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Supplementary Methods 1 

The polydimethylsiloxane (PDMS) cylindrical body is not deformed by its own 

gravity. Indeed, the maximum height of a cylindrical column with density ρ and 

Young’s modulus E standing under its own weight is
 29 

       √
 

    
      

 
, where 

  is the gravity acceleration,   the second moment of area, and          is the least 

positive root of the Bessel function of order -1/3. In the case of PDMS,   = 965 kg/m
3
 

and   = 1.8MPa. Moreover, the cylindrical body has     mm, and it results       

   cm. Therefore, given that the length   of the soft body is 12 cm, gravity effects are 

not considered in our analysis. 

 

Supplementary Methods 2 

From an electrical point of view, the nominal capacitance of the single sensing element 

can be considered as the capacitance of two parallel electrode plates, as explained in 

equation (M1) 

     

  

  
 

(M1) 

where   ,    and    are the permittivity, the sensing area and the dielectric thickness, 

respectively. A natural logarithm is applied to equation (M1) to transform the product 

into a sum and the quotient into a subtraction, respectively, as follows 

                            (M2) 

Differentiating, it results in 

  
 

  
 

  
 

  
 

  
 

  
 

  
 

  
 

 (M3) 

that can be approximated at the first order as 
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The term       represents the fractional change in the area due to the strain  . The 

area is the product of the width   and the length   of the top electrode, then 

  

  
 

  

  
 

  

  
               

 (M5) 

since        ⁄  and          ⁄  with   the Poisson’s ratio coefficient. Moreover,  

  

  
      

(M6) 

Then, the resulting fractional change in capacitance is represented by 

  

  
 

  

  
               

(M7) 

since we can consider that the permittivity    does not vary when the strain   is 

applied. 

On the other hand, when an external force is applied, as discussed in the main text, the 

predominant effect is due to the change in the distance between the two electrodes, 

resulting 

     

  

     
   

  

  
   

  

  

  

     
 

(M8) 

If      , then 

  

  
 

  

     
 

  

  
 

(M9) 

 

Supplementary Methods 3 

A theoretical model is presented in order to describe the mechanical and electrical 

behaviour of the soft sensing body when subjected to bending and/or force 

stimulations. In particular, some configurations of the body, representing typical 

mechanical stimulations are analysed; these being: (a) a cantilever and (b) an 
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eccentrically loaded beam subjected to bending and buckling, respectively; (c) beam 

clamped at both extremities subjected to both force and bending. 

 

3a. Bending of a cantilever beam 

In this configuration, the body is subjected to a bending solicitation, and the aim is to 

correlate the capacitance variation of the sensing elements to the maximum bending 

angle.  

From a mechanical point of view, a cantilever beam (as presented in Fig. 2a) with 

length   and radius   is clamped at one extremity and free to move at the other one; a 

force    is applied at the beam free extremity, while the sensing elements S1 and S2 

are positioned at the centre of the beam. The resulting deflection of the cantilever 

beam      in the y- direction is given by  

     
   

   
       

(M10) 

where   is the Young’s modulus and   the moment of inertia. The slope      is 

determined from the first derivative of the deflection and is given by  

     
     

  
 

 

   
         

(M11) 

Therefore, the maximum deflection      is represented by  

          
   

   
 

(M12) 

and the maximum slope      is given by  

          
   

   
 

(M13) 

It is possible to assume that the predominant effect is represented by the uniaxial 

strain , given by 
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        (M14) 

where   is the vertical coordinate of the considered surface with respect to the neutral 

axis. We can note that below the neutral axis the beam is stretched (and we have a 

positive strain), while above it is compressed (with a resulting negative strain). The y-

axis, defining the deflection, is taken positive upward. Then, if the sensing element is 

positioned at the centre of the beam and on the lower surface, we have to consider 

      and      . The resulting strain  is positive and it is given by equation 

(M15) 

  
 

  

 

 
  

 

 
     (M15) 

