Supplemental Figures and Legends

tissue IncRNAs (FANTOM3 ID)

adipose 2310042122, 2310079P10, 6030475M24, 8030489015, 9030024715, B230114P17

liver 0610005C13, 1700058M13, 1700063J08, 9030024J15, 9130016M20, 9130221J18,
9230101F19, A430069H15,B230114P17,C730010C06, C730016112, C730036E19

muscle 1110002E14, 1110002E22, 1110020A 10, 1110058D09, 2310014F07, 2310040G24,

2310045N14, 2310050B05,  2310058C22, 2310079P10, 6030406G17,
A030001D16,B230318C15,D330025006, D830041H11

LncLSTR 0. 035688 0.11324 10. 6448 0. 002875 0. 140623 0. 028571
(Inc3)

Incl 0 0. 0848163 98. 1886 0. 363708 0 0
Inc2 0. 155021 0. 471838 85. 0819 0. 0364536 0. 00309765 0.0790134
GAPDH 46. 1039 64. 1728 72. 9469 184. 485 343.618 121. 635
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Figure S1, related to Figure 1. LncRNAs identified in mouse metabolic tissues. (A) A
list of IncRNAs that are enriched in liver, muscle and adipose tissues. (B) A RNA-seq
dataset of multiple tissues (Keane et al., 2011) was analyzed to calculate the mean
Fragments Per Kilobase of transcript per Million (FPKM) for three liver-enriched
IncRNAs as shown in Figure 1A. (C) Genomic region of IncLSTR showing its
neighboring genes and genomic structure of IncLSTR.
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Figure S2, related to Figure 2. Metabolic profile in control and IncLSTR KD mice. (A)
Plasma glucose, glycerol, free fatty acid (FFA) and ketone levels in control and IncLSTR
KD mice after a 6-hour food withdrawal (n=7). (B) Hepatic gene expression (n=6),
plasma glucose and TG levels after a 6-hour food withdrawal or plasma TG levels after
fasted for 24 hours followed by a 4-hour refeed in control and IncLSTR sh2 KD mice
(n=7). (C) Fecal free fatty acid, TG and cholesterol levels in control and IncLSTR KD
mice were quantified using a colorimetric assay system (n=10) after 100mg dried feces
from individually housed mice were incubated in 1ml 70% ethanol at 50°C for two hours.
(D) Total plasma cholesterol levels in control (n=8) and IncLSTR KD (n=6) ApoE" mice
were quantified using a colorimetric assay system. Error bars represent SEM, *p<0.05.
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Figure S3, related to Figure 3. Enhanced apoC2 expression and peripheral TG uptake
in IncLSTR KD mice. (A) Gene expression levels in adipose, muscle or liver tissues of
control (lacZ sh) (n=6) and IncLSTR KD (IncLSTR sh) mice (n=5) after a 6-hour food
withdrawal. (B) Post-heparin LPL activities in control and IncLSTR KD mice were
measured as released free fatty acid from purified human VLDL (n=5). (C) Levels of
apoC2, apoC3, apoCl, apoE and Angptl8 in plasma samples from individual mouse in
control and IncLSTR KD group were analyzed by immunoblotting, with quantitative
analysis on the right. (D) *H-radioactivities derived from triolein were analyzed in liver,
heart, brown fat and soleus muscle from control and IncLSTR KD mice 2 hours after a
gavage of 100ul olive oil with 10uCi per mouse of 3H-triolein (n=6). (E) Total TG in the
liver (n=6) and soleus muscle (n=8) of IncLSTR KD or control mice was quantified using
a colorimetric assay system. (F) Levels of apoC2, apoC3, apoCl1, apoE and Angptl8 in
plasma pooled from 5-6 mice of each group (control, IncLSTR KD or IncLSTR and
apoC2 double KD mice) were analyzed by immunoblotting. (G) A cartoon showing full
length and truncated IncLSTR and the site of the shRNA target sequence. Error bars
represent SEM, *p<0.05.
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Figure S4, related to Figure 4. A4 [ist of genes whose expressions are correlated with
IncLSTR. Genes with expression correlating with IncLSTR were identified by analyzing
gene expression of 2425 samples profiled with Affymetrix Mouse Genome 430 2.0 Array
that were deposited in NCBI GEO database. LncLSTR subnetwork consists of LncLSTR
(green, center) and its 24 direct neighbors. Genes colored in yellow are known to play a
role in metabolic pathways, pink denotes other functions.
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Figure S5, related to Figure 4. Regulation of lipid metabolism by IncLSTR in mice is
bile acid and FXR dependent. (A) ApoC2 expression levels in primary hepatocytes
infected with control or IncLSTR KD adenoviruses. (B) Expression levels of genes
involved in bile synthesis in liver tissues from control and IncLSTR KD mice (n=6) were
analyzed by real-time PCR. (C) ApoC2 expression in cultured AMLI12 hepatocytes
infected with lacZ or FXR shRNA adenoviruses and treated with DMSO control or
MCA. (D) Hepatic expressions of FXR target genes in mice receiving control, IncLSTR
KD, or both FXR and IncLSTR KD adenoviruses (n=5). (E) LncLSTR was knocked
down in FXR null mice and plasma TG levels were measured in IncLSTR KD (FXR KO-
IncLSTR sh) and control (FXR KO-LacZ sh) mice (n=8) after a 6-hour fast (6h Fast), a
24-hour fast (24h Fast), or 6-hour refeeding after a 24-hour fast (6h Refeed). (F)
Expression levels of IncLSTR and apoC2 in the livers of FXR null mice received shRNA
adenoviruses for LacZ (FXR KO-LacZ sh) and IncLSTR (FXR KO-IncLSTR sh)
respectively (n=8). (G) Gene expression in primary hepatocytes receiving lacZ shRNA,
IncLSTR shRNA, scramble siRNA (scrb si) or TDP-43 siRNA in combination as
indicated. Error bars represent SEM, *p<0.05.
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Figure S6, related to Discussion. Bioinformatic analysis of potential transcripts from
the IncLSTR syntenic region in human genome. (A) Multiple sequence alignment of
IncLSTR genomic sequence within major mammalian species. (B) 19 potential
transcripts were identified in the human syntenic locus of IncLSTR by transcriptome

