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List of equations from the main text

For ease of reference, we list below the equations from the main text used in Supporting

Information. Refer to the main text for explanation of symbols.

Equation (1) from the main text:

EΠ,θ
[
ξ

(n)
i

]
=
θ

2

n−i+1∑

k=2

p(n),Π[k, i] · k · EΠ
[
T

(n)
k

]
, i ∈ [n− 1]. (S1)

Equation (3) from the main text:

θ̂Π :=
2S

EΠ
[
B(n)

] , (S2)

Equation (5) from the main text:

cN ≈
2µ̃

θΠ
. (S3)

Equation (7) from the main text:

%(E,B;s)(ξ
(n)) :=

sup
{
L(Π, k(n), s), Π ∈ ΘE

s

}

sup
{
L(Π, k(n), s), Π ∈ ΘB

s

} . (S4)

Equation (8) from the main text:

sup
Π∈ΘE

s

PΠ,s
{
%(E,B;s)(ξ

(n)) ≤ %∗(E,B;s)(a)
}
≤ a. (S5)

Equation (9) from the main text:

θ̂ = θ̂(Π; s) =
2s

EΠ[B(n)]
(S6)

Equation (10) from the main text:

G(E,B;s)(Π) = PΠ{%(E,B;s)(ξ
(n)) ≤ %∗(E,B;s)(a, S)}, Π ∈ ΘB

s. (S7)
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Equation (12) from the main text:

L̃(Π, ξ(n), s) =
n−1∏

i=1

e−
θ̂(Π,s)

2
EΠ[B(n)]ϕ

(n,Π)
i

(
θ̂(Π,s)

2
EΠ[B(n)]ϕ

(n,Π)
i

)ξ(n)
i

ξ
(n)
i !

(S8)

Multiple merger-coalescents and the model classes K, B and D

A multiple merger- or Lambda-coalescent, formally introduced by Pitman (1999), Sagitov

(1999), and Donnelly and Kurtz (1999), is a partition-valued exchangeable coalescent

process determined by a �nite measure Λ on [0, 1] which governs the dynamics of the process:

If there are currently b blocks in the partition (i.e. b active ancestral lineages), k out of them

merge at rate

λb,k =

∫

[0,1]

xk−2(1− x)b−kΛ(dx), k = 2, .., b. (S9)

For an overview of the theory see e.g. Berestycki (2009) or, with a biological perspec-

tive, Tellier and Lemaire (2014). When Λ is associated with the beta-distribution with

parameters 2 − α and α for 1 ≤ α < 2 (Schweinsberg, 2003), these rates can be given

explicitly by

λb,k =
B(k − α, b− k + α)

B(2− α, α)
,

where B(·, ·) is the classical Beta-function. Such coalescents will be called beta-coalescents,

and constitute the model class B.

When Λ is associated with the Dirac coalescent (Eldon and Wakeley, 2006), that is,

Λ(dx) = δ{ψ}(dx), for ψ ∈ [0, 1], we are in class D. Here, for ψ ∈ (0, 1], the rates are given by

λb,k =
ψk(1− ψ)b−k

ψ2
.

Both classes intersect in the Kingman coalescent (model K), which corresponds to α = 2 and
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ψ = 0, and of course has coalescence rates

λb,k =





1 if k = 2,

0 else,

ie. only binary mergers are allowed. The Beta- and the Dirac coalescent each introduce

a coalescent parameter (α, ψ), which can be estimated from genetic data (Eldon, 2011;

Birkner et al., 2013; Birkner and Blath, 2008; Steinrücken et al., 2013).

Population models leading to coalescent classes K, B and D

It is well-known that the classical Wright-Fisher and the Moran model have scaling limits

whose genealogy is described by a Kingman coalescent. For the more general Lambda-

coalescents, Möhle and Sagitov (2001) give a full classi�cation of all Cannings models

that lead to any given Lambda-coalescent. The relevant time-scaling is determined by cN ,

the probability that in a population of size N , two distinct ancestral lineages merge in the

previous generation. It is important to keep in mind that many di�erent population models

can lead to the same limiting coalescent, and also that the timescale, determined by cN ,

may vary between di�erent models having the same limit. For the Kingman coalescent, the

classical Wright Fisher model converges on the time-scale cN = 1/N , whereas for the Moran

model, it is of order 1/N2.

A popular model that leads to the Beta(2 − α, α)-coalescent has been introduced by

Schweinsberg (2003). For this model, the relevant time-scale is of order 1/Nα−1. Here,

single individuals can produce positive fractions of the next generation in a single reproduc-

tive event (an instance of `HFSOD') that can be related to stable branching processes, cf.

Birkner et al. (2005). The size of the reproductive event is random and governed by the

Beta-distribution. For details we refer to Schweinsberg (2003), and for a discussion of its

biological relevance eg. to Steinrücken et al. (2013).