As previously explained in equation (M7), the nominal capacitance variation 

corresponds to the strain  to which the system is subjected. Therefore, the correlation 

between the capacitance variation and the bending angle results 

  

  
   

 

 
     

(M16) 

If angles are measured in degree, we have to introduce the factor /180 and the slope 

of equation (M16) is given by 

  
 

   

 

 
 

(M17) 

As we can note from equation (M14), in the case of a sensing element positioned on 

the upper surface of the beam (   ), the strain should be negative, and so the 

relative capacitance variation, with the same absolute value of the sensing element 

considered above (positioned on the opposite surface). However, the assumption that 

the sensing element follows the mechanical deformations of the beam surface is true 

only for positive strains, since the sensing element constituent materials can stretch 

conformably to the substrate. On the other hand, in the case of negative strain, the 
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materials are subjected to compression. By considering the thickness of the sensing 

element comparable (or even larger) to the beam curvature, abovementioned 

compression phenomenon results in mechanical deformations (i.e., wrinkles of the 

different constituent layers, as depicted in Fig.2a) which do not conform to the body 

surface. Therefore, from these considerations, we can understand that equation (M16) 

cannot be applied to a compressed sensing element. 

 

3b. Buckling of an eccentrically loaded beam 

In this configuration, we want to describe the behaviour of the soft sensing body when 

subjected to buckling due to a compressive load, and to correlate the nominal 

capacitance variation to the maximum deflection of the beam. In the general case of 

axial compressive load, the buckling of a beam occurs when the critical load       

       ⁄  is reached. However, in many situations, the load is not perfectly axial, and 

an eccentricity   between the load application point and the beam vertical axis is 

present. In this latter case, the buckling occurs even for very small compressive loads. 

Consider a beam with length   and radius   clamped at both extremities, with an 

eccentricity   between the beam vertical axis and the force   application point, and 

the sensing elements S1 and S2 positioned at the beam centre (as depicted in Fig. 3a): 

the deflection      of the beam in the y- direction is given by 

       (   
  

 
              ) 

(M18) 

where   √    . The maximum deflection      occurs at       as explained in 

equation (M19) 

         ⁄    (   
  

 
  ) 

(M19) 

The strain  on the stretched surface of the beam (   ) is given by  



7 
 

    
      

   
       (   

  

 
           ) 

(M20) 

and for      ,  

              
  

 
  

(M21) 

which relates the maximum strain      to the compressive load   (since   

√    ). By combining equations (M19) and (M21), the relation between the 

maximum strain and the maximum deflection can be obtained 

     
  

  
             (

 

      
)  

(M22) 

From an electrical point of view, the normalized capacitance variation can be 

correlated to the maximum strain, as explained in the following equation 

  

  
               

  

 
  

(M23) 

or, alternatively, by considering the maximum deflection     , we can correlate the 

normalized capacitance variation to the compressive load, as described in equation 

(M24) 

  

  
 

  

  
             (

 

      
) 

(M24) 

Equation (M24) can also be written as follows  
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) 

(M25) 

where        ⁄ . Then, expanding the function at the first order around      as a 

Taylor’s series, it is possible to obtain 

               |       (M26) 



8 
 

   
  

  
 [       (

 

   
)|

   

      |      
   

     (
 

   )

     √      
]    

  
  

  
    

since, using de l’Hôpital’s rule, we can find 
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(M27) 

The result obtained in equation (M27) is valid for    , which means that       

    Finally, it is possible to obtain 

  

  
 

  

  
    

  

  
     

(M28) 

In the last case, we can observe that the strain, and consequently the capacitance 

variation, does not depend anymore on the eccentricity  , but only on the geometrical 

dimensions of the beam. Also in this case, the above relations are verified only for a 

stretched sensing element.  

