www.sciencetranslationalmedicine.org/cgi/content/full/6/267/267ra176/DC1

Supplementary Materials for

A Wnt-TGFβ2 axis induces a fibrogenic program in muscle stem cells from dystrophic mice

Stefano Biressi, Elen H. Miyabara, Suchitra D. Gopinath, Poppy M. M. Carlig, Thomas A. Rando*

*Corresponding author. E-mail: rando@stanford.edu

Published 17 December 2014, *Sci. Transl. Med.* **6**, 267ra176 (2014) DOI: 10.1126/scitranslmed.3008411

The PDF file includes:

Methods

Fig. S1. Fibrotic features are induced in satellite cells in mdx^{5Cv} mice.

Fig. S2. Cells of the satellite cell lineage are present in the muscle interstitium in mdx^{5Cv} mice.

Fig. S3. In vitro alteration of canonical Wnt signaling.

Fig. S4. β -Catenin binds to the *Tgf\beta2* locus.

Fig. S5. Expression of TGF β receptors in satellite cell progeny.

Fig. S6. Wnt-TGF β 2 axis induces fibrogenic features in myoblasts in vitro.

Fig. S7. The Wnt-Tgf β 2 axis is active in dystrophic muscles.

Fig. S8. TGF β signaling induces fibrogenic features in satellite cells in $mdx^{5C\nu}$ muscles.

Fig. S9. Blocking TGF β signaling ameliorates the dystrophic phenotype.

Table S1. List of genes that are significantly increased (≥ 2.5 -fold) in Wnt3a-treated myoblasts.

Table S2. Primer list for genotyping PCR.

Table S3. Primer list for SYBR Green real-time PCR.

Table S4. Antibody list for immunofluorescence.

Table S5. Primer list for ChIP assay.

References (91–94)

Supplementary Methods

Hematoxylin/Eosin (H&E)

Snap-frozen sections (8 μ m) were stained with hematoxylin, washed in water, and stained with eosin. Sections were dehydrated through graded alcohols to xylenes.

Detection of mouse $TGF\beta$ receptors

Cells were incubated according to manufacturer instructions with a biotinylated antibody recognizing mouse TGFβ receptor 2 (BAF532, R&D; 1:50) or biotinylated goat control IgG (BAF108, R&D; 1:50) and subsequently stained with PE-Cy7 conjugated streptavidin (Biolegend). Cells were purified using a FACSAria III (BD) and analyzed with Flowjo 7.6.5 software. DAPI dilactate (250 µg/µl) was used to exclude dead cells.

For RT-PCR analysis, C2C12 and 293T cells (ATCC) were cultured in DMEM with 10% FBS. In the absence of any transcript detection by mouse specific primers in human 293T cells, the Ct values were set to 40.

Chromatin Immunoprecipitation

Primary myoblasts were cultured in Ham's F-10 with 20% FBS and 2.5 ng/ml bFGF. To induce Wnt signaling, 10⁷ cells were incubated with 100 ng/ml of Wnt3a for 4 hours. Chromatin was cross-linked with 1% formaldehyde for 10 minutes, followed by quenching with 0.125 M Glycine for 5 minutes. Cells were washed in PBS and scraped in Lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.0 and protease inhibitors), and chromatin was sheared with a

Sonicator (Misonix) eight times for 15 seconds at an amplitude setting of 15. Lysate was diluted in ChIP dilution buffer (0.01% SDS, 1.1% TritonX-100, 1.2 mM EDTA, 16.7 mM Tris-HCl, 167 mM NaCl) and incubated with 5 μ g of anti- β -Catenin antibody (BD Transduction Laboratories) or mouse IgG (Santa Cruz) bound to Protein G coupled to Dynabeads (Invitrogen) by rocking overnight at 4°C. Beads were washed in RIPA buffer (50 mM Hepes-KOH, pH 7.6, 500 mM LiCl, 1 mM EDTA, 1% NP40, 0.7% sodium deoxycholate) and bound complexes were eluted at 65°C for 1 hour in buffer containing 1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.0. ChIP products were analyzed by quantitative PCR using specific primers to putative Wnt-responsive sequences (Table S5). Primers annealing to the Axin2 locus have been published (91, 92). ChIP signals were calculated as percent of the starting chromatin (input). Values obtained with control IgG (background) were subtracted from values obtained with the anti-β-Catenin antibody. The resulting binding of β -Catenin to individual responsive elements in Wnt3a-treated cells was expressed as fold of the binding observed in cells cultured in the same conditions but without addition of Wnt3a. To identify the potential Wnt-responsive elements, the region 2 kb upstream and 5 kb downstream to the transcription starting site of $Tgf\beta 2$ was analyzed and ranked for evolutionary conservation with Mulan and with GERP++ software programs (93, 94).