The Dirac coalescent has been investigated in Eldon and Wakeley (2006). It has

a particularly simple interpretation: Given the coalescent parameter ψ ∈ (0, 1], in each
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`substantial' reproductive event, a fraction of 100 ·ψ% of the generation die and are replaced

by the o�spring of a single parent (there can be other, `non-substantial' reproductive events

which, though potentially frequent, become invisible in the limit). This is an extreme case

of HFSOD, and biologically it seems di�cult to justify why the fraction ψ should always

be the same. However, it is mathematically simple and interpolates between the Kingman

coalescent ψ = 0 and the star-shaped coalescent ψ = 1, thus we included it in our study.

For details see Eldon and Wakeley (2006).

Population with varying population size and the classes E and A

In Kaj and Krone (2003), a time-changed n-coalescent under a general model of variable

population size is derived. More precisely, the authors consider a haploid Wright-Fisher

model with population size N at generation r = 0 and consider a population size process

MN(r), r ∈ Z of the form MN(r) = NXN(r), r ∈ Z, that is, XN(r) describes the `relative

population size' at generation r. Under the assumption that XN(bNtc), t ∈ R converges

to something non-degenerate (ie. bounded away from 0 and ∞), they get the well-known

limiting result that a time-changed Kingman coalescent describes the genealogy, where the

in�nitesimal coalescence rates are given by 1/ν(s), with

ν(s) = lim
N→∞

XN(bNsc). (S10)

Our exponential growth model E corresponds to a Kingman-coalescent with exponentially

growing coalescence rates ν(s) = eβs, for β ≥ 0, and can be obtained from a a growth rate

of β/N per generation in the pre-limiting model, ie. Nk = N(1 + β/N)k. Indeed,

ν(t) = lim
N→∞

XN(bNtc) = lim
N→∞

(
1 +

β

N

)Nt
= eβt.

Thus, the size Nt generations ago is approximately Ne−βt.

The model class A is given by Kingman coalescents with algebraically growing coalescence

rates, ie. ν(s) = sγ, for γ ≥ 0. Note that if γ = 0 or β = 0, we recover the Kingman coalescent
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and are back in class K.

A population model for algebraic growth was considered in (Schweinsberg, 2010, Sec-

tion 1.4): Fix a population size N at the present generation 0, and for notational convenience

also for generation -1 (this short period of constant population size will become irrelevant

after time-rescaling). For a �xed growth parameter γ > 0, the population size at the k-th

generation before the present (for k ∈ N) is assumed to be dNk−γe. Measuring time in units

of size N
1

1+γ yields the limiting in�nitesimal coalescence rate

ν(t) = lim
N→∞

N
1

1+γ cN(t, γ) = lim
N→∞

N
1

1+γ
(N

1
1+γ t)γ

N
= tγ,

where cN(t, γ) is the probability that two individuals in generation N
1

1+γ t choose the same

ancestor (uniformly out of the N(N
1

1+γ t)−γ individuals alive in that generation). Consider

the time-change (for the scaling limit as N →∞)

Tt :=
tγ+1

γ + 1
=

∫ t

0

sγ ds.

Then, the genealogy of the algebraic growth model at previous generation t equals in law the

state of a classical Kingman coalescent at time Tt. See Schweinsberg (2010) for details.

The expected SFS under variable population size

The e�ect of �uctuations in population size on the SFS has been investigated in various

articles, see eg. Griffiths and Tavaré (1998), who derive an analog of (S1), and Kaj and

Krone (2003) who link the Wright-Fisher approximation (with �uctuating population size)

with the limiting genealogy.

Recursions for the expected values and covariances of the site-frequency spectrum asso-

ciated with moderate �uctuations in population size will now be brie�y discussed. We will

in particular consider numerically tractable recursions for the model classes E and A, based

on work by Polanski et al. (2003) and Polanski and Kimmel (2003).

Consider a time-inhomogeneous Kingman coalescent, started in n lineages, where each
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pair of lines present at time t ≥ 0 merges at a rate ν(t). Then, the expected frequency

spectrum E[ξ
(n),ν
i ], i ∈ [n − 1], is again of the form (S1), and the time-change ν enters only

in the distribution of the T
(n)
k = T

(n),ν
k , 2 ≤ k ≤ n, that is, the distribution of the lengths

of the time intervals of the block-counting process Y
(n),ν
t during which there are exactly k

lineages.

To evaluate E[ξ
(n),ν
i ] one needs information about E[T

(n),ν
k ]. De�ne

S
(n),ν
j := T (n),ν

n + T
(n),ν
n−1 + · · ·+ T

(n),ν
j , j = n, . . . , 2 (S11)

to be the time at which the block counting process Y (n),ν jumps from j to j − 1 lineages

(with the convention S
(n),ν
n+1 := 0). Abbreviate, for t ≥ 0 and j ∈ 2, . . . , n,

F (t) :=

∫ t

0

ν(u) du and a
(ϑ)
j :=

∫ ∞

0

e−(j2)F (s) ds, (S12)

assuming that the �rst integral in (S12) is �nite. It is possible to compute the marginal

density of S
(n),ν
m using the well-known fact that the density of a convolution of exponentials

with di�erent rates can be written as a linear combination of exponential densities,

E
[
S(n),ν
m

]
=

n∑

j=m

c(j,n)
m a

(ϑ)
j , (S13)

where

c(j,n)
m :=

∏

m≤i≤n
i 6=j

(
i
2

)
(
i
2

)
−
(
j
2

) = (−1)j−m
(2j − 1)m

j(j − 1)

(
n
j

)(
j+m−2

j

)(
j
m

)
(
n+j−1

j

) , (S14)

(put c
(j,n)
m = 0 for j < m).

