Supplementary Information

Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish

Yu Hisano¹*, Tetsushi Sakuma², Shota Nakade², Rie Ohga³, Satoshi Ota³, Hitoshi Okamoto¹, Takashi Yamamoto², Atsuo Kawahara³*

¹Laboratory for Developmental Gene Regulation, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan

²Molecular Genetics Laboratory, Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan

³Laboratory for Developmental Biology, Center for Medical Education and Sciences, Graduate School of Medical Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan

Genomic PCR to assess the integration events into the tyr locus

The genomic DNAs were prepared from 47 embryos injected with *eGFP*-gRNAs, *tyr*-gRNA, Cas9 mRNA and the donor vector containing the homology arms of different lengths (0 bp, 10 bp, 20 bp or 40 bp). PCR products using specific primers, tyr-genome-F and mCherrry-R (Supplementary Table S1), were electrophoresed in a 2% agarose gel. The expected amplicon and non-specific bands (presumably primer dimers) are indicated by arrows and asterisks, respectively.

Expression of mCherry is not observed in injected embryos

In 2 dpf embryos injected with *eGFP*-gRNA, *tyr*-gRNA, Cas9 mRNA and the donor vector harbouring 40-bp homology arms, mCherry-positive cells were not observed in the skin and retina. Injected embryos exhibited hypopigmentation due to the disruption of the *tyr* gene. Brightfield (upper) and fluorescent (lower) images are of lateral views with dorsal at the top.

krtt1c19e-gRNA (11/15=73%)

TTCTTCCTCTTCCACGTCCCTTGTTAAGTAAAGCACACCAGATTC	WT	x4
TTCTTCCTCTTCCTTGTTAAGTAAAGCACACCAGATTC	-7	x5
TTCTTCCTCTTCCCTTGTTAAGTAAAGCACACCAGATTC	-6	x3
TTCTTCCTCTTCCACGTGTTAAGTAAAGCACACCAGATTC	-5	x1
TTCTTCCTCTTCCACGTCCCTTGTTAAGTAAAGCACACCAGATTC	+1	x1
TTCTTCCTCTTCCACGTCCCTTGTTAAGTAAAGCACACCAGATTC	+11	x1
TCTTCCTCTTC		

Supplementary Figure S3

Sequence analysis of the *krtt1c19e*-gRNA-induced indel mutations in the target site

The genomic DNAs were prepared from the 2 dpf embryos injected with *krtt1c19e*-gRNA and Cas9 mRNA. The wild-type genomic sequence is shown at the top with the target sequence in red and the PAM sequence in blue. Deleted and inserted nucleotides in the DNA sequences are indicated by dashes and by green letters, respectively. The numbers of deleted (–) and inserted (+) nucleotides are indicated at the right with the detection number.

The eGFP expression in the embryos injected with the donor vector, gRNAs and Cas9 mRNA

Representatives of individual eGFP expression level (broad, intermediate and narrow) are shown in 2 dpf embryos injected with *eGFP*-gRNA, *krtt1c19e*-gRNA, Cas9 mRNA and the donor vector harbouring homology arms. All images are of lateral views with dorsal at the top.

Primer 1 X Primer 2

Genomic PCR in eGFP-positive or -negative embryos

After the co-injection of *eGFP*-gRNA, *krtt1c19e*-gRNA, Cas9 mRNA and the donor vector harbouring homology arms, the genomic DNAs were prepared from eGFP-positive (+) or -negative (-) embryos. PCR products using the primers specific to the genome (primer 1) and the donor vector (primer 2) were electrophoresed in a 1.5% agarose gel.