Supplementary Figures

Fig. S1. Fibrotic features are induced in satellite cells in mdx^{5Cv} mice.

(A) Cre/LoxP-based strategy to trace *in vivo* the fate of satellite cells. (B) Cells were isolated from diaphragms of $Pax7^{CreER}$; $R26R^{VFP}$; mdx^{5Cv} or $Pax7^{CreER}$; $R26R^{VFP}$; WT mice at the indicated ages, fixed the day after isolation and stained for Pax7, MyoD, and Myogenin. The percentage of YFP^{+ve} cells which are non-myogenic was quantified (N≥3). (C) Pure satellite cell progeny (YFP^{+ve} cells) were isolated from mdx^{5Cv} and WT mice by FACS. (D) RT-PCR of the expression of the fibrotic genes (Col3a1, Perlecan, Timp1, Fsp1, P4ha2 and Vimentin (Vim)) in satellite cell progeny purified as in Fig. 1C. Data are expressed as fold increase of the expression in cells isolated from MT age-matched mice (logarithmic scale). The expression of the evaluated genes is higher in cells isolated from mdx^{5Cv} than from WT mice (N=4; P<.05 for each gene). (E) RT-PCR of the expression of Col1a1, Fn1, MyoD, and the proliferation associated gene E2F1 in VCAM^{+ve}/Lin^{-ve} satellite cells isolated from 12-month-old mdx^{5Cv} and WT mice by FACS as described in the Methods and cultured for 4 days *in vitro*. Data are expressed as fold increase of the expression in cells isolated from WT mice (N=3).

Fig. S2. Cells of the satellite cell lineage are present in the muscle interstitium in mdx^{5Cv} mice.

(A) Diaphragms of 12-month-old $Pax7^{CreER}$; $R26R^{YFP}$; mdx^{5Cv} and $Pax7^{CreER}$; $R26R^{YFP}$; WT mice were stained with antibodies recognizing YFP, Laminin and the extracellular matrix component Collagen1. Examples of YFP^{+ve} cells that were observed in mdx mouse muscles to be outside the basal lamina are indicated by white arrowheads. YFP^{+ve} cells in the typical sublaminar position in WT mouse muscles are indicated by the yellow arrowheads. Bar, 100 µm. (B) Sections of TA muscles of 10-month-old of TMX-treated $Pax7^{CreER}$; $R26R^{LacZ}$; mdx^{5Cv} mice were stained with Xgal. Note the intense blue staining in the interstitium of TMX-treated mice. Mice not injected with TMX were used as negative controls. (C) Diaphragms of 12-month-old $Pax7^{CreER}$; $R26R^{YFP}$ mice were stained with antibodies recognizing YFP and Laminin. Examples of rare YFP^{+ve} cells that were observed in $Pax7^{CreER}$; $R26R^{YFP}$; WT mouse muscles to be physically separated from the fibers are indicated by white arrowheads. YFP^{+ve} cells in the typical sublaminar position juxtaposed to the fiber are indicated by the yellow arrowheads. Bar, 25 µm.

Fig. S3. In vitro alteration of canonical Wnt signaling.

(**A,B**) Axin2 was evaluated by RT-PCR in (A) primary myoblasts (N=3) and (B) YFP^{+ve} cells purified by FACS from 12-month-old $Pax7^{CreER}$; $R26R^{YFP}$; mdx^{5Cv} (N=3) and

Pax7^{CreER};R26R^{YFP};WT (N=4) mice after treatment with Wnt3a or Wnt5a (each at 100 ng/ml). Data are expressed as fold increase of the expression in untreated cells. (**C,D**) Axin2 was evaluated by RT-PCR in myoblasts treated for 24 hours with BIO (1 µM) (C) or with XAV-939 (100 µM) in the presence of indicated concentrations of Wnt3a (D) (N=3 for all conditions). (**E**) Effects of different doses of XAV-939 on the luciferase activity of LSL cells treated with Wnt3a (100 ng/ml). (**F**) Axin2 was evaluated by RT-PCR in myoblasts after transfection with the indicated vectors. Data are expressed as fold increase of the expression in cells transfected with the act β-Cat/mCherry expressing plasmid (N=3 for all conditions). (**G**) The efficiency of transfection of plasmids expressing Bcl9I- or Bcl9IΔC-term-GFP fusion proteins was quantified for active β-Catenin/mCherry^{+ve} in myoblasts by evaluating the percent of mCherry^{+ve} cells that were also GFP^{+ve}. In the Bcl9IΔC-term-GFP construct, the C-terminal amino acids 886-1384 of Bcl9I are lacking. Cells not expressing GFP were used to set the autofluorescence. DAPI dilactate was used to identify dead cells.