Polanski and Kimmel (2003) obtain numerically stable and e�cient recursions to com-

pute EΠ
[
B

(n)
ı

]
associated with any time-changed Kingman coalescent Π as follows. For ϑ
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denoting the growth parameter associated with process Π,

EΠ
[
B

(n)
i

]
=

n∑

j=2

W
(n)
i,j a

(ϑ)
j (S15)

where the constants W
(n)
ı, can be computed recursively (Polanski and Kimmel, 2003);

W
(n)
i,2 =

6

n+ 1
,

W
(n)
i,3 =

30(n− 2i)

(n+ 1)(n+ 2)
,

W
(n)
i,j+2 =

(3 + 2j)(n− 2i)

j(n+ j + 1)
W

(n)
i,j+1 −

(1 + j)(3 + 2j)(n− j)
j(2j − 1)(n+ j + 1)

W
(n)
i,j .

(S16)

We now specify the main ingredient a
(ϑ)
j (depending on F (t), t ≥ 0 and hence ν(t), t ≥ 0)

explicitly for two important special cases:

a) Exponential growth. In the case of an exponentially growing population with

growth parameter β, that is, ν(t) = eβt, we have

a
(β)
j =

1

β
exp

(
β−1
(
j
2

))
E1

(
β−1
(
j
2

))
, (S17)

where

E1(t) :=

∫ ∞

t

e−x

x
dx =

∫ ∞

1

e−tx

x
dx (S18)

is an exponential integral function, c.f. e.g. (Abramowitz and Stegun, 1964, 5.1.1). One

can use numerical integration schemes to compute E1(t) for smaller values of t (eg. t < 50).

For larger values of t, one can use the approximation

E1(t) = t−1e−t
K−1∑

k=0

k!(−t)−k

(Milgram, 1985), which has error of order O
(
K!t−K

)
.
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b) Algebraic (`power law') growth. In the case of algebraic growth of the form

ν(t) = tγ for some γ > 0, we have

a
(γ)
j =

Γ
(
1/(γ + 1)

)

(1 + γ)γ/(γ+1)

(
j

2

)−1/(γ+1)

. (S19)

Based on Equation (23) in Fu (1995), it is also possible to compute the variance and the

covariances of the SFS based on expressions for Eν [T (n),ν
k T

(n),ν
l ], 2 ≤ k, l ≤ n, which in turn

can be obtained from

Eν [T (n),ν
k T

(n),ν
l ] = Eν [S(n),ν

k S
(n),ν
l ]− Eν [S(n),ν

k−1 S
(n),ν
l ]− Eν [S(n),ν

k S
(n),ν
l−1 ] + Eν [S(n),ν

k−1 S
(n),ν
l−1 ],

noting that, in the above notation,

E
[
(S(n),ν

m )2
]

=

∫ ∞

0

s2
m

n∑

j=m

c(j,n)
m ν(sm)

(
j

2

)
e−(j2)F (sm) dsm,

and

E[S(n),ν
m S

(n),ν
k ] = E

[
E[S(n),ν

m |S(n),ν
k ]S

(n),ν
k

]
,

where E[S
(n),ν
m |S(n),ν

k = sk] can be computed (it is the expectation under a regular condi-

tional probability) as in (S13) replacing ν by ν̃(·) := ν(· + sk), c
(j,n)
m by c̃

(j)
m := c

(j,k)
m and F

by F̃ (·) = F (sk + ·)− F (sk).
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The estimate 1/EB
[
B(n)

]
as a function of α

Figure S1: Graphs of 1/EB
[
B(n)

]
, the estimated value of θ/2 per observed mutation when

using the Watterson estimator (S2) as a function of α (A), compare with (S2); and the
estimated value of µ per observed mutation (B), using (S3) together with (S2), and assuming
the timescale cN = N1−α. The number of leaves n are as shown. In B, time is converted
into generations by multiplying EB

[
B(n)

]
with Nα−1, when N = 105.
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Approximate robustness of the expected normalized SFS w.r.t. θ

In this section, we argue that for a random genealogical tree T with n leaves whose law

is governed by a given coalescent mechanism Π, the expected nSFS EΠ,θ
[(
ζ

(n)
1 , . . . , ζ

(n)
n−1

)]

when the coalescent mutation rate is θ > 0 is approximately constant as a function of θ. This

is useful because it in a sense allows to �factor out� (i.e, ignore) the mutation rate parameter

from a test problem when comparing di�erent Π's. This also means that � at least when

the observed number |ξ(n)| of segregating sites is reasonably large � the exact observed value

|ξ(n)| does not add much additional information for tests based on the SFS.

