A Genome-Wide Association Study of Resistance to Stripe Rust (Puccinia striiformis f. sp. tritici) in a

Worldwide Collection of Hexaploid Spring Wheat (Triticum aestivum L.)

Marco Maccaferri^{*,51}, Junli Zhang^{*1}, Peter Bulli^{†1}, Zewdie Abate^{*}, Shiaoman Chao^{**}, Dario Cantu^{***}, Eligio Bossolini^{*}, Xianming Chen^{††}, Michael Pumphrey[†], <u>Jorge Dubcovsky^{*,†+†, 2}</u>

* Department of Plant Sciences, University of California, Davis, CA 95616, USA

[§] Department of Agricultural Sciences (DipSA), University of Bologna, Bologna 40127, Italy

[†] Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA

^{††} USDA-ARS, Wheat Genetics, Quality Physiology, and Disease Research Unit, and Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA

** USDA-ARS, 1605 Albrecht Blvd, Fargo, ND 58105, USA

*** Department of Viticulture and Enology, University of California, Davis, CA 95616, USA

^{†††}Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA

¹ The first three authors contributed equally to this study.

² Corresponding author: J. Dubcovsky. Email: jdubcovsky@ucdavis.edu Phone: (530) 752-5159

Supplemental File S5. Supporting data for Figure 6.

SUPPLEMENTAL INFORMATION FOR FIGURE 6

Table S11 in this supplemental file summarizes the information used to generate **Figure 6**. The 10 experiment-wise significant QTL described in **Table 3** and previously mapped *Pst* resistance genes and QTL were both projected onto the integrated map reported in supplemental **File S4**. These 10 regions are discussed in detail after the Table.

 Table \$11 includes chromosome name, QTL start and end position (as % of the total length of the chromosomes in the

 integrated map described in Supplemental File \$4), the name of the gene or QTL, the name of the parent that contributed the

 resistant allele, the reference used to obtain this information and the ID number used in Figure 6. For genes included in the

 Catalogue of Gene Symbols for Wheat (McIntosh *et al.* 2013) or the 2013-2014 Supplement

 (http://wheat.pw.usda.gov/GG2/Triticum/wgc/2013/2013-2014_Supplement.pdf), "Wheat Catalogue" is indicated as

 reference, except if more recent or precise references are available (a single paper is selected).

For the named *Yr* genes previously mapped as Mendelian loci, the position in **Figure 6** is based on the projection of its reported position onto the integrated map, and the confidence interval is based on published flanking markers (**Table S11**). The 10 significant QTL identified in this study are presented with confidence interval of ± 1.6 cM as discussed in the main text. Gene positions and confidence intervals presented here should be considered as tentative because of the approximate nature of the integrated map (**Supplemental File S4**), which is caused in part by the limited numbers of common markers between SNP-based and SSR-based maps. The objective of this figure is to identify previously mapped *Pst* resistance genes and QTL present in the QTL regions identified in this study. Further allelism studies will be necessary to determine if closely mapped loci represent different resistance genes or alleles of the same gene.

Chr	Start (%)	End (%)	QTL	Reference	Ref_No
1A	0.0	5.7	QYrid.ui-1A_Rio Blanco	Chen <i>et al.</i> 2012	67
1A	8.1	10.2	QYr.tam-1A_Avocet-YrA	Basnet et al. 2014b	5
1A	16.5	20.1	QYr.sgi-1A.1_Kariega	Prins <i>et al.</i> 2011	40
1A	21.7	31.8	QYr.tam-1AS_TAM111	Basnet et al. 2014a	6
1A	24.5	46.8	QYr.sun-1A_Janz	Bariana <i>et al.</i> 2010	4
1A	75.7	100.0	QYr.tam-1AL_TAM112	Basnet et al. 2014a	6
1A	77.8	80.3	QYr.caas-1AL_Naxos	Ren <i>et al.</i> 2012a	45
1A	81.9	83.0	QYr.cim-1AL_Pastor	Rosewarne et al. 2012	48
1B	0.0	1.7	Yr10	Ma et al. 2001	31
1B	1.7	9.3	Yr9	Lukaszewski 2000	68
1B	5.1	28.0	QYr.cau-1BS_AQ24788-53	Quan <i>et al.</i> 2013	42
1B	24.8	34.6	YrAlp	Wheat Catalogue ^a	66
1B	28.2	34.6	QYr.caas-1BL.1RS_SHA3/CBRD	Ren <i>et al.</i> 2012a	45
1B	30.1	32.1	Yr15	Cheng et al. 2014	10
1B	30.9	32.7	YrH52	Cheng et al. 2014	10
1B	32.7	34.5	Yr64	Cheng et al. 2014	10
1B	37.4	39.0	Yr65	Cheng <i>et al.</i> 2014	10
1B	39.0	41.3	Yr24/Yr26	Cheng <i>et al.</i> 2014	10

Table S11. Pst resistance genes and QTL included in Figure 6 (organized by chromosome)

