encounter of the protein and
ligand in solution. Reaction rates, however, can be much
greater than expected, given the necessity for correct orienta-
tion before reaction. A number of forces can affect the orien-
tation of the protein and ligand In solution, and thus Increase
the reaction rate. We have considered hydrodynamic forces,
produced when water molecules between protein and ligand
must be pushed out of the way to allow their encounter. We
have used the deft enzymes as a model system, as they could be
expected to show strong hydrodynamic effects. One particular
type of hydrodynamic interaction stands out: a steering torque
which occurs when the enzyme and substrate move toward each
other in solution. The magitde of this steering torque is
compared to the mutual torque experienced by interacting
"protein-sized" dipoles in solution. A simple model Is used to
demonstrate that the hydrodynamic steering torque can be 2
orders of magnitude greater than the eectrostatic torque.

The function ofproteins almost inescapably depends on their
physical interaction with other molecules, generally called
ligands. Important examples of protein-ligand interactions
include enzyme-substrate reactions; protein-nucleic acid
interactions, when controlling replication and expression;
and protein-lipid interactions during incorporation into mem-
branes. In the words of Creighton (1), "Every aspect of the
structure, growth, and replication of an organism is depen-
dent upon such interactions."
Many protein-ligand reactions proceed with diffusion-

controlled kinetics-that is, the rate-limiting step in the
reaction is the diffusive encounter of the protein and ligand.
The rate ofdiffusive encounter, kD, can be estimated from the
translational diffusion coefficients ofthe protein and ligand in
solution, Dp and DL, by treating the molecules as spheres that
must approach within a distance rpL to react:

kD = 41rNA(DP + DL)rPL,

or, when there is a net attraction or repulsion between the
protein and ligand:

4IrNA(DP + DL)

kD - I expU(r)/kT
1PL r2 dr

where the interaction potential energy is given by U(r), k is
Boltzmann's constant, T is absolute temperature, and NA is
Avogadro's number. The diffusion coefficients can be mea-
sured experimentally or obtained from hydrodynamic mobil-
ities. For an overview of this and other aspects of hydrody-
namics in biophysics, see ref. 2.

It is somewhat surprising that these equations predict
reaction rates so well, because for many proteinligand
interactions, the molecules not only must be brought into
close proximity but also must be oriented correctly in space
for a successful encounter to occur. If these equations were
to be corrected to allow reactions of correctly oriented
molecules only (based simply on the fraction of solid angle
available for reaction), they would predict association rates
as much as three orders of magnitude too low (1). A modest
increase can be obtained by considering the statistical like-
lihood ofrepeated encounters at different orientations (3), but
this still gives a low estimate for the reaction rate. Clearly,
there are some processes which act to orient the molecules
prior to reaction, so that the orientation "penalty term" is not
so severe.
There have been a number of explanations for the orien-

tation that occurs prior to enzyme-ligand reaction. Promi-
nent among these has been an explanation that involves
electrostatic interactions. As a simple example, one could
consider the steering torque produced by interacting electric
dipoles. The dipoles act to orient the protein and the ligand,
even as collisions from the thermal motion of surrounding
water molecules bring the two close enough to react.

In addition to electrostatic forces, shorter-range forces
such as van der Waals forces have been considered. In ref.
4, it is postulated that an attractive van der Waals force holds
the ligand close to the protein until the ligand finds the
orientation that allows a reaction.
There is another possible long-range force that can act to

orient proteins and ligands in solution, namely the force that
is produced by hydrodynamic interactions between the pro-
tein and ligand. It is common knowledge that many protein-
ligand pairs exhibit complementary shapes (the so-called
"lock-and-key" paradigm). If random thermal fluctuations
push a protein-ligand pair together, the pair will be more
favorably oriented for reaction by hydrodynamic interactions
between the complementary shapes. Conversely, if thermal
fluctuations drive a protein-ligand pair apart, the pair will be
further disoriented by hydrodynamic interactions. This be-
havior, better orientation upon closer approach, is exactly
what one would desire to increase the rate of reaction.
As an example, consider Fig. 1. The two bodies in this

figure can be thought of as a cleft enzyme and a capsule-
shaped substrate. To react, the substrate must fit into the
cleft ofthe enzyme. As random thermal fluctuations drive the
substrate and enzyme together, any skew between the axis of
the enzyme cleft and the axis of the substrate will be
corrected. An increased hydrodynamic force from the areas
of the cleft that are closest to the substrate will cause the
substrate to rotate, bringing the substrate and cleft into better
alignment.