Indeed, we can compute

EΠ,θ
[
ζ

(n)
i

]
= EΠ,θ

[
ζ

(n)
i 1{|ξ(n)|>0}

]
= EΠ,θ

[
EΠ,θ

[
ζ

(n)
i 1{|ξ(n)|>0}

∣∣∣ T
]]

= EΠ,θ


PΠ,θ(|ξ(n)| > 0 | T )

EΠ,θ
[
ζ

(n)
i 1{|ξ(n)|>0}

∣∣∣ T
]

PΠ,θ(|ξ(n)| > 0 | T )




= EΠ

[
(
1− e− θ2

∑n−1
i=1 B

(n)
i
) θ

2
·B(n)

i

θ
2

∑n
i=1B

(n)
i

]

= EΠ

[
B

(n)
i∑n

i=1 B
(n)
i

]
− EΠ

[
e−

θ
2

∑n−1
i=1 B

(n)
i

B
(n)
i∑n

i=1B
(n)
i

]
. (S20)

Here, B
(n)
i denotes the total length of all branches in T which subtend i leaves for i =

1, . . . , n − 1 and in the third line we used Lemma S1.1 below together with the fact that

given T and θ, ξ
(n)
i , i = 1, . . . , n − 1 are independent and each ξ

(n)
i is Poisson distributed

with mean θ
2
B

(n)
i . Note that the �rst term in (S20) is independent of θ and the �correction�

term is small unless θ is very small or Ln :=
∑n−1

i=1 B
(n)
i , the total length of T , is small under

Π with substantial probability. Note that for each of the coalescent processes we consider in

this investigation, it does hold that Ln →∞ as n→∞. Simulations also indicate that the

distribution (not only the mean) of ζ
(n)
i does not depend much on θ (data not shown).

Lemma S1.1. Let X1, X2 be independent Poisson-distributed variables with parameters a
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and b. Then,

E
[

X1

X1 +X2

∣∣∣∣ (X1 +X2) > 0

]
=

a

a+ b
.

Proof. X1+X2 as a sum of independent Poisson distributed random variables is again Poisson

distributed with parameter a+ b. We have

P (X1 = k,X2 = m−k|(X1+X2) > 0) =
P (X1 = k)P (X2 = m− k)

P (X1 +X2 > 0)
=

akbm−k

k!(m− k)!

e−(a+b)

1− e−(a+b)

for k ∈ N0, m ∈ N with k ≤ m. We compute

E
[

X1

X1 +X2

∣∣∣∣ (X1 +X2) > 0

]
=

∞∑

m=1

m∑

k=0

k

m

akbm−k

k!(m− k)!

e−(a+b)

1− e−(a+b)

=
e−(a+b)

1− e−(a+b)

∞∑

m=1

a

m(m− 1)!

m∑

k=1

(m− 1)!

(k − 1)!((m− 1)− (k − 1))!
ak−1b(m−1)−(k−1)

=
e−(a+b)

1− e−(a+b)

a

a+ b

∞∑

m=1

(a+ b)m

m!
=

e−(a+b)

1− e−(a+b)
(e(a+b) − 1)

a

a+ b
=

a

a+ b
.
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Robustness of the �xed-s-method w.r.t. θ

To check the the robustness of our �xed-s-method against varying θ under rejection sampling

(cf. e.g. Markovtsova et al. (2001), Wall and Hudson (2001)), we applied the following

exact rejection sampling approach to simulate a coalescent tree conditional on a given number

of observed segregating sites s. As input, the algorithm takes sample size n, number of

segregating sites s, a coalescent model Π, and mutation rate θ, and returns a realisation of

ξ(n) with |ξ(n)| = s.

Rejection sampling algorithm :

(i) generate a coalescent tree according to Π, read o� branch lengths B
(n)
i ,

(ii) draw a total number of mutations S as realization of a Poisson random variable with

parameter (θ/2)
∑

iB
(n)
i ,

(iii) if S = s the required �xed number of segregating sites, keep the B
(n)
i , otherwise discard

and draw again,

(iv) throw uniformly s mutations on the tree with branch lengths B
(n)
i , so that the proba-

bility of a mutation falling into class i is B
(n)
i /(

∑
iB

(n)
i ).

We then computed (approximately via rejection-sampling) the size of a conditional dis-

tribution based test if one employs quantiles of the �xed-s-method derived from (S5). Of

course, the hope is that both are reasonably close to each other, and this seems to hold

relatively well if θ is close to the Watterson estimate θ̂(Π, s) (S6). In particular, the results

(Tables (S1)�(S3)) show that the method is particularly robust against varying θ when

exponential growth is taken as null model.
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Table S1: Checking size of test given �xed-s quantiles associated with size x% and α ∈
{1, 1.5} with Beta(2−α, α)-coalescent as null model, and exponential growth as alternative,
using rejection sampling with mutation rate θ as shown. Sample size n = 100, segregating
sites s = 50. The estimate (θW (α)) is obtained from (S6). All estimates from 105 iterates.