1B	41.2	54.5	QYr.cim-1BS_Pastor	Rosewarne et al. 2012	48
1B	61.3	67.2	QYr-1B_Sachem	Singh <i>et al.</i> 2013	51
1B	70.8	75.2	YrExp1	Wheat Catalogue	66
1B	75.3	100.0	QYrex.wgp-1BL_Express	Lin and Chen 2009	25
1B	80.0	96.7	QYr.sun-1B_Kukri	Bariana <i>et al.</i> 2010	4
1B	80.0	90.2	QYr.sun-1B_CPI133872	Zwart <i>et al.</i> 2010	65
1B	84.2	96.3	QYr.sun-1B_Wollaroi	Bansal et al. 2014	3
1B	90.0	100.0	Yr29/Lr46	Lan <i>et al.</i> 2014	21
1B	87.9	89.7	QYr.ucw-1B (IWA3892)	This study	
1B	90.1	94.8	QYr.jic-1B_Guardian	Melichar et al. 2008	35
1B	90.2	98.7	QYr.tam-1B_Quaiu	Basnet <i>et al.</i> 2014b	5
1B	90.2	98.7	QYr.cim-1BL_Francolin	Lan <i>et al.</i> 2014	21
1B	90.3	96.3	QYr-1B_Saar	Lillemo <i>et al.</i> 2008	24
1B	93.6	100.0	QYr.cim-1BL_Pastor (Lr46/Yr29)	Rosewarne et al. 2012	48
1D	0.8	8.5	QYr.caas-1DS_Naxos	Ren <i>et al.</i> 2012a	45
1D	1.4	10.1	QYrst.orr-1DS_Stephens	Vazquez et al. 2012	55
1D	5.1	8.5	QYr.sun-1D_CPI133872	Zwart <i>et al.</i> 2010	65
1D	24.0	25.6	QYr.ucw-1D (IWA980)	This study	
2A	0.0	6.1	QYr.tam-2AS_TAM111	Basnet <i>et al.</i> 2014a	6
2A	0.0	20.0	Yr17 (2NS -2AS translocation)	Helguera <i>et al.</i> 2003	72
2A	1.9	16.8	QYr.uga-2AS_26R61	Hao <i>et al.</i> 2011	17
2A	2.0	6.3	Yr56	Wheat Catalogue	66
2A	2.9	4.0	QYr.ucw-2A.2 (IWA422)	This study	
2A	2.1	7.6	QYr.ufs-2A_Cappelle-Desprez_Yr16	Agenbag <i>et al.</i> 2012	1
2A	2.3	2.5	QYr.sun-2A_Wollaroi	Bansal et al. 2014	3
2A	2.5	7.6	QYr.inra_2AS.1_Recital	Dedryver <i>et al.</i> 2009	13
2A	4.0	15.0	QYrva.vt-2AS_VA00W-38	Christopher et al. 2013	11
2A	8.3	11.9	QYr.inra-2AL_CampRemy	Mallard et al. 2005	33
2A	9.9	13.1	QYrst.orr-2AS_Stephens	Vazquez <i>et al.</i> 2012	55
2A	6.7	14.1	QYr.ucw-2A_PI610750	Lowe <i>et al.</i> 2011	27
2A	26.3	27.4	QYr.ucw-2A.3 (IWA424)	This study	
2A	37.9	41.4	QYr.sun-2AS_Kukri	Bariana <i>et al.</i> 2010	4
2A	33.3	41.4	Yrxy2	Zhou <i>et al.</i> 2011	63
2A	48.3	59.5	Yr32	Eriksen <i>et al.</i> 2004	73
2A	75.9	83.2	Yr1	Wheat Catalogue	66
2A	79.1	100.0	QYr.inra_2AL.2_Camp Remy	Boukhatem <i>et al.</i> 2002	7
2B	10.0	15.5	QYr.inra-2BS_Renan	Dedryver <i>et al.</i> 2009	13
2B	10.6	11.4	QYrst.orr-2B.1_Stephens	Vazquez <i>et al.</i> 2012	55
2B	18.6	21.3	QYr-2B-Attila (Yr27)	Rosewarne et al. 2008	47
2B	19.9	30.4	QYrlu.cau-2BS1_Luke	Guo <i>et al.</i> 2008	16
2B	25.1	27.4	QYrid.ui-2B.1_IDO444	Chen <i>et al.</i> 2012	67
2B	27.4	30.0	QYr.sgi-2B.1_Kariega	Prins et al. 2011	40
2B	27.4	29.2	YrP81 ^b	Wheat Catalogue	66

2B	27.5	29.1	YrC51	Zheng <i>et al.</i> 2014	62
2B	28.2	32.0	QYr.sgi-2B.1_Kariega	Ramburan <i>et al.</i> 2004	69
2B	29.6	47.9	Yr41	Wheat Catalogue	66
2B	29.1	32.2	QYr.cim-2BS_(Yr31)_Chapio	Yang et al. 2013	60
2B	29.6	44.5	QYrlo.wpg-2BS_Louise	Carter et al. 2009	8
2B	30.4	50.2	QYrid.ui-2B.2_IDO444	Chen <i>et al.</i> 2012	67
2B	30.4	36.4	QYrst.orr-2BS.2_Stephens	Vazquez et al. 2012	55
2B	30.6	32.3	QYrlu.cau-2BS2_Luke	Guo <i>et al.</i> 2008	16
2B	32.3	33.5	YrH9014	Ma et al. 2013	32
2B	32.3	49.1	QYr.caas-2BS_Pingyuan 50	Lan <i>et al.</i> 2010	70
2B	34.4	36.4	Yr27	Wheat Catalogue	66
2B	35.4	44.3	QYr-2B_Opata 85	Boukhatem et al. 2002	7
2B	36.6	47.9	QYr.tam-2BL_TAM111	Basnet et al. 2014a	6
2B	30.4	44.3	ҮгКК	Wheat Catalogue	66
2B	39.8	49.1	QYr.ucw-2B_UC1110	Lowe <i>et al</i> . 2011	27
2B	42.1	50.5	QYr.inra-2B.1_Camp Remy	Mallard et al. 2005	33
2B	44.3	47.9	QYr.cim-2BS_Francolin	Lan <i>et al.</i> 2014	21
2B	59.8	60.0	QYr.inra-2B.2_CampRemy	Mallard et al. 2005	33
2B	60.1	66.6	QYr.caas-2BL_Naxos	Ren <i>et al.</i> 2012a	45
2B	62.1	73.6	QYraq.cau-2BL_Aquileja	Guo <i>et al.</i> 2008	16
2B	62.1	64.5	Yr5	McGrann et al. 2014	34
2B	63.9	66.1	Yr44	Xu <i>et al.</i> 2013	58
2B	66.1	78.1	Yr53	Xu <i>et al.</i> 2013	58
2B	78.1	82.1	Yr43	Xu <i>et al.</i> 2013	58
2B	86.8	90.7	Yr3	Wheat Catalogue	66
2B	89.2	90.8	QYr-2B_Avocet	Rosewarne et al. 2008	47
2D	0.0	4.8	QYr.caas-2DS_Libellula	Lu <i>et al.</i> 2009	28
2D	34.2	36.9	QYr.ufs-2DS_ Cappelle-Desprez	Agenbag <i>et al.</i> 2012	1
2D	31.4	55.8	QYr.inra-2DS_Camp Remy	Mallard <i>et al.</i> 2005	33
2D	44.1	55.8	QYr.caas-2DL_Naxos	Ren <i>et al.</i> 2012a	45
2D	55.6	61.3	QYr.jic-2D_Guardian	Melichar et al. 2008	36
2D	68.4	79.5	QYr.tam_2D_Quaiu	Basnet et al. 2014b	5
2D	72.1	81.5	QYr.jic-2D_Briagdier	Jagger <i>et al.</i> 2011	20
2D	67.1	74.5	Yr55	Wheat Catalogue	66
2D	70.7	80.3	Yr54	Wheat Catalogue	66
3A	5.0	9.2	QYr-1B_Saar	Lillemo <i>et al.</i> 2008	24
3A	12.8	22.4	QYrst.orr-3AL_Stephens	Vazquez et al. 2012	55
3A	37.4	42.0	QYr.cau-3AL_AQ24788-53	Quan <i>et al.</i> 2013	42
3A	69.7	75.5	QYr.cim-3A_Avocet	Rosewarne et al. 2012	48
3B	0.0	6.2	QYr-3B_Opata85	Singh <i>et al.</i> 2000	50
3B	0.0	1.8	Yr4	Wheat Catalogue	66
3B	0.0	10.0	Yr57	Wheat Catalogue	66
3B	2.3	6.9	Yr30	Suenaga <i>et al.</i> 2003	53