It is our aim to show that the magnitude of the hydrody-
namic steering torque is in some cases at least as important
as the electrostatic steering torque. We will compute the
hydrodynamic steering torque in a mathematically rigorous
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Protein: Enznme Once a sufficient number of simulations has been carried
out, a reaction rate constant can be extracted from the
fraction of particles which react (7-9).

In the evolution equation for two particles, the friction
coefficient and diffusion matrices are 12 x 12, relating the
translational and rotational velocities of each particle to the
hydrodynamic forces and torques on each particle:
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FIG. 1. Discretized representation of an enzyme-substrate reac-
tion.
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fashion (to the extent allowed by our continuum approach
and simple model) so as to better illustrate its role. An order
of magnitude calculation of the electrostatic torque is also
provided, to show that the scales for these steering torques
are comparable. Indeed, our models of cleft systems suggest
that the hydrodynamic torque can be 2 orders of magnitude
greater.

GOVERNING EQUATIONS
To assess the importance of forces involved in protein
interactions, it is necessary to have a way to measure the
effect. This is usually done by extracting a reaction rate
constant from an ensemble of Brownian simulations (5). The
protein and ligand are placed in an initial configuration some
distance apart and are released to move in solution under the
influence of Brownian, electrostatic, and viscous forces. The
governing differential equation for the motion is

d2x dx
md- +{d -F(x)= (t), Illdt2 dt

where m are generalized masses, x are generalized coordi-
nates of the particles, and F are generalized forces. In this
paper these generalized forces are taken to be forces and
torques in the coordinate directions. Here F is a stochastic
"driving force" for the motion, and ; is the friction coeffi-
cient matrix relating the hydrodynamic forces and torques on
the particles to their velocities. In the hydrodynamics liter-
ature, the solvent viscosity IL is usually scaled out of the
friction coefficient matrix, so that all components have
dimensions which are powers of length. The resulting matrix
is called the resistance matrix.
The equation of motion can be integrated to obtain the

evolution equation for the particle position:

DTF
Ax = V-DAt + At + X(At);

kT

In this representation, we have scaled Au out and divided the
resulting matrices into the component tensors. Superscripts
on the forces, torques, and velocities represent the particle in
question. For each of the tensors, the first superscript
represents the particle which is affected, and the second
represents the particle which is causing the effect. TensorsA
and a relate forces FH to translational velocities U; tensors C
and c relate torques TH to rotational velocities w; and tensors
B and b describe coupling effects. Of the 144 total tensor
components, 78 are independent, since the matrices are
symmetric (10). Since the matrices are configuration depen-
dent, it is necessary to recompute them when the orientation
of the particles changes significantly.
Because of the difficulties associated with solving the

two-particle hydrodynamics problem, assumptions have al-
ways been made about the diffusion/mobility matrix. The
simplest (and very common) assumptions are that

(i) no coupling occurs-that is, that all off-diagonal terms
are zero;

(ii) the three on-diagonal terms in each of the nonzero
tensors are equal, given by a scalar diffusion coefficient; and

(iii) the diffusion coefficient does not vary with the con-
figuration of the particles.
This reduces the 78 configuration-dependent constants in the
diffusion matrix to four configuration-independent constants,
each of which can be obtained experimentally. All off-
diagonal tensors in the diffusion matrix are zero, while the
on-diagonal tensors have the form

1 0 0
D 0 1 0 .

0 0 1
[5]

Some authors have relaxed the second assumption, incorpo-
rating experimental data about the direction dependence of
the diffusion coefficient. This leads to on-diagonal tensors of
the form

[2]

its derivation is detailed in ref. 6. In this equation, D is the
"diffusion matrix" for the problem, the inverse of the friction
coefficient matrix. As for the friction coefficient matrix, Au
can be factored out, leaving what is called the mobility
matrix. Values ofX are selected from a gaussian distribution
with mean zero and autocorrelation 2DAt.