 

3c. Bending of a beam clamped at both extremities 

In this case, we want to describe the behaviour of a body clamped at both ends when 

subjected to both bending and force solicitation. The combination of S1 and S2 

signals will let us establish which side is subjected to force, giving also its value, and 

the maximum deflection of the beam.  
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Consider a beam with length   and radius   clamped at both extremities (see Fig. 4a): 

the deflection      of the beam, under a concentrated force   in the middle of the 

beam (where the sensing elements S1 and S2 are positioned) and in the y-direction, 

for        ⁄ , is given by equation (M29) 

     
   

    
         

(M29) 

The maximum deflection      is represented by  

            
   

     
  

(M30) 

As previously, the predominant contribute is due to the uniaxial strain  given by 

    
      

   
   

 

   
        

(M31) 

In this case, the strain is positive above the neutral axis. Therefore, when the sensing 

element is positioned at the centre of the beam (     ) and on the upper surface 

(    in our reference system), combining equations (M30) and (M31) the strain is 

given by 

  
   

   
 

   

  
      

(M32) 

From an electrical point of view, the nominal capacitance variation of the sensing 

element may be considered the same as previously explained in equation (M1), and 

the fractional change in capacitance is the same of equation (M7). Therefore, 

  

  
   

   

  
      

(M33) 

As already observed in the case of the cantilever beam, the model is valid for positive 

strain, which in this case occurs on the upper surface. Equation (M33) is valid in the 

case of a beam made of rigid materials, as explained in the main text. To consider the 
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deviation observed in the case of soft materials, we should introduce a corrective 

factor  in equation (M33), obtaining  

  

  
   

   

  
        

(M34) 

In the case of a beam with a rigid but elastic core (i.e., a metallic spring) and a soft 

coating (i.e., rubber), the deviation to equation (M33) is very small, and we have    

1, as shown in the section below. Otherwise, for body entirely made of a deformable 

material, such as PDMS, the corrective factor can differ significantly to 1 (in our 

experiments we found a value around 0.5).  

Finally, for a sensing element positioned on the lower surface, a small negative 

capacitance variation should be observed in the case of pure beam buckling. However, 

in this case, a force is applied directly on it. As discussed in the main text, the force 

mainly varies the thickness of the sensing element     therefore the resulting 

normalized capacitance variation corresponds to equation (M8). 

 

Supplementary Data D1 

In the following, we show the performance of our soft sensing body in terms of 

hysteresis.  

In the case of a cantilever beam, we demonstrate that the response (normalized 

capacitance variation vs. angle) of the sensing element S1 is linear in the range 0°-60° 

with no hysteresis (as shown in Fig. D1).  

Figure D2 depicts the transfer curve (normalized capacitance variation vs. deflection) 

of the sensing convex side S1 in the configuration of an eccentrically loaded beam: 

the sensor response is linear in the deflection range of 0-8.3 mm, and it does not show 

hysteresis.  
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Finally, in the case of a beam clamped at both extremities, the S1 response 

(normalized capacitance variation vs. deflection) is linear up to a deflection of 1.32 

mm, and the hysteresis is negligible, as shown in Fig. D3. 

 

Supplementary Figure D1. Characteristics (normalized capacitance variation vs. angle) of the 

sensing convex side S1 in the cantilever configuration for a bending/unbending cycle in the 

range 0°-60°.  

 

Supplementary Figure D2. Characteristics (normalized capacitance variation vs. deflection) 

of the sensing convex side S1 under a load/unload cycle in the eccentrically loaded beam 

configuration. 
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Supplementary Figure D3. Characteristics (normalized capacitance variation vs. deflection) 

of the sensing convex side S1 for a beam clamped at both ends when the system is subjected to 

both bending and force solicitations. 

 

Supplementary Data D2 

As shown above, in the case of a beam clamped at both ends, we need to introduce a 

corrective factor to equation (M33) for soft material bodies. To investigate the 

correctness of equation (M33), we made a module (with length of 120 mm and radius 

of 6 mm) composed of a metallic spring with a rubber coating. The length   and the 

radius   are the same of the PDMS body presented in the main text. In the same way, 

two stretchable capacitive sensors are placed at centre of the beam at 180° each other. 