3B	0.0	5.3	QYr-3B.1-Pavon76	Williams et al. 2006	57
3B	0.0	6.7	QYr.cim-3BS_Chapio_Yr30	Yang <i>et al.</i> 2013	60
3B	2.1	13.7	QYr.tam-3B_Quaiu	Basnet et al. 2014b	5
3B	2.3	14.9	QYr.cim-3BS.2_Frankolin	Lan <i>et al.</i> 2014	21
3B	2.3	7.0	QYr-3B_Oligoculm	Suenaga <i>et al.</i> 2003	53
3B	2.3	5.7	QYr-3B_Alturas	Zhao <i>et al.</i> 2012	61
3B	2.8	7.9	QYr.inra-3BS_Renan	Dedryver <i>et al.</i> 2009	13
3B	4.4	6.7	QYr.ucw-3BS_UC1110	Lowe <i>et al.</i> 2011	27
3B	6.5	8.0	QYr.ucw-3B.2 (IWA5202)	This study	
3B	6.7	11.6	QYr.uga-3BS.1_AGS2000	Hao <i>et al.</i> 2011	17
3B	14.9	16.5	Yrns-B1	Wheat Catalogue	66
3B	28.3	37.6	QYr.sun-3B_Kukri	Bariana <i>et al.</i> 2010	4
3B	42.1	60.7	QYr.cim-3B_Pastor	Rosewarne et al. 2012	48
3B	50.5	60.9	QYr.inra-3Bcentr_Renan	Dedryver et al. 2009	13
3B	51.2	65.1	QYrpi.vt-3BL_VA00W-38	Christopher et al. 2013	11
3B	68.6	71.9	QYr.sun-3B_Wollaroi	Bansal <i>et al.</i> 2014	3
3B	85.6	98.1	QYrid.ui-3B_Rio Blanco	Chen <i>et al.</i> 2012	67
3B	88.2	99.5	QYrex.wgp-3BL_Express	Lin and Chen 2009	25
3D	0.4	2.4	Yr66	Wheat Catalogue	66
3D	7.1	8.6	Yr49	Wheat Catalogue	66
3D	4.6	24.1	QYr.tam-3D_Quaiu	Basnet <i>et al.</i> 2014b	5
3D	60.2	72.0	Yr45	Wheat Catalogue	66
4A	70.5	80.8	Yr51	Randhawa <i>et al.</i> 2014	43
4A	74.2	79.1	QYr-4A_Sachem	Singh <i>et al.</i> 2013	51
4A	74.2	81.2	QYr.orr-4AL_Stephens	Vazquez et al. 2012	55
4A	74.4	80.2	QYr.sgi-4A.2_Kariega	Ramburan <i>et al.</i> 2004	69
4A	76.1	84.5	QYr.sgi-4A.1_Kariega	Ramburan <i>et al.</i> 2004	69
4A	78.8	85.7	QYr.ui-4A_IDO444	Chen <i>et al.</i> 2013	67
4A	80.1	94.8	QYr.sgi-4A.1 and 4A.2_Kariega	Prins et al. 2011	40
4A	83.3	85.7	Yr60	Wheat Catalogue	66
4A	84.3	85.8	QYr.ucw-4A (IWA1034)	This study	
4B	32.9	40.7	QYr-4B_Sachem	Singh <i>et al.</i> 2013	51
4B	34.6	51.9	QYr.ufs-4B_Palmiet	Agenbag <i>et al.</i> 2012	1
4B	36.3	64.0	QYr.sun-4B_Janz	Zwart <i>et al.</i> 2010	65
4B	39.0	68.6	Yr50	Liu <i>et al.</i> 2013	26
4B	39.4	51.9	QYr-4B_Avocet	William et al. 2006	57
4B	49.2	52.4	QYr.caas-4BL_Libellula	Lu <i>et al.</i> 2009	28
4B	49.7	53.8	QYr.ui-4B_Rio Blanco	Chen <i>et al.</i> 2014	67
4B	52.1	58.1	Yr62	Lu <i>et al</i> . 2014	29
4B	54.8	62.1	QYr.jic-4B_Alcedo	Jagger <i>et al.</i> 2011	20
4B	58.1	60.4	QYr.vt-4BL_VA00W-38	Christopher <i>et al.</i> 2013	11
4B	58.1	62.1	QYr.jic-4B_Guardian	Melichar et al. 2008	35
4B	65.8	73.3	QYr-4B_Oligoculm	Suenaga <i>et al.</i> 2003	53

4D	14.0	15.9	YrAS2388	Wheat Catalogue	66
4D	18.4	34.0	QYr.cim-4DS_Pastor	Rosewarne et al. 2012	48
4D	9.4	11.4	Yr28	Wheat Catalogue	66
4D	49.5	50.8	Yr46/Lr67	Herrera-Foessel et al. 2011	18
4D	45.4	53.7	QYr.caas-4DL_Bainong64	Ren <i>et al.</i> 2012b	44
4D	47.2	49.1	QYr.ucw-4D (IWA5375)	This study	
4D	54.0	62.3	QYr-4D_Oligoculm	Suenaga <i>et al.</i> 2003	53
5A	22.3	23.9	QYr.cau-5AS_AQ24788-53	Quan <i>et al.</i> 2013	42
5A	35.7	42.3	QYr.cim-5AL_Francolin	Lan <i>et al.</i> 2014	21
5A	66.8	79.2	QYr-5A_Opata85	Boukhatem <i>et al.</i> 2002	7
5A	66.8	79.9	QYr.cim-5AL_Pastor	Rosewarne et al. 2012	48
5A	81.2	84.6	QYr.caas-5AL.2_SHA3/CBRD	Ren <i>et al.</i> 2012a	45
5A	81.5	88.3	QYr.caas-5AL_Pingyuan 50	Lan <i>et al.</i> 2010	70
5A	86.8	100	Yr48	Wheat Catalogue	66
5A	84.5	100.0	QYr.ucw-5AL_PI610750	Lowe <i>et al.</i> 2011	27
5A	86.7	88.1	QYr.ucw-5A.1 (IWA6988)	This study	
5A	89.9	100.0	Yr34	Wheat Catalogue	66
5B	3.3	10.0	Yr47	Wheat Catalogue	66
5B	11.4	16.7	QYr.uga-5B_AGS2000	Hao <i>et al.</i> 2011	17
5B	20.8	37.0	QYr.cim-5BL_Chapio	Yang <i>et al.</i> 2013	60
5B	37.0	41.2	QYr.ufs-5B_Cappelle-Desprez	Agenbag <i>et al.</i> 2012	1
5B	37.5	38.9	QYr.tem-5B.1_Flinor	Feng <i>et al.</i> 2011	14
5B	42.1	46.5	QYr.inra-5B.1_CampRemy	Mallard <i>et al.</i> 2005	33
5B	53.8	55.2	YrExp2	Wheat Catalogue	66
5B	45.2	47.6	QYr.caas-5BL.1_Libellula	Lu <i>et al.</i> 2009	28
5B	47.6	52.3	QYr-5B_Oligoculm	Suenaga <i>et al.</i> 2003	53
5B	63.3	72.9	QYr.sun-5B_Janz	Bariana <i>et al.</i> 2010	4
5B	65.4	67.4	QYr.caas-5BL.3_SHA3/CBRD	Ren <i>et al.</i> 2012a	45
5B	70.3	75.7	QYr.tem-5B.2_Flinor	Feng <i>et al.</i> 2011	14
5B	70.3	73.2	QYr.caas-5BL.2_Libellula	Lu <i>et al.</i> 2009	28
5B	70.3	74.8	QYr.inra-5BL.2_CampRemy	Mallard <i>et al.</i> 2005	33
5B	84.4	97.1	QYr.sun-5B_Wollaroi	Bansal <i>et al.</i> 2014	3
5B	84.8	100.0	QYr.ui-5B_IDO444	Chen <i>et al.</i> 2012	67
5D	0.0	4.0	Yr40	Wheat Catalogue	66
6A	0.0	7.1	QYr.uga-6AS_26R61	Hao <i>et al.</i> 2011	17
6A	3.8	7.1	QYr.wgp-6AS_Express	Lin and Chen 2009	25
6A	7.6	17.8	QYr.cim-6A_Avocet	Rosewarne et al. 2012	48
6A	49.7	68.0	QYr.cim-6AL_Francolin	Lan <i>et al.</i> 2014	21
6A	56.9	67.3	YrLM168	Feng <i>et al.</i> 2014	15
6A	61.6	66.8	QYr.ufs-6A_Kariega	Prins et al. 2011	40
6A	62.7	74.6	QYr-6A_Saar	Lillemo <i>et al.</i> 2008	24
6A	63.9	73.1	QYr-6A_Avocet	Williams et al. 2006	57
6A	71.3	74.7	QYr.orr-6AL_Stephens	Vazquez et al. 2012	55