reconstruction of each sample from two RNA-seq databases (ERP000546

ArrayExpress and GSE36552 in GEO) for multiple human tissues and cells using
Cufflinks. (C) Expression levels (FPKM) of the 19 transcripts were quantified across 16
human tissues and 8 cell lines from Human Body Map 2 project (ERP000546 in

ArrayExpress) using Cufflinks.



Supplemental Table

Table S1, related to Experimental Procedures. A list of real-time PCR primers used.

Gene Forward Primer Reverse Primer
IncLSTR TGTAGGAGCCCGCAATGAA CAACTTAAAGCTGCCCCATCA
apoC2 ATGGGGTCTCGGTTCTTCCT GTCTTCTGGTACAGGTCTTTGG
apoC3 GCATCTGCCCGAGCTGAAGAG CTGAAGTGATTGTCCATCCAGC
Angptl3 TCTACTGTGATACCCAATCAGGC CATGTTTCGTTGAAGTCCTGTGA
Cyp8b1l CCTCTGGACAAGGGTTTTGTG GCACCGTGAAGACATCCCC
Cyp7al GGGATTGCTGTGGTAGTGAGC GGTATGGAATCAACCCGTTGTC
FXR TCCGGACATTCAACCATCAC TCACTGCACATCCCAGATCTC
LPL GGGAGTTTGGCTCCAGAGTTT TGTGTCTTCAGGGGTCCTTAG
CD36 ATGGGCTGTGATCGGAACTG GTCTTCCCAATAAGCATGTCTCC
MTP AGGTTCCTCTATGCCTGTGGCTTT TCTTAGCTTCCACCACTGCCTTGA
apoB CGTGGGCTCCAGCATTCTA TCACCAGTCATTTCTGCCTTTG
LDLR TGACTCAGACGAACAAGGCTG ATCTAGGCAATCTCGGTCTCC
LRP1 ACTATGGATGCCCCTAAAACTTG GCAATCTCTTTCACCGTCACA
SR-BI TTTGGAGTGGTAGTAAAAAGGGC TGACATCAGGGACTCAGAGTAG
Shp TGGGTCCCAAGGAGTATGC GCTCCAAGACTTCACACAGTG
Bsep AAGCTACATCTGCCTTAGACACAGAA CAATACAGGTCCGACCCTCTCT
Cyp27al GCCTCACCTATGGGATCTTCA TCAAAGCCTGACGCAGATG
Cyp39al TGCACTGCATGAGCGACTG GGTATTGAGTGTGGCTGGATAAA
Akrldl TGCACACCACCAAATATCCCT CTTCACTGCCACATAGGTCTTC
Baat TGTGATGAATAGCCCCTACCA AGGACTGACGACTATGTCTTGTA
Pltp CGCAAAGGGCCACTTTTACTA GCCCCCATCATATAAGAACCAG
apoAl CAGGAGATGAAAAGGACCTAG GCAGCTCTGCAGCTTCTGGCG
Ostb AGATGCGGCTCCTTGGAATTA TGGCTGCTTCTTTCGATTTCTG
TDP-43 GCCCTAGCGCCATTTTGTG GAAGCACAAGGAGGAAGCAC
Actin GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT
Gapdh AGGTCGGTGTGAACGGATTTG GGGGTCGTTGATGGCAACA
18S AGTCCCTGCCCTTTGTACACA CGATCCGAGGGCCTCACTA