(D1 0 °
o D22 0 ,

o o D33
[6]

but again, all off-diagonal terms are assumed zero. Others
have relaxed the third assumption, modeling the configura-
tional variation of the diffusion tensors by using the Oseen or
Rotne-Prager tensors (6). Because of the simple form of these
hydrodynamic interaction tensors, all off-diagonal terms in
the diffusion tensor are again zero.
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In a recent paper (11), an enzyme-substrate system was
modeled as a sphere (enzyme) and two rigidly connected
spheres (substrate). Hydrodynamic interactions between the
two rigidly connected spheres composing the substrate were
approximated by Oseen tensors at the sphere centers, but
hydrodynamic interactions between the enzyme and sub-
strate were neglected.
Assuming that all off-diagonal components in the diffusion

matrix are zero removes some potentially important physics
from the problem. For example, as enzyme and substrate are
pushed together, hydrodynamic interactions between fea-
tures of the enzyme and substrate may act to orient the
substrate with the enzyme. This particular interaction would
be summarized in four components of the b tensors, which
are generally assumed to be zero.

In this paper, the full diffusion matrix for a model system
will be presented, and the spatial variation of some of the key
components of the diffusion matrix will be detailed. In
principle, we can perform Brownian dynamic simulations
from which a reaction rate constant can be extracted, using,
for example, the approach given in ref. 12 to model the
enzyme geometry. Indeed, on the next generation of mas-
sively parallel computers, such simulations will be possible.
The scope of the present paper is limited to a demonstration
of the importance of the hydrodynamic steering torque, so a
smaller computational problem that fits in the time scale of a
desktop workstation is considered. The magnitude of the
hydrodynamic torque will be estimated and compared to
electrostatic torque to assess the importance of the hydro-
dynamic torque.

METHOD OF CALCULATION
To assess the impact of off-diagonal terms in the diffusion
matrix, it was first necessary to find an appropriate model
system. We chose the cleft enzymes (lysozyme, the serine
proteases, and the kinases are examples). These enzymes can
be viewed as globular, with a cleft cut out (Fig. 1), or
alternatively, as two globular subdomains, with a space in
between that corresponds to the cleft (Fig. 2). The substrate,
generally long and thin, fits into the cleft. The model used,
shown in Fig. 2, is an assembly oftwo spheres of diameter 40
A, separated by a distance of 10 A. This is the same geometry
used in a previous study of the cleft enzyme lysozyme (13),
although we use slightly larger dimensions, roughly consis-
tent with the size of phosphoglycerate kinase. The substrate
was modeled as a capsule, 40 A long and 10 A in diameter.
The cleft enzymes were chosen because they are fairly

common, and they have a geometry that is likely to show
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FIG. 3. Variation of steering torque with distance between sub-
strate and enzyme cleft.

important coupling effects. Referring to the model figure, it
is reasonable to expect that, as any external force moves the
enzyme and substrate together, hydrodynamic interactions
between the enzyme and substrate will act to orient the
enzyme with the axis of the cleft.

Ordinarily, in calculating the diffusion matrix, one would
solve the hydrodynamic mobility problem: that is, a unit
force in a single coordinate direction would be applied to a
single particle, and the velocities of all the particles would be
obtained. These velocities correspond to elements in the first
column of the diffusion matrix. By applying a series of
different forces and torques, the diffusion matrix can be
determined column by column. A very efficient iterative
numerical method is available for solving the hydrodynamic
mobility problem (10, 12).

In the model system (Fig. 2), there are three particles, two
spheres and a capsule; the two spheres act as a single rigid
body, the enzyme. Since it is not possible to specify a priori
the combination of forces which will make the two spheres
act as a single rigid body, an alternative approach was used,
in which the velocities are specified and the forces are
determined, the so-called "resistance problem."

Giving the two spheres a combination of velocities so that
they behaved as a single rigid body "enzyme," we solved for
the forces and torques on the rigid bodies, using the method
of Power and Miranda (14). Standard Linpack routines were
used to solve the linear system. The force on the two-sphere
"enzyme" could then be obtained by adding the forces on the
two spheres and the torque by summing the moments of the
forces and the torques on the two spheres. This enabled
solution for successive columns of the resistance matrix.
Once the resistance matrix was obtained, it could be inverted
to obtain the mobility and diffusion matrices.
To assess the magnitude ofhydrodynamic effects in protein

association, we compare an average hydrodynamic restoring
torque (i.e., a torque which tends to orient the substrate
correctly to the enzyme active site) to an electrostatic re-
storing torque. For the cleft enzymes, as stated earlier, a
hydrodynamic restoring torque would be produced if a sub-

0.

0'

0.

O.