6B	6.9	12.3	QYr.ufs-6B_Kariega	Prins <i>et al.</i> 2011	40
6B	9.4	19.7	QYr.tam-6BS_TAM111	Basnet et al. 2014a	6
6B	10.3	16.4	QYr.caas-6BS.2_Naxos	Ren <i>et al.</i> 2012a	45
6B	0	14.9	Yr35	Wheat Catalogue	66
6B	12.6	16.4	QYr.caas-6BS_Bainong64	Ren <i>et al.</i> 2012b	44
6B	15.9	21.4	QYr.wgp-6BS.2_Stephens	Santra et al. 2008	49
6B	17.1	34.8	QYr.sun-6B_Janz	Bariana <i>et al.</i> 2010	4
6B	23.1	28.6	QYr-6B_Oligoculm	Suenaga et al. 2003	53
6B	23.1	25.1	Yr36	Uauy <i>et al</i> . 2005	54
6B	24.1	34.8	QYr.wgp-6B.1_Stephens	Santra et al. 2008	49
6B	27.4	42.3	QYr.caas-6BS_Pingyuan 50	Lan <i>et al.</i> 2010	70
6B	42.3	50.2	QYr-6B_Pavon76	Williams et al. 2006	57
6B	42.3	50.2	QYr.inra-6B_Renan	Dedryver et al. 2009	13
6B	56.7	58.3	QYr.ucw-6B (IWA7257)	This study	
6B	70.0	79.9	QYr.cim-6BL_Pastor	Rosewarne et al. 2012	48
6D	42.4	56.1	QYr.ufs-6D_Cappelle-Desprez	Agenbag <i>et al.</i> 2012	1
6D	47.9	49.8	QYr.ucw-6D (IWA167)	This study	
6D	71.6	77.8	QYr-6D_W-7984	Boukhatem et al. 2002	7
7A	0.0	6.1	QYr.cim-7AS_Avocet	Rosewarne et al. 2012	48
7A	6.5	10.1	QYr.inra-7A_Recital	Dedryver et al. 2009	13
7A	12.5	22.8	QYr.caas-7A_Jingshuan16	Ren <i>et al.</i> 2012b	44
7A	12.5	40.2	QYr.sun-7A_CPI133872	Zwart <i>et al.</i> 2010	65
7A	19.5	32.4	Yr61	Wheat Catalogue	66
7A	42.0	49.3	Yrxy1	Zhou <i>et al.</i> 2011	63
7A	69.9	77.1	QYr.orr-7A_Stephens	Vazquez et al. 2012	55
7A	74.4	85.5	QYr.cim-7BL_Avocet	Rosewarne et al. 2012	48
7A	74.6	100.0	QYr.sgi-7A_Kariega	Prins <i>et al.</i> 2011	40
7B	0.0	1.0	Yr63	Wheat Catalogue	66
7B	21.0	27.7	QYr-7B_Oligoculm	Suenaga et al. 2003	53
7B	27.5	48.1	Yr39	Lin and Chen 2007	71
7B	33.8	56.3	QYr.caas-7B.1_SHA3/CBRD	Ren <i>et al.</i> 2012a	45
7B	41.6	47.8	QHtap.wsu-7BL_Alpowa	Lin and Chen 2007	71
7B	41.8	45.9	QYr.orr-7BS_Stephens	Vazquez et al. 2012	55
7B	43.8	58.7	QYr.sun-7B_Kukri	Bariana <i>et al.</i> 2010	4
7B	68.8	75.2	QYr-7B_Tiritea	Imtiaz <i>et al.</i> 2004	19
7B	71.8	73.6	QYr.caas-7BL.2_SHA3/CBRD	Ren <i>et al.</i> 2012a	45
7B	73.5	87.6	QYr.cim-7BL_Pastor	Rosewarne et al. 2012	48
7B	82.7	87.8	YrC591	Wheat Catalogue	66
7B	80.4	82.7	YrZH84	Wheat Catalogue	66
7B	80.5	86.2	QYr-7BL_Strongfield	Singh et al. 2013	51
7B	75.5	77.5	Yr67	Wheat Catalogue	66
7B	81.6	83.2	Yr52	Wheat Catalogue	66
7B	82.6	88.4	QYr-7B_Attila	Rosewarne <i>et al.</i> 2008	47

7B	80.9	84.7	Yr59	Wheat Catalogue	66
7D	26.1	33.6	Yr18/Lr34 (csLV23)	Yang <i>et al.</i> 2013	60
7D	49.8	60.2	Yr33	Wheat Catalogue	66

^a "Wheat Catalogue" here represents both the Catalogue of Gene Symbols for Wheat (McIntosh *et al.* 2013) and the 2013-2014 Supplement (<u>http://wheat.pw.usda.gov/GG2/Triticum/wgc/2013/2013-2014</u> Supplement.pdf).

^b YrP81 is completely linked to YrC51 but there was not space to place in Figure 6.

COMPARISON OF QTL IDENTIFIED IN THIS STUDY WITH PREVIOUSLY MAPPED PST RESISTANCE GENES AND QTL

For this comparison the 10 highly-significant QTL identified in this study and previously mapped *Pst* resistance genes and QTL were both projected in the same integrated map in **File S4**. Distances expressed as % of total length were calculated by dividing the cM position by the total length of the respective map.