α x% θ (θW (α)) size of test
1.0 10% 3.082453 (θW (1)) 0.10

2.0 0.13
3.0 0.10
5.0 0.07
7.0 0.06

5% 3.082453 (θW (1)) 0.05
2.0 0.07
5.0 0.03
7.0 0.02

1% 3.082453 (θW (1)) 0.01
2.0 0.02
5.0 0.01
7.0 0.002

1.5 10% 5.7638 (θW (1.5)) 0.11
3.0 0.03
5.0 0.09
7.0 0.11
10.0 0.13

5% 5.7638 (θW (1.5)) 0.05
3.0 0.01
5.0 0.04
7.0 0.06
10.0 0.07

1% 5.7638 (θW (1.5)) 0.01
3.0 0.001
5.0 0.01
7.0 0.01
10.0 0.02
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Table S2: Checking size of test given �xed-s quantiles associated with size x% as shown
using rejection sampling with mutation rate θ as shown for exponential growth as null model,
and Beta(2 − α, α)-coalescent as alternative. Sample size n = 50, segregating sites s = 25.
The estimate (θW (β)) is obtained from (S6). All estimates from 105 iterates.

β x% θ (θW (β)) test size
1 10% 7.895425 θW (1) 0.10

5.0 0.10
7.0 0.10
9.0 0.10
11.0 0.10

5% 7.895425 θW (1) 0.05
5.0 0.05
7.0 0.05
9.0 0.05
11.0 0.05

1% 7.895425 θW (1) 0.01
5.0 0.01
7.0 0.01
9.0 0.01
11.0 0.01

10 10% 16.33632 θW (10) 0.10
12.0 0.13
14.0 0.12
18.0 0.10
20.0 0.10

5% 16.33632 θW (10) 0.05
12.0 0.05
14.0 0.05
18.0 0.05
20.0 0.05

1% 16.33632 θW (10) 0.01
12.0 0.01
14.0 0.01
18.0 0.01
20.0 0.01
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Table S3: Checking size of test given �xed-s quantiles associated with size x% as shown
using rejection sampling with mutation rate θ as shown for exponential growth as null model
(β = 1000), and Beta(2− α, α)-coalescent as alternative. The estimate (θW (β)) is obtained
from (S6). Sample size n = 50, segregating sites s = 25. All estimates from 105 iterates.

β x% θ (θW (β)) test size
1000 10% 263.1798 θW (103) 0.10

259 0.10
261 0.10
265 0.10
267 0.10

5% 263.1798 θW (103) 0.05
259 0.05
261 0.05
265 0.05
267 0.05

1% 263.1798 θW (103) 0.01
259 0.01
261 0.01
265 0.01
267 0.01
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Estimation of power for Θ0 = ΘD
s, Θ1 = ΘE

s

Figure S2: Estimate of G̃(D,E;s) from (S7) based on the approximate likelihood (S8)
as a function of ψ (no lumping) with number of leaves n = 100 and s = 50. The
line types denote the size of the test as shown in the legend. The interval hypotheses
are discretized to ΘE

s = {β : β ∈ {0, 1, 2, . . . , 10, 20, . . . , 1000}} and ΘD
s = {ψ : ψ ∈

{0, 0.01, 0.02, . . . , 0.1, 0.15, 0.2, . . . , 0.95}}. Reverting the hypotheses yield very similar re-
sults (not shown).
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Estimation of power for s = 300

Figure S3: Estimate G̃(B,E;s)(β) of power as a function of β for (A) β ∈ {0, 10, . . . , 1000}; (B)
β ∈ {0, 1, 2, . . . , 9, 10, 20, . . . , 1000} when the Beta(2−α, α)-coalescent is the null hypothesis,
and the test statistic is sup{˜̀(Π, ξ(n), s),Π ∈ ΘB

s} − sup{˜̀(Π, ξ(n), s),Π ∈ ΘE
s} (S4) , with

˜̀(Π, ξ(n), s) the log of the Poisson likelihood function (S8) (no lumping). Values at β = 0
correspond to the Kingman coalescent. A total of 106 replicates for both quantiles and power
estimates.
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Figure S4: Estimate G̃(E,B;s)(α) of power as a function of α for α ∈ [1, 2] when exponential
growth (E) is the null hypothesis, Beta(2 − α, α)-coalescent (B) is the alternative, and the
test statistic is sup{˜̀(Π, ξ(n), s),Π ∈ ΘE

s} − sup{˜̀(Π, ξ(n), s),Π ∈ ΘB
s} (S4), with ˜̀(Π, ξ(n), s)

the log of the Poisson likelihood function (S8) (no lumping). Values at α = 2 correspond
to the Kingman coalescent; number of segregating sites s = 300; 106 replicates for quantiles
and power estimates.

1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.2

0.4

0.6

0.8

1.0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

0.1
0.05
0.01

A n = 30

1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.2

0.4

0.6

0.8

1.0

● ● ●
● ● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

coalescent param. α

B n = 100

coalescent param. α

P
ow

er
es
ti
m
at
e
G̃

(E
,B
;s
)(
α
)

P
ow

er
es
ti
m
at
e
G̃

(E
,B
;s
)(
α
)

SI 20 B. Eldon et al.