/c,,v

Fil 2-.I Model system.

10 20 30 40 50 60
Skew angle, °

70 80 90

FIG. 4. Variation of steering torque with skew between substrate
and enzyme cleft.
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Table 1. Resistance matrix A tensors

31.4 0 -0.73 9.19 0 0.99
0 39.9 0 0 13.9 0

-0.73 0 32.5 0.82 0 6.83

9.19 0 0.82 12.8 0 1.18
0 13.9 0 0 16.4 0
0.99 0 6.83 1.18 0 10.7

strate and enzyme moved toward each other while the
substrate and cleft axes were misaligned.
The magnitude of the restoring torque depends on two

things: first, the magnitude of the coupling coefficients in the
diffusion matrix, and second, the velocity in solution. The
first has already been computed; the second must be esti-
mated. Fortunately, this is not too difficult. To determine the
strength of the Brownian forces on the particles, Eq. 1, the
equation ofmotion for the particles, is manipulated to extract
an average velocity for each degree offreedom ofthe system,
in terms of the Brownian force strength. To satisfy equipar-
tition of energy, the average velocity must satisfy

1 /dx\ 2 1
-m =-kT, [71
2 \dt/ 2

i.e., the kinetic energy for each degree of freedom must be
kT/2. Once the strength ofthe Brownian forces is known, Eq.
1 can be integrated to obtain Eq. 2, the particle evolution
equation, and simulated on a computer.

Since we are interested in average forces and torques, we
do not need to carry out the simulations to obtain particle
trajectories. The average velocity can be obtained as above,
then used to directly calculate average forces and torques via
the two-particle resistance matrix.

It must be kept in mind that the average velocity computed
by using this method does not always push the enzyme and
substrate together; it can just as easily move them apart, in
which case the torque would tend to skew the substrate even
further. The overall effect is that a substrate which moves
toward an enzyme experiences a torque which corrects its
misalignment, while a substrate which moves away from an
enzyme becomes even further misaligned. This is of course
exactly the kind of effect necessary to produce an increase in
the number of substrate molecules that achieve the correct
orientation to react.
For comparison purposes, we have calculated the restoring

torque resulting from electric dipoles interacting in solution.
Since we are interested in an order-of-magnitude compari-
son, we used a simple dipole model: equal and opposite
charges separated by a distance chosen to roughly match the
hydrodynamic model dimensions. Two sets of dipole inter-
action calculations were performed: one for a separation of40
A between the dipole charges and one for a separation
distance of5 A. In each case, the magnitude ofthe charge was
adjusted to produce a dipole moment of 300 debye (1 debye
= 3.3 x 10-30 C.m) for each dipole, which Creighton (1) calls
a large dipole moment. The interactions were treated as
coulombic interactions with screening, using the Green func-
tion for the linearized Poisson-Boltzmann equation:

Table 2. Resistance matrix B tensors

-0.23 0 2.28 0.29 0 -3.74
0 1.00 0 0 0.89 0
7.32 0 1.48 9.74 0 1.65

-0.55 0 0.91 0.51 0 -0.31
0 1.08 0 0 -0.76 0
0.21 0 -0.47 0.38 0 0.19

Table 3. Resistance matrix C tensors

45.9 0 -0.12 -0.78 0 0.67
0 115.9 0 0 -3.06 0

-0.12 0 124.5 2.65 0 -2.74

-0.78 0 2.65 4.36 0 -2.52
0 -3.06 0 0 6.13 0
0.67 0 -2.74 -2.52 0 3.58

(x)
exp(-KIXI)

+ix=
[8]

The Debye length K-1 was taken to be 7.5 A, and a value of
80 was used for the dielectric constant e. Both are typical
values for physiological conditions.

RESULTS AND DISCUSSION
Variation of Hydrodynamic Interactions with Position. We

chose a single distance (1.4 x the sphere radius of 20 A) and
varied the skew angle between 00 and 900, then took a single
skew angle (400) and varied the distance separating the
enzyme and substrate. The ordinate in both these plots is the
steering torque on the substrate when the substrate ap-
proaches the (stationary) enzyme with unit velocity. It has
been made dimensionless by scaling out the viscosity and
radius of the enzyme spheres. Since the enzyme is much
larger and less mobile than the substrate in solution, this is a
good estimate for the steering torque in solution. Results are
shown in graphical form in Figs. 3 and 4. As one would
expect, the steering effect dies out with increasing separation
distance and at skew angles of 00 and 900.

