File S1

Strain construction

C. albicans strain AF1006 producing C-terminally HA-tagged Sch9 was constructed by transformation of heterozygous strain CAS2 by a tagging cassette generated by oligonucleotides Sch9-HA for/rev, as described (SCHAEKEL *et al.* 2013). Correct chromosomal integration was verified by colony PCR using primers Sch9ver and 3' test HA-tag. Both alleles of *SCH9* were deleted in *C. albicans* strain RM1000AH (SANYAL *et al.* 2004) and 8675 (JOGLEKAR *et al.* 2008) using the URA blaster method. The construction of the URA blaster deletion cassette for *SCH9* was described previously (STICHTERNOTH *et al.* 2011). After the deletion of the first copy, the heterozygous strains were grown on 5-FOA plate to make the cells auxotroph for *URA3* to obtain RMKS1A, RMKS1B and 8675T. Then the same cassette was again used to disrupt the second allele of the gene, to get strains RMKS2A, RMKS2B and 8675T, respectively. To obtain the re-integrant of Sch9 in heterozygous and homozygous mutant background, the entire ORF along with its promoter and terminator was cloned in *Kpn*I and *Sal*I sites in Clp10 integration vector (MURAD *et al.* 2000). Sch9 orf was re-integrated at *RPS10* locus in the *Candida* genome using *Stu*I to obtain RMKS1AR, RMKS1BR, RMKS2BR. The correct chromosomal integration of Clp10 was verified by PCR using primers UP-RPS10 and NV207. To check the binding pattern of CENP-A across the centromere in *sch9* mutant by ChIP, one copy of CENP-A was tagged with Prot A using plasmid construct pCaCse4TAPNAT (THAKUR and SANYAL 2013). pCaCse4-TAP-NAT was partially digested with *Xho*I and transformed into RMKS2A to get Prot A tagged CENP-A strain.

Figure S1 Southern blot analysis. Line diagrams showing wild-type and disrupted alleles of *SCH9*. *Cla*I digested DNA from wild-type strains (CAI4, RM1000AH) and corresponding heterozygous and null mutant strains lacking one or both copies of *SCH9* gene was separated on a agarose gel, blotted and probed with a region marked by the red line. Green arrows indicate *Cla*I sites. Bar, 1 kb.

		Percentage of cells with indicated morphology			
	\bigcirc	\bigcirc			Total no. of cells counted
CAI4	61.1	24.7	0.4	13.8	247
CAS1	69.1	24.7	0.7	6	133
CCS3	79.2	10.9	1.2	3.6	164

Figure S2 *C. albicans* wild-type (*SCH9/SCH9*), heterozygous (*SCH9/sch9*) and homozygous null mutant (*sch9/sch9*) strains were grown till $OD_{600} \sim 1$ at 30° in normoxic condition in YPDU and were stained with DAPI. A table showing percentages of cells with indicated morphologies of DAPI-stained nuclei.

IP:Anti-Protein A antibodies

Figure S3 Cse4 localisation at the centromere is not affected by absence of Sch9. Standard ChIP assays were performed on strains CAKS102 (*CSE4-TAP/CSE4;SCH9/SCH9*) and J200T (*CSE4-TAP/Cse4; sch9/sch9*) (grown at 30°) using anti-Protein A (Cse4) antibodies. Enrichment at *CEN7, CEN5* and non-centromeric region was analysed using semi- quantitative PCR. PCR using total DNA (T) or ChIP DNA fractions with (+) or without (-) antibodies was performed.