Estimate of power comparing ΘA
s and ΘD

s

Figure S5: Estimate G̃(D,A;s)(γ) of power (S7) between algebraic growth and the Dirac

Lambda-coalescent when the test statistic is sup{˜̀(Π, ξ(n), s), ϑ ∈ ΘD
s}−sup{˜̀(Π, ξ(n), s),Π ∈

ΘA
s} (S4), with ˜̀(Π, ξ(n), s) the log of the Poisson likelihood function (S8) (no lumping); with

n = 100 and number of segregating sites s = 50. The test sizes are as shown in the
legend. The interval hypotheses are ΘA

s ≡ {γ : γ ∈ {0, 1, 2, . . . , 10, 20, 30, . . . , 1000}} and
ΘD
s ≡ {ψ : ψ ∈ {0.01, 0.02, . . . , 0.1, 0.15, 0.2, . . . , 0.95}}. Values at γ = 0 correspond to

the Kingman coalescent. Expected values were computed exactly, and quantiles and power
estimated from 105 replicates. Reverting the hypotheses shows a very similar pattern (results
not shown). In B, we `zoom in' on the range 0 ≤ γ ≤ 50.
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Estimate of power comparing ΘA
s and ΘB

s

Figure S6: Estimate G̃(A,B;s)(α) (A) and G̃(B,A;s)(γ) (B) of power (S7) between algebraic

growth and the Beta(2 − α, α)-coalescent when the test statistic is sup{˜̀(Π, ξ(n), s),Π ∈
ΘΠ0
s } − sup{˜̀(Π, ξ(n), s),Π ∈ ΘΠ1

s } (S4), with ˜̀(Π, ξ(n), s) the log of the Poisson likelihood
function (S8) (no lumping); with number of leaves n as shown and number of segregating
sites s = 50. The test sizes are as shown in the legend. The interval hypotheses are ΘA

s ≡ {γ :
γ ∈ {0, 1, 2, . . . , 10, 20, 30, . . . , 1000}} and ΘB

s ≡ {α : α ∈ {1, 1.025, . . . , 2}}. Values at γ = 0
and α = 2 correspond to the Kingman coalescent. Expected values were computed exactly,
and quantiles and power estimated from 105 replicates. In A, the Beta(2− α, α)-coalescent
is the alternative hypothesis; in B, algebraic growth is the alternative.
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Mean misclassi�cation probabilities and posterior probabilities for

ABC approach - alternative parameter choices

Table S4: Approximations of mean posterior probabilities and misclassi�cation probabilities
for the ABC model comparison between E and B for di�erent growth parameter ranges or
tolerance rates. The nSFS is used as summary statistics. βmax denotes the maximal growth
rate used in the growth model, ncv denotes the number of cross-validations; `lump' indicates
which mutation classes are lumped into one class. An expected number s = 75 of mutations
are assumed.

βmax lump ncv tolerance EB
[
π(E|ζ)

]
EE
[
π(B|ζ)

]
EB

[
π(%B

(E,B)
≥ 1|ζ)

]
EE

[
π(%B

(E,B)
≤ 1|ζ)

]
103 10+ 24000 0.01 0.24 0.11 0.18 0.04
" " " " 0.24 0.11 0.18 0.04

103 50+ 12000 0.01 0.22 0.09 0.18 0.03
" " " " 0.23 0.09 0.19 0.03

103 100+ 1200 0.01 0.22 0.09 0.19 0.03
" " 12000 " 0.22 0.08 0.20 0.02

103 no 12000 0.01 0.30 0.14 0.23 0.04
" " " " 0.30 0.14 0.23 0.04
500 10+ 24000 0.01 0.26 0.13 0.20 0.05
500 50+ 12000 0.01 0.24 0.10 0.20 0.04
500 100+ 1200 0.01 0.26 0.09 0.22 0.03
100 10+ 24000 0.01 0.31 0.21 0.23 0.12
100 50+ 12000 0.01 0.27 0.18 0.20 0.10
103 10+ 24000 0.0025 0.20 0.11 0.15 0.05
103 50+ 12000 0.0025 0.19 0.08 0.15 0.03
103 100+ 1200 0.0025 0.18 0.08 0.16 0.03
103 no 1200 0.0025 0.25 0.13 0.20 0.05
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Table S5: Approximations of mean posterior probabilities and misclassi�cation probabilities
for the ABC model comparison between E and B for tolerance x = 0.0025 and sample size
n = 200 and assumed expected number s = 15 of mutations. The nSFS is used as summary
statistics. ncv denotes the number of cross-validations `lumped' indicates which mutation
classes are lumped into one class.

lump ncv EB
[
π(E|ζ)

]
EE
[
π(B|ζ)

]
EB
[
π(%B(E,B) ≥ 1|ζ)

]
EE
[
π(%B(E,B) ≤ 1|ζ)

]

10 24000 0.28 0.24 0.23 0.14
50 12000 0.31 0.26 0.25 0.14
100 12000 0.33 0.27 0.28 0.15
no 12000 0.34 0.26 0.29 0.15