Fig. S4. β -Catenin binds to the *Tgf\beta2* locus.

(A) Schematic representation of the region of the mouse $Tgf\beta 2$ gene from -2 kb to +5 kb from the transcription starting site (TSS). Putative WREs are depicted in green (3 upstream (U), and 5 downstream (D) of the TSS). Arrows represent the primer pairs used in the ChIP assay. The sequences of the candidate WRE in four mammalian species are listed. In red are the bases that differ from the mouse sequence. The core consensus sequence is depicted with capital letters. A conservation score was attributed to each putative WRE with GERP++ software. (B) ChIP-qPCR analysis of β -Catenin binding to different regions of the mTgf β 2 locus. Myoblasts were treated with Wnt3a for 4 hours. Each column represents a distinct biological replicate. In the case of the positive control (Ax2 Pos), different primer sets were used in the two replicates (see Table S3).

Fig. S5. Expression of TGFβ receptors in satellite cell progeny.

(A) RT-PCR analysis of the expression of the murine TGF β receptors Tgfbr1, 2 and 3 in C2C12 myoblasts and YFP^{+ve} cells purified from hindlimb muscles of 4-month-old *Pax7^{CreER};R26R^{VFP};mdx^{5Cv}* mice (N=3 for each cell type). Data are expressed as fold increase of the expression in human kidney 293T cells (logarithmic scale). Mouse specific primers were employed for the detection of Tgfbr1, 2 and 3. Primers amplifying both human and mouse Hprt were used for normalization. (**B**, **C**) The expression of TGF β receptor 2 was evaluated by FACS analysis. Representative FACS plots of C2C12 (B) and YFP^{+ve} cells from hindlimb muscles of 4-month-old *Pax7^{CreER};R26R^{VFP};mdx^{5Cv}* mice (C) incubated with TGF β receptor 2 specific (red) or isotype control (blue) antibodies (PE-Cy7). The specificity of the antibody recognizing TGF β receptor 2 was verified by RT-PCR analysis of the expression of Tgfbr2 in fractions of C2C12 (~15% of the total cell population) with high or low PE-Cy7 staining. Data are expressed as fold increase of the expression in the PE-Cy7^{Low} fraction (N=3).

Fig. S6. Wnt-TGFβ2 axis induces fibrogenic features in myoblasts in vitro.

(A) C2C12 myoblasts were cultured for 2 days in the presence of TGFβ2 (10 ng/ml), Wnt3a (100 ng/ml), Wnt3a together with the ALK5 inhibitor II (5 µM), or ALK5 inhibitor II alone (Inh). TGF β 2 and Wnt3a treatments enhance the adhesion properties of the cells as highlighted by the number of attached cells after 5 minutes of trypsinization or by analysis of the morphology of the cells after 30 minutes of replating (see Methods). Note that both TGF β 2- and Wnt3a-treated cells are more spread in comparison to control cultures. (B) The intensity of the staining for Collagen1 was quantified in C2C12 myoblasts processed as in Fig. 4A in the presence of TGF β 2 (10 ng/ml) and correlated with the presence ("myogenic") or absence ("non-myogenic") of the myogenic markers Pax7, MyoD, Myogenin. The analysis was performed on at least 60 cells from 3 independent experiments. (C) RT-PCR analysis of the expression of Axin2 in C2C12 myoblasts cultured with or without Wnt3a (100 ng/ml), with addition of a TGFβ2-blocking antibody or rabbit IgG (both 12.5 µg/ml). Cells were processed as in Fig. 4A. Data are expressed as fold increase of the expression in cells treated with IgG (N=3 for each condition). (D) Inhibition of TGFβ2- (but not TGFβ1-) dependent Col1a1 expression in C2C12 myoblasts after treatment with a TGF β 2-blocking antibody (12.5 μ g/ml). Cells were treated with TGF β 1 or TGF β 2 (5 ng/ml) for 24 hours. Rabbit IgG (12.5 µg/ml) was used as control (N=3 for each condition). Note that the TGFβ1-dependent induction of Col1a1 expression is completely unaffected by the presence of a TGF β 2-blocking antibody.

Fig. S7. The Wnt-Tgf β 2 axis is active in dystrophic muscles.