Table S1 Strains used in this study

Name	e Parent Genotype		Reference
CAI4	SC5314	ura3::imm434/ura3::imm434	Fonzi <i>et al</i> 1993
CAS1	CAI4	as CAI4 but SCH9/sch9::hisG-URA3-hisG	Stichternoth et al,
			2011
CAS2	CAS1	as CAI4 but SCH9/sch9::hisG	Stichternoth et al,
			2011
CCS3	CAS2	as CAI4 but sch9::hisG/sch9::hisG	Stichternoth et al,
		URA3/ura3::imm434	2011
AF1006	CAS2	as CAS2 but SCH9::(3xHA-URA3)/sch9::hisG	This study
RM1000AH	RM1000	Δura3::imm434/Δura3::imm434Δhis1::hisG/	Sanyal <i>et al,</i> 2004
		Δhis1::hisG arg4::HIS1/ARG4	
RMKS1A	RM1000AH	Δura3::imm434/Δura3::imm434 Δhis1::hisG/	This study
		Δhis1::hisG arg4::HIS1/ARG4 sch9::hisG/SCH9	
RMKS1B	RM1000AH	Δura3::imm434/Δura3::imm434 Δhis1::hisG/	This study
		Δhis1::hisG arg4::HIS1/ARG4 sch9::hisG/SCH9	
RMKS2A	RMKS1A	Δura3::imm434/Δura3::imm434 Δhis1::hisG/	This study
		Δhis1::hisG arg4::HIS1/ARG4 sch9::hisG/sch9::hisG-	
		URA3-hisG	
RMKS2B	RMKS1B	Δura3::imm434/Δura3::imm434 Δhis1::hisG/	This study
		Δhis1::hisG arg4::HIS1/ARG4 sch9::hisG/sch9::hisG-	
		URA3-hisG	
RMKS1AR	RMKS1A	Δura3::imm434/Δura3::imm434 Δhis1::hisG/	This study
		Δhis1::hisG arg4::HIS1/ARG4	
		sch9::hisG/SCH9/Cip10-SCH9	
RMKS1BR	RMKS1B	Δura3::imm434/Δura3::imm434 Δhis1::hisG/	This study
		Δhis1::hisG arg4::HIS1/ARG4 sch9::hisG/SCH9/	
		Cip10-SCH9	
RMKS2AR	RMKS2A	Δura3::imm434/Δura3::imm434 Δhis1::hisG/	This study
		Δhis1::hisG arg4::HIS1/ARG4 sch9::hisG/sch9::hisG-	
		URA3-hisG/ Cip10-SCH9	
RMKS2BR	RMKS2B	Δura3::imm434/Δura3::imm434 Δhis1::hisG/	This study
		Δhis1::hisG arg4::HIS1/ARG4 sch9::hisG/sch9::hisG-	
		URA3-hisG/ Cip10-SCH9	
8675	BWP17	Δ ura3::λimm434/Δ ura3::imm434	Joglekar <i>et al,</i> 2008
		Δ his1::hisG/ Δ his1::hisG Δ arg4::hisG/arg4::hisG	
		CSE4/CSE4:GFP:CSE4	

8675t 8675		Δ ura3::λimm434/Δura3::imm434	This study
		Δ his1::hisG/ Δ his1::hisG Δ arg4::hisG/ Δ arg4:: hisG	
		CSE4/CSE4:GFP:CSE4 sch9::hisG/SCH9	
8675T	8675t	Δ ura3::λimm434/Δura3::imm434	This study
		Δ his1::hisG/ Δ his1::hisG Δ arg4::hisG/ Δ arg4:: hisG	
		CSE4/CSE4:GFP:CSE4 sch9::hisG/sch9::hisG-URA3-	
		hisG	
CAKS102	SN148	Δura3::imm434/Δura3::imm434,	Mitra <i>et al,</i> 2014
		Δ his1::hisG/ Δ his1::hisG, Δ arg4::hisG/ Δ arg4::hisG,	
		Δleu2::hisG/Δleu2::hisG CSE4/CSE4-TAP(URA3)	
J200	RM1000AH	Δura3::imm434/Δura3::imm434 Δhis1::hisG/	Thakur <i>et al</i> , 2013
		Δhis1::hisG arg4::HIS1/ARG4 CSE4/CSE4TAP-NAT	
J200T	J200	ura3::imm434/ ura3::imm434 his1::hisG/his1::hisG	This study
		arg4::HIS1/ARG4 sch9::hisG/sch9::hisG-URA3-hisG	
		CSE4::CSE4-TAP-NAT	