Table S6: Approximations of mean posterior probabilities and misclassi�cation probabilities
for the ABC model comparison between E and B for tolerance x = 0.001 and sample size
n = 200, assumed expected number s = 15 of mutations and alternative prior ranges and
distributions. The nSFS is used as summary statistics. ncv denotes the number of cross-
validations `lumped' indicates which mutation classes are lumped into one class. For growth
rate β, the prior is uniformly distributed on {βmin, βmin + 10, . . . , βmax}. For coalescent
parameter α, the prior is uniformly distributed on [αmin, αmax]

lump ncv βmin, βmax αmin, αmax EB
[
π(E|ζ)

]
EE
[
π(B|ζ)

]
EB

[
π(%B

(E,B)
≥ 1|ζ)

]
EE

[
π(%B

(E,B)
≤ 1|ζ)

]
10 24000 0,100 1.5,2 0.39 0.34 0.30 0.23
50 12000 0,100 1.5,2 0.38 0.31 0.31 0.18
10 24000 100,1000 1,1.5 0.33 0.28 0.29 0.14
50 12000 100,1000 1,1.5 0.36 0.32 0.31 0.18

Table S7: Approximations of the misclassi�cation probabilities for the ABC model com-
parison between models E, B, D for tolerance x = 0.005, sample size n = 200 and
s ∈ {15, 75}. The folded nSFS was used as summary statistics. We use the abbreviation

mc(Π1|Π2) := EΠ2

[
π(minΠ 6=Π1 %

B
(Π1,Π) ≥ 1|ζ(n))

]
, Π1,Π2 ∈ {E, B, D}.

s lump ncv mc(E|B) mc(D|B) mc(B|E) mc(D|E) mc(B|D) mc(E|D)

15 10+ 24000 0.27 0.07 0.12 0.01 0.62 0.01
15 50+ 12000 0.39 0.06 0.08 0.01 0.60 0.03
15 no 12000 0.42 0.07 0.08 0.01 0.64 0.04
75 10+ 24000 0.19 0.04 0.05 0.00 0.09 0.00
75 50+ 12000 0.24 0.04 0.04 0.00 0.09 0.00
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Table S8: Approximations of the misclassi�cation probabilities for the ABC model com-
parison between models A, B, D for tolerance x = 0.005, sample size n = 200 and
s ∈ {15, 75}. The folded nSFS was used as summary statistics. We use the abbreviation

mc(Π1|Π2) := EΠ2

[
π(minΠ 6=Π1 %

B
(Π1,Π) ≥ 1|ζ(n))

]
, Π1,Π2 ∈ {A, B, D}.

s lump ncv mc(A|B) mc(D|B) mc(B|A) mc(D|A) mc(B|D) mc(A|D)

15 10+ 24000 0.01 0.06 0.01 0.04 0.15 0.53
15 50+ 12000 0.01 0.06 0.01 0.04 0.18 0.52
75 10+ 24000 0.00 0.03 0.01 0.06 0.09 0.25
75 50+ 12000 0.00 0.03 0.01 0.05 0.14 0.27
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ABC analysis of the cytochrome b mtDNA data of Árnason (2004)

To investigate which model class (exponential growth E, algebraic growth A, Beta(2− α, α)-

coalescents B, Dirac coalescents D) �ts better to the data, we use the ABC model com-

parison approach given the (lumped) nfSFS of the observed mitochondrial locus. The ex-

ponential growth model class is speci�ed by an uniform prior for growth parameter β on

{0, 1, 2, . . . , 1000}, the algebraic growth class by an uniform prior for growth parameter γ

on {0, 1, 2, . . . , 1000}. The class of Beta n-coalescents is speci�ed by an uniform prior on

{1, 1.01, . . . , 2} for the coalescent parameter α, the class of Dirac coalescents by an uniform

prior on {0.01, 0.02, . . . 0.99} for the coalescent parameter ψ (we omit the star-shaped coales-

cent ψ = 1 because the observed SFS has not only singleton mutations, thus directly violating

this model). We used two tolerance levels of 0.005 and 0.00125 and perform nr = 200, 000

simulations for each model class. See Table S9 for the approximated Bayes factors %B(E,B) for

the model comparison of the growth model and the Beta n-coalescent model using di�erent

lumps of the nfSFS as summary statistics. The Bayes factors %B(A,Π), %
B
(D,Π) for Π ∈ {E, B} have

maximal values of ≈ 0.01, 0.001 under all lumpings and both tolerances. The observed data

�ts slightly better to the growth model than to the Beta coalescent class, but not so much

better that we could discard the Beta n-coalescents as possible genealogy models for this

locus. The latter point is also highlighted by results for an ABC model comparison between

only model classes E and B where all lumpings but 100+ again (slightly) favour the growth

model, but for 100+ lumping this is reversed (%B(E,B) = 0.69 for tolerance 0.005). The Dirac

coalescents and the algebraic growth model show neglectible support for all lumpings and

thus we discard them as potential models.