3' junction

eGF	P																			
ATC I	CTG L	ՇՇՇ Շ	CAC H	AAG K	CTG L	GAG E	TAC Y	AAC N	TAC Y	AAC N	AGC S	CAC H	AAC N	GTC V	TAT Y	ATC I	ATG M	GCC A	GAC D	AAG K
\mathcal{M}	X	\sum	$\underline{\mathcal{N}}$	20	X	200	300	2	20	\propto	206	20	00	Ń	$\underline{\mathbf{x}}$	<u>M</u>	X	\mathcal{N}	\mathcal{M}	<u>M</u>
CAG Q	AAG K	AAC N	GGC G	AT C I	AAG K	GTG V	AAC N	TTC F	AAG K	ATC I	CGC R	CAC H	AAC N	ATC I	GAG E	GAC D	GGC G	AGC S	GTG V	CAG Q
	30	30	\mathcal{M}	M	M	\mathcal{M}	<u>Ja</u>	<u>M</u>	2	\mathcal{L}	X	$\underline{\mathbf{M}}$	3	Sh	<u>M</u>	200	<u>M</u>	X	<u>\)</u>	Ŵ
CTC L	GCC A	GAC D	CAC H	TAC Y	CAG Q	CAG Q	AAC N	ACC T	CCC P	ATC I	GGC G	GAC D	GGC G	CCC P	GTG V	CTG L	CTG L	CCC P	GAC D	AAC N
S	A	<u>\</u>	100	2	200	M	M	M	\sim	26	<u>M</u>	\mathcal{M}	h	3	<u>)))</u>	M	20	$\underline{\mathcal{M}}$	<u>}</u>	M
CAC H	TAC Y	CTG L	AGC S	ACC T	CAG Q	тсс s	GCC A	CTG L	AGC S	AAA K	GAC D	CCC P	AAC N	GAG E	AAG K	CGC R	GAT D	CAC H	ATG M	GTC V
<u>_</u>	<u>M</u>	$\frac{1}{2}$	<u>M</u>	X	M	M	M	\mathcal{N}	M	M	<u>M</u>	M	5	M	M	M	M	M	M	M
CTG L	CTG L	GAG E	TTC F	GTG V	ACC T	GCC A	GCC A	G G	ATC I	ACT T	CTC L	GGC G	ATG M	GAC D	GAG E	CTG L	TAC Y	AAG K	T A A	тст
\mathcal{M}	M	\mathcal{M}	M	Ŵ	M	M	M	M	M	M	A	M	M	1	1	<u>M</u>	2	M	M	1
AGA	ттс	тgс	AGC	сст	ΑΤΑ	GTG	AGT	CGT	ATT	ACG	TAG	ATC	CAG	ACA	poly tga	/A Taa	GAT	ACA	TTG	ATG
\mathcal{M}	N	M	1	$\overline{\mathbb{M}}$	M	M	M	\mathcal{M}	M	M	M	M	M	2	M	M	M	1	M	M
AGT	TTG	GAC	AAA	ССА	CAA	СТА	GAA	TGC	AGT	GAA	AAA	AAT	GCT	TTA	TTT	GTG	AAA	TTT	GTG	ATG
<u>M</u>	Ŵ	1	M	M	14	2	M	M	200	M	M	M	<u>W</u>	M	Ŵ	M	M	M	M	<u>}</u>
СТА	TTG	СТТ	TAT	TTG	ΤΑΑ	ССА	TTA	ΤΑΑ	GCT	GCA	ATA	AAC	AAG	TTA	ACA	ACA	ACA	ATT	GCA	ттс
A	M	M	Ŵ	M	1	M	W	M	100			M ogy a		Ŵ	M	M	M	M	4	M
ATT	ΤΤΑ	ТGТ	ттс	AGG	ттс	AGG	GGG	AGG	ТGТ	GCC	СТТ	GTT	AAG	ТАА	AGC	ACA	CCA	GAT	ТСА	TGT
\mathbb{M}	M	Ŵ	\mathcal{M}	M	\mathcal{M}	M	\mathbb{M}	M	M	M	M	M	M	M	W	N	M	M	<u>M</u>	M
CGG	GTA	AAG	ΑΑΑ	CAT	CGC	GCΤ	сст	AAC	ATG	СТС	ТСА	AAA	ТGТ	GGT	GGT	ТGТ	стт	TGA	GCA	ттт
M	Ŵ	M	M	M	M	M	AA	\mathcal{M}			M	M	M	M	M	M	M	M	M	M

Sequence analysis at the 3' junction of the donor-integrated genome

Genomic DNA was prepared from the embryos injected with *eGFP*-gRNA, *krtt1c19e*-gRNA, Cas9 mRNA and the donor vector harbouring homology arms. The sequences corresponding to *eGFP* and the polyadenylation (polyA) signal are indicated with solid lines in green and black, respectively.