Table S2 Primers used in this study

Primer name	Sequence	Description
2498-21	CTG GTG CAA GAC CCT CAT AGA AGC	Semi-quantitative ChIP PCR primers for
		CEN7
2498-22	CCT GAC ACT GTC GTT TCC CAT AGC	Semi-quantitative ChIP PCR primers for
		CEN7
CEN5e	TGTTCTGACATACTGGGTAGACTTT	Semi-quantitative ChIP PCR primers for
		CEN5
CEN5f	CGAAGCATTTTGTATAACAGCCC	Semi-quantitative ChIP PCR primers for
		CEN5
CACH5R1	TTCATGGAAGAGGGGTTTCA	qPCR primers for CEN5
CACH5F1	CCCGCAAATAAGCAAACACT	qPCR primers for CEN5
NCEN7-3	GCATACCTGACACTGTCGTT	qPCR primers for CEN7
NCEN7-4	AACGGTGCTACGTTTTTTTA	qPCR primers for CEN7
Ctrl 7 a	ACTCGCCTTCCCCTCCTTTAAATAG	qPCR and semi-quantitative ChIP PCR
		primers for non centromeric region
Ctrl 7 b	CCACTACTACGACTGTGGATTCACT	qPCR and semi-quantitative ChIP PCR
		primers for non centromeric region
Sch9-HA for	GAAGAAGAAGATGAAATGGAAGTTGATGAAGAT	HA tagging
	CAACATATGGATGATGAATTTGTCAATGGAAGAT	
	TTGATCTTGGTGGTGGTCGGATCCCCGGGTTAAT	
	ТАА	
Sch9-HA rev	GCACAAAATGGAGAAGGAGAAAAAGTAGGAAC	HA tagging
	GGAATTCTATTGAATGGAACAGTTTAGTTCTAGA	
	AGGACCACCTTTGATTG	
Sch9ver	GTTGATTTCTGGTCATTAGG	Tagging verification primers
3' test HA-tag	CATCGTATGGGTAAAAGATG	Tagging verification primers
NV195	AGTGGTACCGGTCGATGTATAACTTCATTTCAT	Clp10 cloning forward
NV196	ACGCGTCGAGCAC AGA CAT TGG GCA AGA AA	Clp10 cloning reverse
UP-RPS10	TTCTGGTGTTCTCTCACTGTTAAGC	Clp10 integration confirmation forward
NV207	GAGTTATTAGCCCTGCGATCTTTG	Clp10 integration confirmation reverse

Literature Cited

- JOGLEKAR, A. P., D. BOUCK, K. FINLEY, X. LIU, Y. WAN *et al.*, 2008 Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J Cell Biol **181**: 587-594.
- MURAD, A. M., P. R. LEE, I. D. BROADBENT, C. J. BARELLE and A. J. BROWN, 2000 Clp10, an efficient and convenient integrating vector for Candida albicans. Yeast **16**: 325-327.
- SANYAL, K., M. BAUM and J. CARBON, 2004 Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc Natl Acad Sci U S A **101**: 11374-11379.
- SCHAEKEL, A., P. R. DESAI and J. F. ERNST, 2013 Morphogenesis-regulated localization of protein kinase A to genomic sites in Candida albicans. BMC Genomics 14: 842.
- STICHTERNOTH, C., A. FRAUND, E. SETIADI, L. GIASSON, A. VECCHIARELLI *et al.*, 2011 Sch9 kinase integrates hypoxia and CO2 sensing to suppress hyphal morphogenesis in Candida albicans. Eukaryot Cell **10**: 502-511.
- THAKUR, J., and K. SANYAL, 2013 Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans. Genome Res **23:** 638-652.