Resistance/Mobility Tensors. For a separation of 1.4 X the
sphere radius, and a skew angle of 400, we have determined
the full set of resistance/mobility tensors for the enzyme-
substrate system. In these tensors, the "1" axis passes
through the sphere centers, the "2" axis passes through the
center of the substrate and the midpoint between the sphere
centers, and the "3" axis is orthogonal to the other two.
Tables 1, 2, and 3 show the A, B, and C portions of the
resistance matrix, respectively. Only the symmetric portion
was retained; the antisymmetric portion was very small,
indicating that the hydrodynamic calculations were quite
precise. Tables 4, 5, and 6 show the a, b, and c portions of the
mobility matrix, respectively. The dimensions of all the
matrix elements are powers of length. The elements have
been scaled by the radius of the enzyme spheres to make
them dimensionless.

Relative Magnitude of Hydrodynamic Steering Torque. To
calculate a hydrodynamic steering torque, it is necessary to
estimate the velocity of both the enzyme and the substrate.
As stated earlier, the average thermal velocity necessary to
give the molecules kT/2 of energy was used. This produces
an average velocity of
Enzyme: 7.8 m/s.
Substrate: 37.5 m/s.

The Reynolds numbers for the enzyme and substrate place
them well within the Stokes flow regime. Applying these
average velocities to bring the substrate and enzyme closer
together, together with the resistance tensors calculated in

Table 4. Mobility matrix a tensors (x 1000)
40.4 0 0.01 28.7 0 -0.52
0 35.6 0 0 30.1 0
0.01 0 35.7 0.02 0 22.6

28.7 0 0.02 104.0 0 7.69
0 30.1 0 0 86.6 0

-0.52 0 22.6 7.69 0 111.5

Biophysics: Brune and Kim
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Table 5. Mobility matrix b tensors (x 1000)
0 0 -0.03 0.02 0 7.98
0 0 0 0 -0.26 0
0.12 0 -0.01 -6.23 0 0.50

3.46 0 -6.42 -3.08 0 2.82
0 -2.53 0 0 -5.33 0
3.23 0 -0.96 2.02 0 -1.12

the previous section, average torques on both enzyme and
substrate can be computed at a separation distance of 28 A
and a skew angle of 400:
Torque on the enzyme resulting from substrate motion

toward the enzyme at the average substrate velocity: -1.34
x 10-19 N-m. The effect of this torque is to turn the enzyme
so that its cleft is better aligned with the substrate.
Torque on the enzyme resulting from enzyme motion

toward the substrate at the average enzyme velocity: -0.31
x 10-19 N-m. The effect of this torque is to turn the enzyme
so that its cleft is better aligned with the substrate.
Torque on the substrate resulting from substrate motion

toward the enzyme at the average substrate velocity: 1.14 x

10-19 N m. The effect of this torque is to turn the substrate
so that it is better aligned with the enzyme cleft.
Torque on the substrate resulting from enzyme motion

toward the substrate at the average enzyme velocity: 0.36 x

10-19 N-m. The effect of this torque is to turn the substrate
so that it is better aligned with the enzyme cleft.
Adding up the torques gives the following:

Total torque on the substrate resulting from enzyme and
substrate approaching each other at their respective average
velocities: 1.50 x 10-19 N-m.

Total torque on the enzyme resulting from enzyme and
substrate approaching each other at their respective average
velocities: -1.65 x 10-19 N-m.
The signs of these torques indicate that they both tend to
better align the substrate with the enzyme cleft, one by acting
on the substrate, the other by acting on the enzyme.
These torques can be compared to a torque from a large

electrostatic dipole interaction, at the same distance of sep-
aration. For the "large" electrostatic dipole described ear-
lier, the variation of the restoring torque with the skew angle
between the dipole axes and the separation distance between
dipole charges is shown in Table 7. The torque peaks at less
than 10-21 N-m, more than 2 orders of magnitude below the
average hydrodynamic steering torque. It is readily apparent
that the hydrodynamic steering torque can be a very large
quantity. Even allowing for errors in the approximate treat-
ment, of the electrostatics involved, and for the very simple
hydrodynamic model used, it is clear that simulations which
ignore hydrodynamic coupling effects for systems like the
cleft enzymes will be ignoring a very large effect.
The comparison of hydrodynamic to electrostatic torque

was made at a separation of 1.4 x the enzyme sphere radius,
using a model which requires the adjacent fluid to stick to the
enzyme and substrate. At this separation, using a zero
tangential stress or "slip" model, as in ref. 15, would not
materially affect the results. At separations much smaller
than the local radius of curvature of the protein and ligand,
however, there would be a substantial difference in the

