Table S2 Theoretical frequencies of the twelve identifiable genotypes in the double cross population for Scenario 10. A_1 , B_1 , C_1 and D_1 are the four alleles at locus 1. A_2 and B_2 are the two alleles at locus 2. Recombination frequencies in the female and male parents are denoted as r_F and r_M , respectively. The combined recombination frequency is denoted as r. The last column gives the symbol of observed sample size of each genotype.

Genotype	Locus 1	Locus 2	Frequency	Combined	Sample size
				recombination	
				frequency	
1	A_1C_1	A_2A_2	$\frac{1}{4}(1-r_F)r_M$	$\frac{1}{4}r(1-r)$	n_1
2	A_1C_1	A_2B_2	$\frac{1}{4}(1-r_F)(1-r_M)+\frac{1}{4}r_Fr_M$	$\frac{1}{4}(1-2r+2r^2)$	n_2
3	A_1C_1	B_2B_2	$\frac{1}{4}r_F(1-r_M)$	$\frac{1}{4}r(1-r)$	n_3
4	A_1D_1	A_2A_2	$\frac{1}{4}(1-r_F)(1-r_M)$	$\frac{1}{4}(1-r)^2$	n_4
5	A_1D_1	A_2B_2	$\frac{1}{4}(1-r_F)r_M + \frac{1}{4}r_F(1-r_M)$	$\frac{1}{2}r(1-r)$	n_5
6	A_1D_1	B_2B_2	$\frac{1}{4} r_F r_M$	$\frac{1}{4} r^2$	n_6
7	B_1C_1	A_2A_2	$\frac{1}{4} r_F r_M$	$\frac{1}{4} r^2$	n ₇
8	B_1C_1	A_2B_2	$\frac{1}{4}(1-r_F)r_M + \frac{1}{4}r_F(1-r_M)$	$\frac{1}{2}r(1-r)$	n_8
9	B_1C_1	B_2B_2	$\frac{1}{4}(1-r_F)(1-r_M)$	$\frac{1}{4}(1-r)^2$	n 9
10	B_1D_1	A_2A_2	$\frac{1}{4}r_F(1-r_M)$	$\frac{1}{4}r(1-r)$	n_{10}
11	B_1D_1	A_2B_2	$\frac{1}{4}(1-r_F)(1-r_M)+\frac{1}{4}r_Fr_M$	$\frac{1}{4}(1-2r+2r^2)$	<i>n</i> ₁₁
12	B_1D_1	B_2B_2	$\frac{1}{4}(1-r_F)r_M$	$\frac{1}{4}r(1-r)$	n_{12}