The characteristic of the sensing element S1 on the convex side of the body is shown 

in Fig. D4. We can note that the experimental data are consistent with the theoretical 

curve (dashed black line) of equation (M33). In particular, in this case we obtain    

1, much closer to the unit with respect to the PDMS module.   
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Supplementary Figure D4. Characteristics (normalized capacitance variation vs. deflection) 

of the sensing element S1 on the convex side for a module made of a metallic spring with a 

rubber coating, in the configuration of a beam clamped at both extremities subjected to both 

bending and force solicitations. 

 

Moreover, in such less-deformable module the deflection of 1.32 mm is obtained with 

larger forces (i.e., 3.27 N, as depicted in Fig. D5) with respect to the case of the PDMS 

beam, where a force of about 0.55 N is enough to reach the same deflection. This 

demonstrates, as expected, that the force/deflection characteristic depends on the 

mechanical properties of the body in which the sensing elements are embedded. 

 

Supplementary Figure D5. Metallic spring with a rubber coating. Deflection vs. applied force 

characteristic, in the configuration of a beam clamped at both extremities subjected to both 

bending and force solicitations. 
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Supplementary Data D3 

Three experimental setups were built to investigate the three typical mechanical 

configurations (i.e., (a) cantilever and (b) eccentrically loaded beam subjected to 

bending and buckling, respectively, and (c) beam clamped at both extremities subjected 

to both bending and force) of the soft sensing body. They are depicted in the following 

figures. 

 

Supplementary Figure D6. The schematic depicts the experimental setup (not in scale) used 

for applying a bending stimulation to the soft sensing body in the cantilever beam configuration 

and for acquiring data during the characterization (the soft sensing body subjected to such 

solicitation is shown in Fig. D9a). S1 and S2 are the sensing elements positioned at the centre 

of the soft body, at the convex and concave sides, respectively. The results of this experiment 

are shown in Fig. 3b-c of this work. 
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Supplementary Figure D7. The schematic represents the experimental setup (not in scale) for 

the characterization of the eccentrically loaded beam configuration (with eccentricity   between 

the beam vertical axis and the application point of the concentrated force  ) when it is 

subjected to buckling (the sensing body in this configuration is depicted in Fig. D9b). S1 and 

S2 are the sensing elements positioned at the centre of the soft body, at the convex and concave 

sides, respectively. A laser displacement sensor is used to measure the beam maximum 

deflection. The results of this experiment are shown in Fig. 4b-c of the main text. 

 

Supplementary Figure D8. The schematic shows the experimental setup (not in scale) for 

applying a bending solicitation by means of an external force to the soft sensing body clamped 

at both extremities, together with the acquisition system employed during the characterization 

(the sensing body in this configuration is shown in Fig. D9c). S1 and S2 are the sensing 
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elements positioned at the centre of the soft body, at the convex and concave sides, 

respectively. The results of this experiment are shown in Fig. 5b-e of this work. 

 

 

Supplementary Figure D9. Solicitations applied to the soft sensing body. (a) Illustration of the 

sensing body in the cantilever beam configuration with a concentrated force at the free end and 

the sensing elements S1 and S2 located at the beam centre. (b) Picture depicting the buckling of 

the soft sensing body with eccentricity between the beam vertical axis and the load application 

point, with the sensing elements S1 and S2 positioned at the centre of the beam. (c) Illustration 

of the sensing body clamped at both extremities with an external force applied at the middle 

and the sensing elements S1 and S2 positioned at the beam centre.   
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Supplementary Data D4 

 

Supplementary Figure D10. In the graph the output noise is shown. In particular, the RMS 

noise is around 1.3 fF. Then, the minimum detectable signal (defined as three times the RMS 

value) is 4 fF. We can note the discretized levels of the signal, due to the CDC, whose 

resolution is 1 fF. 

 

 

 

 