QYr.ucw-1B = IWA3892 (1BL)

IWA3892 was mapped on the long arm of chromosome 1B at position 153.1 cM (CI= 87.9 - 89.7%, **File S4**), 19 cM from the most distal marker available for this chromosome (172.4 cM= 100%). This GWAS study detected a second SNP marker (*IWA2077*) associated with *Pst* resistance In the distal region of the 1BL arm. *IWA2077* was mapped 17.8 cM distal to *IWA3892* (CI= 98.9 - 100%). Although *IWA2077* was not significant experiment-wise, it showed significant marker-wise associations for the three locations tested in this study (**Table S4** and **Figure S2**). These results suggest that there might be more than one *Pst* resistance gene in this region, a hypothesis also supported by the presence of non-overlapping QTL (**Figure S6**). For example, the CI of *IWA3892* overlaps with *QYr.sun-1B* (Zwart *et al.* 2010), whereas the CI of *IWA2077* corresponds better with *QYr.cim-1BL* (Rosewarne *et al.* 2012; Lan *et al.* 2014). This last QTL was attributed to the *Yr29/Lr46* locus, which confers partial adult plant resistance to both leaf rust and stripe rust (Bariana *et al.* 2001, 2010; William *et al.* 2003, 2006; Rosewarne *et al.* 2006, 2008, 2012; Lillemo *et al.* 2008; Melichar *et al.* 2008; Zwart *et al.* 2010; Jagger *et al.* 2011; Lan *et al.* 2014). Allelism studies will be required to determine the relationship among the different sources of *Pst* resistance mapped to the distal region of chromosome arm 1BL and the two QTL identified in this study.

QYr.ucw-1D = IWA980 (1DS)

IWA980 was mapped on the centromeric region of the short arm of chromosome 1D, at position 49.3 cM (24.7%, **File S4**). The three QTL for *Pst* resistance previoulsy reported on chromosome 1D (Zwart *et al.* 2010; Vazquez *et al.* 2012; Ren *et al.* 2012a) were mapped on the distal region of chromosme arm 1DS (10% of 1D arm length). Therefore, QTL IWA980 is most likely a novel *Pst* resistance QTL.

QYr.ucw-2A.2 = IWA422 (2AS)

IWA422 was mapped on the distal region of the short arm of chromosome 2A at position 9.9 cM (3.4%, **File S4**). The short arm of chromosome 2A includes *Pst* resistance genes *Yr56* (Catalogue of Gene Symbols for Wheat, Supplement 2013-2014) and *Yr17* (Helguera *et al.* 2003). *Yr56* was mapped between SSR markers *barc124* and *gwm512* (3.2% of 2A) in a very similar position as

IWA422. Yr17 is located within a large distal translocation (25–38 cM= 20% of 2A) of chromosome 2NS from *T. ventricosum* into wheat chromosome 2AS (Helguera *et al.* 2003), which does not recombine with the wheat chromosomes. *IWA422* is likely different from *Yr17* because most new *Pst* races in the western USA are virulent on *Yr17*, whereas the QTL associated with *IWA422* was effective in all three locations tested in this study. At least nine QTL have been identified in the distal region of chromosome arm 2AS (Mallard *et al.* 2005; Dedryver *et al.* 2009; Lowe *et al.* 2011; Hao *et al.* 2011; Vazquez *et al.* 2012; Agenbag *et al.* 2012; Christopher *et al.* 2013; Basnet *et al.* 2014a; Bansal *et al.* 2014). *IW422, Yr56*, and the previous nine QTL have been all mapped within the distal 17% of chromosome 2A, which will complicate the separation of the different resistance loci using allelism tests. The colinear regions for IWA422 in *Brachypodium* and rice include multiple NB-LRR and LRR-receptor-like kinases suggesting that this region may include an ancestral R gene cluster.

QYr.ucw-2A.3 = IWA424 (2AS)

IWA424 was mapped on the short arm of chromosome arm 2A at position 78.3 cM (26.9%, **File S4**). This relative chromosome position is proximal to *IWA422* and the nine linked QTL described above, whose confidence intervals do not overlap with *IWA424* (**Figure 6**). Resistance gene *Yrxy2* (Zhou *et al.* 2011) and *QYr.sun-2AS* (Bariana *et al.* 2010) both map between 38% and 41% of chromosome 2A (long arm centromeric region) with no overlap with *QYr.ucw-2A.3* QTL (26.5-27.4%). These results suggest that *IWA424* may be a novel *Pst* resistance locus.

QYr.ucw-3B.2 = IWA5202 (3BS)

IWA5202 was mapped on the short arm of chromosome 3B at position 15.4 cM (7.2%, **File S4**). Four different named *Pst* resistance genes have been mapped on the short arm of chromosome 3B. The most distal one is *Yr4* (=*YrRub*, Bansal *et al.* 2010), which is 5 cM distal to *Yr30* based on common marker *barc75* (Singh *et al.* 2000; Suenaga *et al.* 2003) and 4 cM distal to *Yr57* based on allelism tests (Catalogue of gene Symbols for Wheat: Supplement 2013-2104). The last two genes were mapped roughly between 3.4 and 7% of the chromosome length, and partially overlap with this QTL (5.6-7.6%), suggesting that it may be the effect of the same resistance gene. Finally, *Yrns-B1* (Khlestkina *et al.* 2007) maps between 14.9% and 16.5% of the arm length, outside the CI of this QTL. In addition to the named *Yr* genes, the distal region of chromosome arm 3BS (15% of the 3B length) includes ten additional QTL (**Table S11**). One of these QTL, *QYr.ucw*-3B.1 (Lowe *et al.* 2011), is no longer effective against the new *Pst* races present in California and is likely different from *QYr.ucw*-3B.2 reported in this study. The *Brachypodium* and rice regions colinear to wheat *IWA5202* include several NB-LRR and LRR-receptor-like kinases suggesting that this region may include an ancestral R gene cluster.

QYr.ucw-4A = IWA1034 (4AL)

IWA1034 was mapped on the long arm of chromosome 4 at position 181.8 cM (85%, **File S4**) in the region translocated from chromosome 7BS. *IWA1034* was mapped within the confidence interval of *QYr.sgi-4A.1/4A.2* (80.1% to 94.8%, Prins *et al.* 2011) and may represent the same gene. *IWA2170* (167.3 cM =78.3%) was mapped proximal to *IWA1034* and was significantly associated with *Pst* resistance in all three locations tested in this study (BLUE DVS *P*<0.001, MTV *P*<0.01 and PLM *P*<0.05) but not in the experiment-wise Bonferroni test. *IWA2170* overlaps with *QYr-4A* (Singh *et al.* 2013) and *QYr.orr-4A* (Vazquez *et al.* 2012) and may represent the same locus.