Supplemental Experimental Procedures

Animal experiments

All animal experiments were performed in accordance and with approval from the
NHLBI Animal Care and Use Committee. Male C57BL/6 (B6) mice were purchased
from Jackson Laboratory at 8 weeks of age, and housed 3-5 mice per cage with free
access to water and normal chow diet (NIH-31), and animals were acclimatized to the
housing for 10-14 days before experiments. Groups of co-housed mice were randomly
assigned to experimental groups with age and weight in accordance between groups.
Animal data were excluded from experiments based on pre-established criteria of visible
abnormal liver structure during sample harvest or other health issues including fighting
wounds. According to the variability of metabolic parameters, group size was determined
based on previous studies using similar assays within the laboratory and pilot
experiments. Experimenters were not blinded to treatment group. For the fasting and
refeeding study, mice were either allowed free access to food or were subjected to a
twenty-four hour fast before euthanized for tissue harvest. A third group was fasted for
twenty-four hours and then allowed to feed ad /ibitum for another four hours before tissue
harvest.

Tissue Triglyceride uptake analysis

TG uptakes in different organs were analyzed as described in (Bartelt et al., 2011).
Briefly, the mice were fasted for 24h followed by oral gavage of 100ul olive oil with
10uCi per mouse of *H-triolein. After 2h, blood was removed by perfusion of the carcass
with PBS containing 50U/ml heparin. Next, organs were quickly collected and
solubilized in Solvable (PerkinElmer, 0.1ml per 10mg tissue). 200ul tissue lysate were
then counted in scintillation fluid for radioactivity, and TG uptake was calculated as
c.p.m. per gram of tissue.

HPLC-UYV analysis of conjugated bile acids in mouse gallbladder bile

Bile acid (BAs) standards including taurocholic acid (TCA), taurochenodeoxycholic acid
(TCDCA), taurodeoxycholic acid (TDCA), taurolithocholic acid (TLCA) and
glycochenodeoxycholic  acid (GCDCA) were  purchased from  Sigma.
Tauroursodeoxycholic acid (TUDCA) was purchased from Calbiochem. Tauro-
alpha/beta-muricholic acids (TMCA) were obtained from Steraloids Inc. In mouse bile,
99.6% of BAs are taurine conjugates and the taurine conjugates of CA and MCA
constitute 95% of total BAs in the bile. Thus, we used a simplified HPLC-UV method to
determine the relative amount of TCA and TMCA (Alnouti et al., 2008). Mouse
gallbladder bile samples were extracted using Oasis-HLB SPE cartridges (Waters). As
mouse bile contains very little glycine-conjugated acid (less than 0.1%), we used
GCDCA as the internal standard for HPLC-UV analysis. Briefly, 100ul of diluted bile
(100-fold in H20) spiked with 20ul of 2.5mM GCDCA was loaded onto 3cc Oasis SPE
cartridges (60mg) pre-conditioned with 1ml MeOH and 1ml H2O. Bile salt was eluted
with 1.8ml MeOH then washed with 2ml H,O; the eluate was evaporated under vacuum
and resuspended in 100ul 50% MeOH. For analysis of bile acids with HPLC, reverse
phase chromatography was performed on an Eclipse Plus C18 (3.0 x 150mm, 3.5mm,



Agilent technologies) at 30°C. The mobile phase consists of two solvents: solvent A
(10mM K,HPO4 pHS8.14, 10mM Sodium Borate) and solvent B (acetonitrile: methanol:
water 20:70:10 v/v). The column was connected to the Agilent 1100 series HPLC
(Agilent Technologies) and the flow rate was 0.5ml/min. Absorbance was read at
210nm. Chromatography started with a solvent mixture of 50% solvent A and B. The
gradient increased up to 95% solvent B within twenty minutes and reached 100% B after
one more minute. 100% B was used for five minutes and then was returned to the initial
setting within one minute, followed by equilibration of the column for seven minutes.
The method was verified with taurine conjugated bile acid standards listed above and all
data were analyzed using the Agilent software, Chem Station Rev A 10.02 (Agilent
technologies).

Lipoprotein lipase assay

For analysis of post-heparin lipoprotein lipase (LPL) activity, post-heparin plasma was
prepared from mice 15min after i.p. injection of 500U/kg sodium heparin. LPL activities
were measured as free fatty acids released from purified human VLDL as previously
described (Carballo-Jane et al., 2010; Di Filippo et al., 2014).