а

a	
embryo #1–5' junction	homology arm
GCAGTGATCACTGTTGTGGAAGAG	GGTGATTGATGGAAAGGTGGTTTCTTCCTCTTCCACGGGAGGAGGTGGTTCAGGTGG
$\underline{\mathcal{M}}$	www.www.hander.www.www.
embryo #1–3' junction	homology arm
CAGGTTCAGGGGGGAGGTGTGCCCT	TGTTAAGTAAAGCACACCAGATTCATGTCGGGTAAAGAAACATCGCGCTCCTAACA
and have marked and	Anna marine harder and marine and
embryo #2–5' junction	homology arm
GCAGTGATCACTGTTGTGGAAGAC	GTGATTGATGGAAAGGTGGTTTCTTCCTCTCCACGGGAGGAGGTGGTTCAGGTGG
Maxim	www.www.www.www.www.www.www.
embryo #2–3' junction	homology arm
CAGGTTCAGGGGGGGGGGGTGTGCCCT	TGTTAAGTAAAGCACACCAGATTCATGTCGGGTAAAGAAACATCGCGCTCCTAACA
and the manufacture	Maran maran habelen and marallance
embryo #3–5' junction	homology arm
GCAGTGATCACTGTTGTGGAAGAC	GTGATTGATGGAAAGGTGGTTTCTTCCTCTTCCACGGGAGGAGGTGGTTCAGGTGG
<u></u>	Marken Marke
embryo #3–3' junction	
CAGGTTCAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	NOMOIOGY ATM
and the second statement	Annon north hard born of market and
embryo #4–5' junction	homology arm
GCAGTGATCACTGTTGTGGAAGAC	GTGATTGATGGAAAGGTGGTTTCTTCCTCTTCCACGGGAGGAGGTGGTTCAGGTGG
<u></u>	Marken Marke
embryo #4–3' junction	homology arm
CAGGTTCAGGGGGAGGTGTGCCCT	TGTTAAGTAAAGCACACCAGATTCATGTCGGGTAAAGAAACATCGCGCTCCTAACA
and an march as	Aman marga hard aman a sall and and

embryo #5–5' junction	homology arm
GCAGTGATCACTGTTGTGGAAGA	GGTGATTGATGGAAAGGTGGTTTCTTCCTCTTCCACGGGAGGAGGTGGTTCAGGTGG
<u> </u>	
embryo #5–3' junction	homology arm
CAGGTTCAGGGGGGGGGGGGGGGGGGGGG	TTGTTAAGTAAAGCACCACCAGATTCATGTCGGGTAAAGAAACATCGCGCTCATAACA
Jarhora marchalan	Marxin 10000000 hall hall have a hall hall have a hall have a hall have have have have have have have have
embryo #6–5' junction	homology arm
GCAGTGATCACTGTTGTGGAAGA	GGTGATTGATGGAAAGGTGGTTTCTTCCTCTTCCACGGGAGGAGGTGGTTCAGGTGG
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	www.www.hand.www.hand.
embryo #6–3' junction	homology arm
CAGGTTCAGGGGGGAGGTGTGCCC	ΤΤGTTAAGTAAAGCACACCAGATTCATGTCGGGTAAAGAAACATCGCGCTCCTAACA
Jan Mar Mar	Mananda Malala Marana and Maran
b	

	precise integration / NHEJ					
	#1	#2	#3	#4	#5	#6
5' junction	2/6	6/0	6/0	7/0	5/0	7/0
3' junction	8/0	5/3	7/0	8/0	8/0	8/0

Sequence analysis of the embryos broadly expressing eGFP

(a) After the co-injection of *eGFP*-gRNA, *krtt1c19e*-gRNA, Cas9 mRNA and the donor vector harbouring homology arms into zebrafish embryos, the genomic DNAs were prepared from six embryos showing broad eGFP expression. Sequence analysis was performed to examine the 5' and 3' junction of the genome integrated with the donor vector harbouring homology arms. The sequences corresponding to the homology arm are indicated with solid lines in black. (b) Several clones (5–8) derived from individual embryos were analysed. The numbers of clones in which the donor vector was integrated homology-dependently (precise integration) and -independently (NHEJ) are indicated.

5' junction (Primer 1 X Primer 2)

Supplementary Figure S8

Genomic PCR in the injected embryos expressing eGFP at intermediate or narrow levels

After the co-injection of *eGFP*-gRNA, *krtt1c19e*-gRNA, Cas9 mRNA and the donor vector harbouring homology arms into zebrafish embryos, the genomic DNAs were prepared from embryos showing intermediate or narrow eGFP expression. PCR products using the primers specific to the genome (primer 1 or 4) and the donor vector (primer 2 or 3) were electrophoresed in a 1.5% agarose gel. The expected amplicon bands are indicated by arrows.