QYr.ucw-4D = IWA5375 (4DL)

IWA5375 was mapped on the long arm of chromosome 4D at position 82 cM (48.1%, **File S4**). This position overlaps with previously mapped *Yr46/Lr67* gene complex (Hiebert *et al.* 2010; Herrera-Foessel *et al.* 2011) and *QYr.caas-4DL* (Ren *et al.* 2012a) suggesting that they may represent the same locus. Additional indirect evidence supports this hypothesis: The resistant allele for *IWA5375* occurs at high frequency only in South Asia (subpopulations 4C frequency = 0.88) and *Yr46* was transferred from a *T. aestivum* accession from Pakistan (PI 250413). The introgressed segment from PI 250413 was linked to SSR loci *cfd71*, *barc98*, *cfd23*, and *wmc457* (Hiebert *et al.* 2010), which defines a region from 36.7% to 49.6% in our integrated map that overlaps with *IWA5475*. Finally, marker *csSNP856* (=*Kasp856*), which was tightly linked to *Lr67/Yr46* (Forrest *et al.* 2014) is in linkage disequilibrium with *IWA5375* (*r*² value = 0.41, **File S3**).

QYr.ucw-5A.1 = IWA6988 (5AL)

IWA6988 was mapped on the distal region of chromosome arm 5AL (195.8 cM, 87.4%, **File S4**), close to previously mapped partial resistance genes *Yr48* (Lowe *et al.* 2011) and *Yr34* (Bariana *et al.* 2006). However, the interpretation of the relationship between *IWA6988* and these two *Yr* genes is complicated by the existence of a linked SNP in this region that is also associated with *Pst* resistance in the GWAS. Marker *IWA2646* is 5.6 cM distal to *IWA6988* (**FileS4**) and showed significant associations with *Pst* resistance in five out of the six environments tested in this study (*P*<0.01 three locations and *P*<0.001 two locations, **Table S4** and **Figure S2**). However, *IWA6988* and *IWA2646* are not in LD ($r^2 = 0.04$) suggesting that they may be associated to different resistance genes. A high-density map developed in our laboratory showed that *Yr48* is more closely linked to *IWA2646* than to *IWA6988*. This result was further supported by the presence of deletions for *IWA2646* but not for *IWA2646* seems to be closer to *Yr48* (Hegarty and Dubcovsky personal communication). Based on these results, *IWA2646* seems to be closer to *Yr48* than *IWA6988*. Table seems are sociated to a different resistance gene. *Pst* resistance genes *Yr34* has been also mapped on the distal region of chromosome arm 5AL (projected at 98.3%, **Table S11**), but the relationship with *Yr48* is not known because there are no close molecular markers linked to *Yr34* (Bariana *et al.* 2006). The determination of the precise relationship between *Yr34*, *Yr48* and the two significant SNP detected in our GWAS (*IWA6988* and *IWA2646*) will require further allelism tests.

QYr.ucw-6B = IWA7257 (6BL)

IWA7257 was mapped on the long arm of chromosome 6B at position 112.3 cM (57.5%, **File S4**). Three studies identified *Pst* resistance QTL in the proximity of this QTL but their confidenc intervals do not overlap with the confidence interval of *QYr.ucw-6B* (56.5 - 58.5%). *QYr-6B-Pavon76* (Williams et al. 2006) and *QYr.inra-6B* (Dedryver *et al.* 2009) CI extends between 42% and 50%, whereas *QYr.cim-6BL* was mapped between 70% and 80% of the chromosome length (**File S4**). Therefore, *QYr.ucw-6B* confidence interval seems to be different from the closest published QTL and may represent a novel *Pst* resistance locus.

QYr.ucw-6D = IWA167 (6DS)

IWA167 was mapped on the short arm of chromosome 6D at position 82.2 cM (48.8%, **File S4**). This position overlaps with the confidence interval of *QYr.ufs-6D* (Agenbag *et al.* 2012), which was projected onto the integrated map (**File S4**) between 42.4%

and 56% (**Table S11**). However, the peak of *QYr.ufs-6D* was mapped on the long arm of chromosome 6D (Agenbag *et al.* 2012), whereas *IWA167* is located on the short arm of chromosome 6D. The strength of the QTL also seems to be different. *QYr.ufs-6D* was associated with a small effect on *Pst* resistance and was not consistent across years, whereas *QYr.ucw-6D* was the most significant QTL in our study and showed highly significant effects in every environment (**Figure S2**). Finally, the *IWA167* allele associated with *Pst* resistance is present at high frequency only in South Asia (**Table S6**), making unlikely its presence in Cappelle-Desprez, the donor of the resistance allele at *QYr.ufs-6D*. Taken together, these observations suggest that these two QTL represent the effect of different genes. More detailed comparative maps will be required to test this hypothesis.

LITERATURE CITED

- Agenbag, G. M., Z. A. Pretorius, L. A. Boyd, C. M. Bender, and R. Prins, 2012 Identification of adult plant resistance to stripe rust in the wheat cultivar Cappelle-Desprez. Theor. Appl. Genet. 125: 109–120.
- Bansal, U. K., M. J. Hayden, M. B. Gill, and H. S. Bariana, 2010 Chromosomal location of an uncharacterised stripe rust resistance gene in wheat. Euphytica 171: 121–127.
- Bansal, U. K., A. G. Kazi, B. Singh, R. A. Hare, and H. S. Bariana, 2014 Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Mol. Breed. 33: 51–59.
- Bariana, H. S., U. K. Bansal, A. Schmidt, A. Lehmensiek, J. Kaur *et al.*, 2010 Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica 176: 251–260.
- Bariana, H. S., M. J. Hayden, N. U. Ahmed, J. A. Bell, P. J. Sharp *et al.*, 2001 Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aust. J. Agric. Res. 52: 1247–1255.
- Bariana, H. S., N. Parry, I. R. Barclay, R. Loughman, R. J. McLean *et al.*, 2006 Identification and characterization of stripe rust resistance gene *Yr34* in common wheat. Theor. Appl. Genet. 112: 1143–1148.
- Basnet, B. R., A. M. H. Ibrahim, X. Chen, R. P. Singh, E. R. Mason *et al.*, 2014a Molecular mapping of stripe rust resistance in hard red winter wheat TAM 111 adapted to the U.S. high plains. Crop Sci. 54: 1361-1373.
- Basnet, B. R., R. P. Singh, A. M. H. Ibrahim, S. A. Herrera-Foessel, J. Huerta-Espino *et al.*, 2014b Characterization of *Yr54* and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Mol. Breed. 33: 385–399.
- Boukhatem, N., P. V. Baret, D. Mingeot, and J. M. Jacquemin, 2002 Quantitative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred line populations. Theor. Appl. Genet. 104: 111–118.
- Carter, A. H., X. M. Chen, K. Garland-Campbell, and K. K. Kidwell, 2009 Identifying QTL for high-temperature adult-plant resistance to stripe rust (*Puccinia striiformis* f. sp. *tritici*) in the spring wheat (*Triticum aestivum* L.) cultivar "Louise." Theor. Appl. Genet. 119: 1119–1128.
- Chen, J., C. Chu, E. J. Souza, M. J. Guttieri, X. Chen *et al.*, 2012 Genome-wide identification of QTL conferring high-temperature adult-plant (HTAP) resistance to stripe rust (*Puccinia striiformis* f. sp. *tritici*) in wheat. Mol. Breed. 29: 791–800.
- Cheng, P., L. S. Xu, M. N. Wang, D. R. See, and X. M. Chen, 2014 Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor. Appl. Genet. 127: 2267–2277.