Table S9: Approximated Bayes factor %B(E,B) given the Atlantic cod mtDNA data

lumping number 10+ 50+ 100+ 200+ no
tolerance 0.005 7.79 2.23 2.09 2.97 2.98
tolerance 0.00125 10.35 2.97 2.23 6.87 7.13

Jeffreys (1961) suggested interpreting Bayes factors according to the log10 scale. Lump-

ing at 10 (Table S9) then gives at least `substantial' (1/2 < log10(%B(E,B)) ≤ 1) evidence
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against the Beta(2 − α, α)-coalescent in favor of exponential growth. Using Kass and

Raftery (1995) suggestion of considering Bayes factors on 2 loge scale gives `positive'

(2 < 2 loge(%
B
(E,B)) < 6) evidence in favor of exponential growth, based on lumping at 10.

Additionally to the ABC model comparison, we also evaluate which parameters �t best

to the observed nfSFS at the mitochondrial locus. We omit the class of Dirac coalescents

and algebraic growth models from further analysis since the observed frequency spectrum

clearly does not �t to this model class. For each other model class used, we record the

prior parameters from the 0.5% of the nr = 200, 000 simulations that have the smallest `2

distance to the observed nfSFS (summary statistics). This gives an approximate sample of

the posterior distribution of π(α| observed ζ(n)) resp. π(β| observed ζ(n)). Again, we used

the lumped nSFS as summary statistics. Figure S7 shows the posterior distributions for

di�erent lumping numbers.
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Figure S7: Approximate posterior density of the coalescent parameter from ABC �tting
of the (A) growth, and (B) Beta n-coalescent model classes to the observed nfSFS in the
Atlantic cod data. Denote by α the Beta n-coalescent parameter, β the growth rate. Priors
were uniform on both sets.

�

�coalescent parameter α

growth parameter β

A exponential growth

B Beta(2− α, α)-coalescent
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ABC quality control for the Árnason (2004) data

We follow the recommendation from the R package abc (Csilléry et al., 2012) and perform

three checks of quality for the presented ABC approach. We focus on the lumping which

gives the clearest distinction, namely the lumping of all classes with mutation counts 10 or

higher (class 10+). All checks are performed using the R package abc

To assess the general ability to distinguish between the two model classes in the setting (i.e.,

number of observed mutations and sample size) given by the Atlantic cod mtDNA data from

Árnason (2004), we again employ a leave-one-out cross-validation as described in Methods.

See Table S10 for the results.

Table S10: Approximations of the mean posterior probabilities and misclassi�cation
probabilities (based on ncv = 12, 000 cross-validations) for the ABC model compari-
son between models E, A, B, D for tolerance x = 0.005, sample size n = 1278 and
mutation rate estimated via Watterson's estimator from s = 39 observed mutations.
The lumped nfSFS (10+) was used as summary statistics. The entries are listed as

EΠrow

[
π(Πcol|ζ)

]
/EΠrow

[
π(minΠ 6=Πcol

%BΠcol,Π
≥ 1|ζ(n))

]
.

E A B D

E 0.79/0.88 0.00/0.00 0.21/0.12 0.00/0.00
A 0.00/0.00 0.24/0.25 0.06/0.01 0.70/0.74
B 0.24/0.18 0.01/0.00 0.71/0.79 0.03/0.02
D 0.00/0.00 0.03/0.03 0.08/0.03 0.90/0.94

To assess the quality to distinguish the parameters within one model class, we again use

leave-one-out cross-validations (ncv = 12, 000). The parameter of each simulation chosen

for cross-validation is estimated as the median of the 0.5% of simulations with the smallest

`2 distance to the chosen simulation. Figure S8 shows the resulting scatter plots of the

parameters of the chosen simulations and the corresponding estimations.
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Figure S8: Scatter plots of estimated vs. true parameters of ncv = 12000 cross-validated
simulations in the (A) Beta coalescent; (B) exponential growth.

A Beta(2− α, α)-coalescent B exponential growth
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To see whether the posterior distributions given the cod mtDNA data from Árnason

(2004) de�ne models under which the observed data is reproducible, we perfomed posterior

predictive checks by simulating the 10+ lumped nfSFS under the posterior distribution (i.e.,

simulating once from each parameter set of each of the 1,000 accepted simulations) for each

model class and compare these with the nfSFS observed. See Figure S9 for the results within

each nfSFS class. To assess the minimal l2 distance of the simulations using the posterior

parameter distributions from the observed nfSFS, we simulated 5 replications under the

posteriors. The minimal l2 distance was 0.04 under the posterior growth model and 0.06

under the posterior Beta coalescent model.

Figure S9: Posterior predictive checks with 1,000 simulations of the nfSFS under the
approximate posterior distributions given the cod data from Árnason (2004) for the (A)
Beta coalescent model class; (B) growth model class. Asterisks denote the observed values
in the data.

A B

The quality checks reveal that we can not distinguish well within the model classes of

exponential growth and of Beta coalescents, but moderately between them. Additionally,

the ABC approach distinguishes well between these two classes on one hand and the (non-

�tting) other two classes A, D. The posterior predictive checks reveal that both model classes

can produce the observed values in each class of the nfSFS, but do not match well in l2 to

SI 31 B. Eldon et al.



the actual observed nfSFS. Neither model class thus captures the observed nfSFS well.
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