Table 6. Mobility matrix c tensors (x 1000)
22.5 0 0 3.28 0 -2.35
0 8.74 0 0 4.33 0
0 0 8.68 -1.79 0 4.69

3.28 0 -1.79 390.6 0 271.3
0 4.33 0 0 166.3 0

-2.35 0 4.69 271.3 0 474.2

Proc. Nadl. Acad. Sci. USA 91 (1994)

Table 7. Electrostatic torque for interacting dipoles at charge
separations of 40 and 5 A

Torque,

Skew N-m x 1023
angle, 0 40A 5 A

0 0.0 0
10 4.9 10
20 8.5 19
30 10.2 28
40 10.1 36
50 9.1 42
60 7.8 48
70 6.6 52
80 5.8 54
90 5.6 55

hydrodynamic forces predicted from using stick-and-slip
models (10). Also, as the protein and ligaAd separation
becomes small, it can be expected that hydrodynamic effects
would become relatively less important, yielding to effects
which have a stronger distance dependence, for example,
dispersion or electrostatic forces. As a final caveat, it must be
recognized that a substrate which is already misoriented from
the enzyme cleft by greater than 900 will experience a further
misorientation upon closer approach. The points above show
the need for detailed simulations to quantify hydrodynamic
effects on reaction rate.
There is no theoretical barrier to carrying out calculations

for more realistic hydrodynamic models than are used here.
However, more complicated models must be discretized
more finely to obtain accurate results. This finer discretiza-
tion leads to a larger set of equations and requires signifi-
cantly more computer time for solution, making it even more
difficult to carry out simulations with rigorously calculated
hydrodynamic interactions. To carry out simulations, it will
be necessary, at least for the immediate future, to use a
method of calculating hydrodynamic interactions which is
accurate enough to recognize coupling effects but simple
enough to be evaluated during the course of a simulation.
Singularity methods, for example (16), may be useful.

This work was supported in part by a fellowship from the National
Science Foundation and by grants from the Office ofNaval Research
and the National Science Foundation.

1. Creighton, T. E. (1984) Proteins: Structures and Molecular Prop-
erties (Freeman, New York).

2. Garcia de la Torre, J. & Bloomfield, V. A. (1981) Q. Rev. Biophys.
14, 81-139.

3. Schurr, J. M. & Schmitz, K. S. (1976) J. Phys. Chem. 80, 1934-
1936.

4. Chou, K. C. & Zhou, G. P. (1982) J. Am. Chem. Soc. 104, 1409-
1413.

5. Allison, S. A. & McCammon, J. A. (1985) J. Phys. Chem. 89,
1072-1074.

6. Ermak, D. L. & McCammon, J. A. (1978) J. Chem. Phys. 69,
1352-1360.

7. Northrup, S., Allison, S. A. & McCammon, J. A. (1984) J. Chem.
Phys. 80, 1517-1524.

8. Luty, B. A., McCammon, J. A. & Zhou, H. X. (1992) J. Chem.
Phys. 97, 5682-5686.

9. Zhou, H. X. (1990) J. Phys. Chem. 94, 8794-8800.
10. Kim, S. & Karrila, S. (1991) Microhydrodynamics: Principles and

Selected Applications (Butterworth-Heinemann, Boston).
11. Luty, B. A., Wade, R. C., Madura, J. D., Davis, M. E., Briggs,

J. M. & McCammon, J. A. (1993) J. Phys. Chem. 97, 233-237.
12. Brune, D. A. & Kim, S. (1993) Proc. Natl. Acad. Sci. USA 90,

3835-3839.
13. McCammon, J. A., Gelin, B. R., Karplus, M. & Wolynes, P. G.

(1976) Nature (London) 262, 325-326.
14. Power, H. & Miranda, G. (1987) SIAM J. Appl. Math. 47, 689-698.
15. Wolynes, P. G. & McCammon, J. A. (1977) Macromolecules 10,

86-87.
16. Dabros, T. (1985) J. Fluid Mech. 156, 1-21.