- Christopher, M. D., S. Liu, M. D. Hall, D. S. Marshall, M. O. Fountain *et al.*, 2013 Identification and mapping of adult plant stripe rust resistance in soft red winter wheat VA00W-38. Crop Sci. 53: 871-879.
- Dedryver, F., S. Paillard, S. Mallard, O. Robert, M. Trottet *et al.*, 2009 Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat "Renan". Phytopathology 99: 968–973.
- Eriksen, L., F. Afshari, M. J. Christiansen, R. A. McIntosh, A. Jahoor *et al.*, 2004 *Yr32* for resistance to stripe (yellow) rust present in the wheat cultivar Carstens V. Theor. Appl. Genet. 108: 567–575.
- Feng, J., G. Chen, Y. Wei, Y. Liu, Q. Jiang *et al.*, 2014 Identification and genetic mapping of a recessive gene for resistance to stripe rust in wheat line LM168-1. Mol. Breed. 33: 601–609.
- Feng, J., L. L. Zuo, Z. Y. Zhang, R. M. Lin, Y. Y. Cao et al., 2011 Quantitative trait loci for temperature-sensitive resistance to Puccinia striiformis f. sp. tritici in wheat cultivar Flinor. Euphytica 178: 321–329.
- Forrest, K., V. Pujol, P. Bulli, M. Pumphrey, C. Wellings *et al.*, 2014 Development of a SNP marker assay for the *Lr67* gene of wheat using a genotyping by sequencing approach. Mol. Breed. 34: 2109–2118.
- Guo, Q., Z. J. Zhang, Y. B. Xu, G. H. Li, J. Feng *et al.*, 2008 Quantitative trait loci for high-temperature adult-plant and slowrusting resistance to *Puccinia striiformis* f. sp. *tritici* in wheat cultivars. Phytopathology 98: 803–809.
- Hao, Y., Z. Chen, Y. Wang, D. Bland, J. Buck *et al.*, 2011 Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat. Theor. Appl. Genet. 123: 1401–1411.
- Helguera, M., I. A. Khan, J. Kolmer, D. Lijavetzky, L. Zhong-qi *et al.*, 2003 PCR assays for the cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci. 43: 1839–1847.
- Herrera-Foessel, S. A., E. S. Lagudah, J. Huerta-Espino, M. J. Hayden, H. S. Bariana *et al.*, 2011 New slow-rusting leaf rust and stripe rust resistance genes *Lr67* and *Yr46* in wheat are pleiotropic or closely linked. Theor. Appl. Genet. 122: 239– 249.
- Hiebert, C. W., J. B. Thomas, B. D. McCallum, D. G. Humphreys, R. M. DePauw *et al.*, 2010 An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor. Appl. Genet. 121: 1083–1091.
- Imtiaz, M., M. Ahmad, M. G. Cromey, W. B. Griffin, and J. G. Hampton, 2004 Detection of molecular markers linked to the durable adult plant stripe rust resistance gene *Yr18* in bread wheat (*Triticum aestivum* L.). Plant Breed. 123: 401–404.
- Jagger, L. J., C. Newell, S. T. Berry, R. MacCormack, and L. A. Boyd, 2011 The genetic characterisation of stripe rust resistance in the German wheat cultivar Alcedo. Theor. Appl. Genet. 122: 723–733.
- Khlestkina, E. K., M. S. Röder, O. Unger, A. Meinel, and A. Börner, 2007 More precise map position and origin of a durable nonspecific adult plant disease resistance against stripe rust (*Puccinia striiformis*) in wheat. Euphytica 153: 1–10.
- Lan, C., S. Liang, X. Zhou, G. Zhou, Q. Lu *et al.*, 2010 Identification of genomic regions controlling adult-plant stripe rust resistance in chinese landrace pingyuan 50 through bulked segregant analysis. Phytopathology 100: 313–318.
- Lan, C., G. M. Rosewarne, R. P. Singh, S. A. Herrera-Foessel, J. Huerta-Espino *et al.*, 2014 QTL characterization of resistance to leaf rust and stripe rust in the spring wheat line Francolin#1. Mol. Breed. 34: 789–803.

- Lillemo, M., B. Asalf, R. P. Singh, J. Huerta-Espino, X. M. Chen *et al.*, 2008 The adult plant rust resistance loci *Lr34/Yr18* and *Lr46/Yr29* are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor. Appl. Genet. 116: 1155–1166.
- Lin, F., and X. M. Chen, 2007 Genetics and molecular mapping of genes for race-specific all-stage resistance and non-racespecific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor. Appl. Genet. 114: 1277–1287.
- Lin, F., and X. M. Chen, 2009 Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express. Theor. Appl. Genet. 118: 631–642.
- Liu, J., Z. Chang, X. Zhang, Z. Yang, X. Li *et al.*, 2013 Putative *Thinopyrum intermedium*-derived stripe rust resistance gene *Yr50* maps on wheat chromosome arm 4BL. Theor. Appl. Genet. 126: 265–274.
- Lowe, I., D. Cantu, and J. Dubcovsky, 2011 Durable resistance to the wheat rusts: integrating systems biology and traditional phenotype-based research methods to guide the deployment of resistance genes. Euphytica 179: 69–79.
- Lu, Y., C. Lan, S. Liang, X. Zhou, D. Liu *et al.*, 2009 QTL mapping for adult-plant resistance to stripe rust in Italian common wheat cultivars Libellula and Strampelli. Theor. Appl. Genet. 119: 1349–1359.
- Lu, Y., M. Wang, X. Chen, D. See, S. Chao *et al.*, 2014 Mapping of *Yr62* and a small-effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252. Theor. Appl. Genet. 127: 1449–1459.
- Lukaszewski, A. J., 2000 Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci. 40: 216-225.
- Ma, D., D. Y. Hou, M. Tang, H. Wang, Q. Li *et al.*, 2013 Genetic analysis and molecular mapping of a stripe rust resistance gene YrH9014 in wheat line H9014-14-4-6-1. J. Integr. Agric. 12: 638–645.
- Ma, J., R. Zhou, Y. Dong, L. Wang, X. Wang *et al.*, 2001 Molecular mapping and detection of the yellow rust resistance gene *Yr26* in wheat transferred from *Triticum turgidum* L. using microsatellite markers. Euphytica 120: 219–226.
- Mallard, S., D. Gaudet, A. Aldeia, C. Abelard, A. L. Besnard *et al.*, 2005 Genetic analysis of durable resistance to yellow rust in bread wheat. Theor. Appl. Genet. 110: 1401–1409.
- McGrann, G. R., P. H. Smith, C. Burt, G. R. Mateos, T. N. Chama *et al.*, 2014 Genomic and genetic analysis of the wheat racespecific yellow rust resistance gene *Yr5*. J. Plant Sci. Mol. Breed. 3: http://dx.doi.org/10.7243/2050-2389-3-2.
- McIntosh, R. A., Y. Yamazaki, J. Dubcovsky, W. J. Rogers, C. F. Morris *et al.*, 2013 Catalogue of gene symbols for wheat in *12th Int. Wheat Genet. Symp.*, edited by R.A. McIntosh, Yokohama, Japan
- Melichar, J. P. E., S. Berry, C. Newell, R. MacCormack, and L. A. Boyd, 2008 QTL identification and microphenotype characterisation of the developmentally regulated yellow rust resistance in the UK wheat cultivar Guardian. Theor. Appl. Genet. 117: 391–399.
- Prins, R., Z. A. Pretorius, C. M. Bender, and A. Lehmensiek, 2011 QTL mapping of stripe, leaf and stem rust resistance genes in a Kariega × Avocet S doubled haploid wheat population. Mol. Breed. 27: 259–270.
- Quan, W., G. Hou, J. Chen, Z. Du, F. Lin *et al.*, 2013 Mapping of QTL lengthening the latent period of *Puccinia striiformis* in winter wheat at the tillering growth stage. Eur. J. Plant Pathol. 136: 715–727.