In order to evaluate the regulatory activity of mouse plasma on LPL, a LPL assay using
purified bovine LPL protein was performed as described (Basu et al., 2011) with
modifications. Briefly, a 100ul reaction was set up by adding 0.15M NaCl, 20mM Tris-
HCI pHB8.0, 0.0125% Zwittergent, 1.5% FA-free BSA, 1:500 dilution of a fluorogenic
triglyceride analog (Cell Biolabs) and 0.5ul mouse plasma. The reaction was carried out
for 10min at 37°C using 175ng LPL (from Bovine milk, Sigma), and the signal of the
fluorescent product was measured in a fluorescence microplate reader (Ex.480
nm/Em.525 nm).

Isolation and culture of mouse primary hepatocytes

Primary hepatocytes were isolated from C57BL/6 mice fed with a normal chow diet.
Briefly, mice were anesthetized with Ketamine (100mg/kg) and Xylazine (10mg/kg), and
the liver was perfused with Krebs Ringer buffer with glucose at a rate of Sml/min for
eight minutes, followed by continuous perfusion with the same buffer containing
collagenase (Liberase TM Research Grade, Roche) for 10 minutes. Hepatocytes were
harvested and purified with Percoll. The viability of hepatocytes was examined by trypan
blue exclusion. Only cell isolates with viability over 90% were used. Hepatocytes were
plated onto collagen-coated plates (1x10° cells/well in 6-well plates and 5x10° cell per
well in 12-well plates) in DMEM (no glucose) supplemented with 5.5mM glucose,
IxGlutaMAX™ and 10% Cosmic Calf Serum (CCS). To knock down TDP-43 in
hepatocytes, ON-TARGETplus Mouse TDP-43 siRNA (Thermo Fisher Scientific Inc.)
was transfected using RNAIMAX, and a scramble siRNA was used as control.

AML12 cell culture and bile treatment

The AMLI12 cells (ATCC) were cultured in a 1:1 mixture of Dulbecco's modified Eagle's
medium and Ham's F12 medium (Invitrogen) with 10% CCS, ITS (Invitrogen) and
dexamethasone (40ng/ml). For treatment of bile acids, 100% confluent AML12 cells
were cultured in serum free medium for 48 hours, treated with 100uM CA, MCA or



DMSO as control for 24 hours. RNA were harvested and quantified by real-time PCR
analysis.

RNA extraction and quantitative real-time PCR analysis

Total RNA was isolated from liver tissues or cells using Trizol reagent (Invitrogen). After
Turbo DNA-free DNase treatment (Ambion), reverse transcription was carried out with
SuperScript® III First-Strand Synthesis system (Invitrogen) using 1 pug of RNA.
Quantitative real-time RT-PCR was performed on a ViiA™ 7 Real-Time PCR System
(Applied Biosystems Inc.) The PCR program was: 2 min 30 s at 95°C for enzyme
activation, 40 cycles of 15 s at 95°C, and 1 min at 60°C. Melting curve analysis was
performed to confirm the real-time PCR products. All quantitations were normalized to
18S rRNA levels. 18S rRNA levels are in general stable for samples collected under
similar conditions, though they may vary across different tissues, so slight variations
might be introduced when it is used to normalize tissue-specific expression. Primer
sequences used are provided in the Table S1.

Immunoblotting

For Immunoblotting analyses, the cells and tissues were lysed in RIPA buffer (Cell
Signaling Technology) containing phosphatase inhibitors (Sigma) and a protease
inhibitor cocktail (Roche). The lysate was subjected to SDS-PAGE, transferred to
polyvinylidene fluoride (PVDF) membranes, and incubated with the primary antibody
followed by the fluorescence conjugated secondary antibody (LI-COR). The bound
antibody was visualized using a quantitative fluorescence imaging system (LI-COR). The
primary antibodies used are anti-TDP43 (ab41881, Abcam)

For detection of apoproteins and Angptl8 protein levels in mouse plasma, equal amount
of plasma from individual mice or pooled plasma of 5-6 mice from the same
experimental group was mixed with NuPAGE LDS Sample Buffer and Reducing Agent,
heated at 95°C for 10min before loaded to Novex NuPAGE 4-12 % Bis-Tris gels (200V
for 30 min in MES buffer), then transferred to PVDF membranes (450mA, 3hr in 0.25X
Laemmli buffer, 20% Methanol) for Western Blot analysis. The primary antibodies used
are apoC2 (T-12) antibody (SC-19015, Santa Cruz), apoC3 antibody (SC-50378, Santa
Cruz), apoCl antibody (ab20051, Abcam), apoE antibody (SC-6384, Santa Cruz), and
Angptl8 antibody (7619, ProSci).
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