File S3

Python simulation code

#Lex Flagel, Monsanto Co.

#10/29/14

#Estimating genotypic sampling error between treatment and control population using
#Monte Carlo

#

#Copyright (c) 2014 Monsanto Co.

#Permission is hereby granted, free of charge, to any person obtaining a copy of this
#software and associated documentation files (the "Software'™), to deal in the Software
#without restriction, including without limitation the rights to use, copy, modify,
#merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
#permit persons to whom the Software is furnished to do so, subject to the following
#conditions:

#

#The above copyright notice and this permission notice shall be included in all copies
#or substantial portions of the Software.

#

#THE SOFTWARE IS PROVIDED "AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
#INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
#PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
#HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
#CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
#0R THE USE OR OTHER DEALINGS IN THE SOFTWARE.

#python 2.7 code, requires numpy
import random

from collections import defaultdict
from numpy import median, std

def sampler(pop, size, replacement=False):
"""a quick re-implementation of the python random sampler that
allows for sampling with or without replacement (pythons builtin only
allows without replacement)®"*
it replacement:
return [random.choice(pop) for i iIn xrange(size)]
else:
return random.sample(pop, size)

def count_all(xlist, proportions=False):
"""Count all the items in a list, return a dict
with the item as key and counts as value™""
out = defaultdict(int)
for i in xlist: out[i]+=1
if proportions:
out2 = {}
tot_sz = float(sum(out.values()))
for i1 in out: out2[i] = out[i] / tot sz
return out2
else: return out

fams = [("fam.11", 101,145),("fam.37", 120,182),("fam.24", 62,368)]#samp sizes for
families 11, 37, and 24
geno = "ab"#2 alleles each at 50% freq, this will maximize variance
sampler_gen = lambda size: count_all([""-join(sorted(sampler(geno,2,1))) for i in
range(size)],1)
print "(fam,sl,s2)\t genotype\tMAD\tSD"
for fam in fams:
ffam, cl, c2 = fam
d = [[sampler_gen(cl), sampler_gen(c2)] for i in xrange(5000)]
for 1 in [faa", "ab", "bb"]:

L. E. Flagel et al. 95l

if fam == ("fam.24", 62, 368) and 1 == "ab": star="*"
else: star = **
abs_dev = [abs(q[O][i]-q[1]1[i]) for g in d]
print "\t"_join(map(str, [fam, i, round(median(abs_dev),5),
round(std([q[O][i]-q[1]1[i] for g in d], ddof=1),5), star]))

10SI L. E. Flagel et al.