- Ramburan, V. P., Z. A. Pretorius, J. H. Louw, L. A. Boyd, P. H. Smith *et al.*, 2004 A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega. Theor. Appl. Genet. 108: 1426–1433.
- Randhawa, M., U. Bansal, M. Valárik, B. Klocová, J. Doležel *et al.*, 2014 Molecular mapping of stripe rust resistance gene *Yr51* in chromosome 4AL of wheat. Theor. Appl. Genet. 127: 317–324.
- Ren, Y., Z. He, J. Li, M. Lillemo, L. Wu *et al.*, 2012a QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird. Theor. Appl. Genet. 125: 1211–1221.
- Ren, Y., Z. Li, Z. He, L. Wu, B. Bai *et al.*, 2012b QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64. Theor. Appl. Genet. 125: 1253–1262.
- Rosewarne, G. M., R. P. Singh, J. Huerta-Espino, S. A. Herrera-Foessel, K. L. Forrest *et al.*, 2012 Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor. Appl. Genet. 124: 1283–1294.
- Rosewarne, G. M., R. P. Singh, J. Huerta-Espino, and G. J. Rebetzke, 2008 Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor. Appl. Genet. 116: 1027–1034.
- Rosewarne, G. M., R. P. Singh, J. Huerta-Espino, H. M. William, S. Bouchet *et al.*, 2006 Leaf tip necrosis, molecular markers and β1-proteasome subunits associated with the slow rusting resistance genes *Lr46/Yr29*. Theor. Appl. Genet. 112: 500– 508.
- Santra, D. K., X. M. Chen, M. Santra, K. G. Campbell, and K. K. Kidwell, 2008 Identification and mapping QTL for hightemperature adult-plant resistance to stripe rust in winter wheat (*Triticum aestivum* L.) cultivar "Stephens." Theor. Appl. Genet. 117: 793–802.
- Singh, R., M. Matus-Cádiz, M. Båga, P. Hucl, and R. N. Chibbar, 2010 Identification of genomic regions associated with seed dormancy in white-grained wheat. Euphytica 174: 391–408.
- Singh, R. P., J. C. Nelson, and M. E. Sorrells, 2000 Mapping *Yr28* and other genes for resistance to stripe rust in wheat. Crop Sci. 40: 1148–1155.
- Singh, A., M. P. Pandey, A. K. Singh, R. E. Knox, K. Ammar *et al.*, 2013 Identification and mapping of leaf, stem and stripe rust resistance quantitative trait loci and their interactions in durum wheat. Mol. Breed. 31: 405–418.
- Suenaga, K., R. P. Singh, J. Huerta-Espino, and H. M. William, 2003 Microsatellite markers for genes *Lr34/Yr18* and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93: 881–890.
- Uauy, C., J. C. Brevis, X. Chen, I. Khan, L. Jackson *et al.*, 2005 High-temperature adult-plant (HTAP) stripe rust resistance gene *Yr36* from *Triticum turgidum* ssp. *dicoccoides* is closely linked to the grain protein content locus *Gpc-B1*. Theor. Appl. Genet. 112: 97–105.
- Vazquez, M. D., C. J. Peterson, O. Riera-Lizarazu, X. Chen, A. Heesacker *et al.*, 2012 Genetic analysis of adult plant, quantitative resistance to stripe rust in wheat cultivar "Stephens" in multi-environment trials. Theor. Appl. Genet. 124: 1–11.
- William, M., R. P. Singh, J. Huerta-Espino, S. O. Islas, and D. Hoisington, 2003 Molecular marker mapping of leaf rust resistance gene Ir46 and its association with stripe rust resistance gene *Yr29* in wheat. Phytopathology 93: 153–159.
- William, H. M., R. P. Singh, J. Huerta-Espino, G. Palacios, and K. Suenaga, 2006 Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 49: 977–990.

- Xu, L. S., M. N. Wang, P. Cheng, Z. S. Kang, S. H. Hulbert *et al.*, 2013 Molecular mapping of *Yr53*, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theor. Appl. Genet. 126: 523–533.
- Yang, E.-N., G. M. Rosewarne, S. A. Herrera-Foessel, J. Huerta-Espino, Z.-X. Tang *et al.*, 2013 QTL analysis of the spring wheat "Chapio" identifies stable stripe rust resistance despite inter-continental genotype × environment interactions. Theor. Appl. Genet. 126: 1721–1732.
- Zhao, L., J. Feng, C.-Y. Zhang, X.-D. Xu, X.-M. Chen *et al.*, 2012 The dissection and SSR mapping of a high-temperature adultplant stripe rust resistance gene in American spring wheat cultivar Alturas. Eur. J. Plant Pathol. 134: 281–288.
- Zheng, J., Z. Yan, L. Zhao, S. Li, Z. Zhang *et al.*, 2014 Molecular mapping of a stripe rust resistance gene in wheat line C51. J. Genet. 93: 443–450.
- Zhou, X. L., W. L. Wang, L. L. Wang, D. Y. Hou, J. X. Jing *et al.*, 2011 Genetics and molecular mapping of genes for hightemperature resistance to stripe rust in wheat cultivar Xiaoyan 54. Theor. Appl. Genet. 123: 431–438.
- Zwart, R. S., J. P. Thompson, A. W. Milgate, U. K. Bansal, P. M. Williamson *et al.*, 2010 QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol. Breed. 26: 107–124.