Primer 1 X Primer 3 Homology arm (-)

Paragraphic problem of the second second

Homology arm (+)

Homology arm (-)

7/31 (23%)

13/31 (32%)

14/31 (45%)

12/31 (39%)

Genomic PCR to assess the integration events into the krttlc19e locus

Five primers specific to the genome or the donor vector were designed to assess the integration events in the absence or presence of homology arms. The genomic DNAs were prepared from 31 embryos injected with *eGFP*-gRNA, *krtt1c19e*-gRNA, Cas9 mRNA and the donor vector harbouring or lacking homology arms. Primers 1 and 2 were used to detect the insert fragment in the forward direction. Primers 1 and 3 were used to detect the insert fragment in the reverse direction. Primers 1 and 5 were used to detect the vector fragment in the forward direction. Primers 4 and 5 were used to detect the vector fragment in the reverse direction. The results of integration events are shown in the Table.

Primer 1 X Primer 2

Supplementary Figure S10

Genomic PCR in the embryos injected with the donor vector, *krtt1c19e*-gRNA and Cas9 mRNA, but not *eGFP*-gRNA

After the co-injection of *krtt1c19e*-gRNA, Cas9 mRNA and the donor vector harbouring homology arms into zebrafish embryos, the genomic DNAs were prepared from embryos. PCR products using the primers specific to the genome (primer 1) and the donor vector (primer 2) were electrophoresed in a 1.5% agarose gel. We could not detect the integration of the donor vector in 31 embryos that we examined.

	5' junction	3' junction
20-bp arm	14/16 (87.5%)	9/15 (60.0%)
40-bp arm	10/16 (62.5%)	12/15 (80.0%)

Precise gene knock-in in human cells

(a) Schematic illustration of CRISPR/Cas9-mediated targeted integration at the *fibrillarin* (*FBL*) locus in human cells. Orange and purple letters indicate the gRNA target sites. Light blue and blue bars indicate the homology arms. The stop codon is underlined. (b) Confocal laser scanning microscopy images of cells after puromycin selection. Scale bar: $30 \mu m$. (c) Numbers and percentages of precisely knocked-in clones. Correct knock-in was confirmed by DNA sequencing (Supplementary Figure S12).

20-bp arm

5' junction

 ${\tt catcacctatcttcctctcacaggccacccccggatccatgg}$

```
catcacetaetteeteeteacaggecaeceeeggateeatgg x14
catcacetaetteeteeteacaggecaeceegttggtteeteteacaggecaeceeeggateeatgg +26 x2
```

3' junction

gttccgcgttacccaaggtgaagaactgaagttcagcgctgtca

40-bp arm

5' junction

ggaccetecttcateacetatetteetetcacaggecaceeeeggatecatg

ggacceteetteateacetatetteeteteacaggecaceeeeggateeatg x10	
ggacceteetteateacetatetteetetaeaggeeaegtttggacceteetteateaeetatggacceteetteateaeetatetteetetaeaggeeaeeegtttggacceteetteateaeeg	ctteeteteacaggecaceceeggateeatg +43 tatetteeteteacaggecaceeeeggateeatg +46
ggacceteetteateaeetatetteeteteaeaggeeaeeetgtttggacceteetteateaee ggacceteetteateaeetatetteeteteaeaggeeaeeetgttggaceeteetteateae ggacceteetteateaeetatetteeteteaeaggeeaeeetgteagageageeaeggag atgateageeaegtgateaggeeatgateageeaeggateagtgatgateattaegtgate tteateaeetatetteeteteaeaggeeaeeeeggateeatgg +221	tatetteeteteacaggeeaceceeggateeatg +46 x2 etatetteeteteacaggeeaceceeggateeatg +47 cagtgeatgatageeacgtgateagtgeatgateagtgateagtgt agtgeatgateagteacgtgaeeagtaeatggtagetatgtgagaeeetee

3' junction

tacccaaggtgaagaactgaagtcaggetgtcaggattgeggagagatgt x12 tacccaaggtgaagaactgaagtcaggetgtcaggattgeggagggatgt -3+3 tacccaaggtgaagaactgaagtcaggetgtcaggetgtcaggattgeggcategtacggegtacgtecgaaggtgaagaactgaagttcaggegtgtcaggattgeggcategtacgcaataggtccaaaggtgaagaactgaagttcagegetgtcaggattgeggcategtacgcaataggtccaaaggtgaagaactgaagttcagegetgtcaggattgeggcategtacgcaataggtccaaaggtgaagaactgaagttcagegetgtcaggattgeggcategtacgcaataggtccaaaggtgaagaactgaagttcagegetgtcaggattgeggcategtacgcaataggtccaaaggtgaagaactgaagttcagegetgtcaggattgeggcategtacgcaataggtccaaacetatettcaccaaggtgaagaactgaagttcagegetgtcaggattgeggcategtacgcaataggtccaaacetatettcaccaaggtgaagaactgaagttcagegetgtcaggattge

Supplementary Figure S12

Sequences of knocked-in alleles

The intended knocked-in sequence is shown at the top of each panel. Light blue and blue bars indicate the homology arms. Red letters indicate precisely knocked-in alleles. Blue letters indicate insertions.

Supplementary Table S1. Primers used in this study.

Primer nameSequence (5' to 3')tyr-genome-FGAGTCTGCACCTCCCCAGAAGTCmCherrry-RGACAGAATGTCCCATGCGAAAGG

PCR primers used for detecting integration of donor plasmid into the tyr locus

PCR primers used for detecting integration of donor plasmid into the krtt1c19e locus

Primer name	Sequence (5' to 3')
primer	CAGCCTTGCAATTTCTAGCAAATCG
I/krtt1c19e-genome-F	
primer 2/eGFP-R	GTCGTCCTTGAAGAAGATGGTGC
primer 3/eGFP-F	GCACCATCTTCTTCAAGGACGAC
primer	ACACACATTCTGTCTTTGACGTTAGC
4/krtt1c19e-genome-R	
primer 5/vector-F	GCCGTAAAGCACTAAATCGGAACC

Primers used for colony PCR of the pGEM-T Easy vector

Primer name	Sequence (5' to 3')
colonyPCR-F	AGCTCACTCATTAGGCAC
colonyPCR-R	GTAAAACGACGGCCAGT

Primers used for constructing donor plasmids

Primer name	Sequence (5' to 3')
mCherry-EcoRI-F	CCTGAATTCATGGTGTCTAAAGGAGAGGAAGAC
mCherry-XbaI-R	TAGTCTAGATCACTTATACAGCTCGTCCATGC
tyr-0bp-F	TGCCACCTACGGCATGGTGTCTAAAGGAGAGGAAGAC
tyr-0bp-R	TCGCCCTCGCCGTCACCTAAATCAAGCTTCGACTGG
tyr-10bp-F	TGCCACCTACGGTCTGGCCCGGCATGGTGTCTAAAGGAGAGGA AGAC
tyr-10bp-R	TCGCCCTCGCCGGAGCCGTCGGTCACCTAAATCAAGCTTCGACT GG
tyr-20bp-F	TGCCACCTACGGTGCTGTCCAGTCTGGCCCGGCATGGTGTCTAA AGGAGAGGAAGAC
tyr-20bp-R	TCGCCCTCGCCCGCCGCACACGGAGCCGTCGGTCACCTAAATC AAGCTTCGACTGG
tyr-40bp-F	TGCCACCTACGGAAGTCCTCCAGTCCAAACGCTGCTGTCCAGTC TGGCCC
tyr-40bp-R	TCGCCCTCGCCGAACCCTCGACCTGACTGGACGCCGCACACGG AGCCGTCG
eGFPmut-F	CTACATACGGCAAGCTGACCCTGAAGTTCA
eGFPmut-R	CGTCCCCTTCGCCCGGGACACGC
krtt1c19e-0bp-F	GGAGGAGGTGGTTCAGGTGG
krtt1c19e-0bp-R	CACACCTCCCCTGAACCTG
krtt1c19e-40bp-F	AGAGGTGATTGATGGAAAGGTGGTTTCTTCCTCTTCCACGGGA GGAGGTGGTTCAGGTGG
krtt1c19e-40bp-R	TTTACCCGACATGAATCTGGTGTGCTTTACTTAACAAGGGCACA CCTCCCCCTGAACCTG
eGFP-gRNA-F	CCGTAGGTGGCATCGCCTCGCCTCGACTGGCGTAATAGCGAA GAG
eGFP-gRNA-R	CCGTAGGTGGCATCGCCCTCGCCAGTGAGGGTTAATTGCGCGC

Supplementary Table S2

Germline transmission of eGFP knock-in line

Founder	F1 individuals evaluated	Positive individuals	% of eGFP-positive F1 embryos
Founder #1 (broad)	97	48	49.5%
Founder #2 (broad)	360	91	25.3%
Founder #3 (intermediate)	165	4	2.4%