(A) The average intensity of the signal corresponding to TGF β 2 was evaluated in distinct regions of muscles processed as in Fig. 5B and selected according to the presence or absence of eMyHC^{+ve} fibers (no eMyHC^{+ve} fibers were seen in *WT* muscles) (N=3 for each genotype). (B) Diaphragms of 12-month-old *Pax7^{CreER};R26R^{YFP};mdx^{5Cv}* and *Pax7^{CreER};R26R^{YFP};WT* mice were stained for TGF β 2 and YFP. Note that TGF β 2 staining characterizes the YFP^{+ve} areas in *mdx^{5Cv}* muscles. Bar, 25 µm. (C,D) Diaphragms of 6-month-old *mdx^{5Cv}* mice were stained with antibodies recognizing TGF β 2 and either (C) β -Catenin or (D) LGR5 . The average intensity of each signal was evaluated in 120 randomly selected regions of the muscles (see Methods). The correlation between the values obtained for each staining in each region is shown. Linear regression, Pearson r and corresponding P-value are indicated.

Fig. S8. TGFβ signaling induces fibrogenic features in satellite cells in mdx^{5Cv} **muscles.** (**A,B**) Muscles of Losartan- or placebo-treated $Pax7^{CreER}$; $R26R^{YFP}$; mdx^{5Cv} mice were stained for YFP, pSMAD2/3 and HSP47. (A) Low magnification images of diaphragm sections are presented. Bar, 50 μm. (B) Examples of YFP^{+ve} cells negatively or positively stained for both pSMAD2/3 and HSP47 are indicated by white and yellow arrowheads, respectively. Quantitation of the percentage of YFP^{+ve} cells expressing each fibrogenic marker individually is presented below.

Fig. S9. Blocking TGFβ signaling ameliorates the dystrophic phenotype.

(A,B) Diaphragms of $Pax7^{CreER}$; $R26R^{YFP}$; mdx^{5Cv} mice treated with Losartan or placebo (N=4) (A), with TGF β -blocking (1D11), or anti-Shigella toxin (Ctrl) antibodies (N=7) (B) were stained with H&E or for Collagen1 or 3 and Laminin. DAPI stains the nuclei. Bar, 50 µm. The average intensity of the signal corresponding to Collagen was evaluated for each treatment.

Supplementary Tables

Gene Symbol	ProbeID	Control	Wnt3a	Fold
Calcb	1422639_at	26.70907724	2616.829484	97.98
Calca	1452004_at	20.36274781	419.4051869	20.60
Car3	1430584_s_at	131.3183689	1838.354393	14.00
Car3	1453588_at	32.13190182	405.1630059	12.61
Axin2	1436845_at	98.67346723	1219.869765	12.36
Bhlhe40	1418025_at	103.5675868	982.1134238	9.48
Ppargc1a	1434100_x_at	19.02765044	147.2386398	7.74
Car2	1448752_at	118.109751	911.910012	7.72
Ppargc1a	1434099_at	14.05849061	96.18214563	6.84
Fst	1421365_at	882.8056318	5662.02014	6.41
Ppargc1a	1460336_at	36.33621931	208.1895233	5.73
Fst	1434458_at	1113.43476	6004.755452	5.39
Pfn2	1418210_at	631.9398458	3309.648673	5.24
Ppargc1a	1456395_at	25.40153332	132.7142917	5.22
Ppargc1a	1437751_at	21.1837345	110.5634991	5.22
Pfn2	1418209_a_at	663.3497889	3462.178669	5.22
Pfn2	1436993_x_at	328.0499455	1642.878217	5.01
Ism1	1436987_at	16.56106105	82.80319698	5.00
Syt13	1434470_at	55.80822367	264.9021055	4.75
Syt13	1451045_at	54.0404085	252.3064168	4.67
Tgfb2	1450923_at	31.3951713	137.2891924	4.37
Car3	1460256_at	731.4390361	2977.992388	4.07
Tgfb2	1423250_a_at	106.3891382	409.2536031	3.85
Tgfb2	1450922_a_at	88.1490555	336.638129	3.82
Osr2	1426155_a_at	53.78782853	204.7386398	3.81
Lifr	1454984_at	59.25552552	225.2386398	3.80
Wnt5a	1436791_at	31.03436134	109.1951936	3.52
Axin2	1421341_at	18.88612863	64.56095847	3.42
BB038663	1446563_at	103.2394776	343.8044788	3.33
Nrcam	1434709_at	114.7558432	371.8416457	3.24
Rasl11b	1423854_a_at	90.11401885	289.8033889	3.22
Fam84a	1425452_s_at	28.58190019	90.67327139	3.17
Irx3	1418517_at	196.3641917	613.7417973	3.13
Acs/3	1428386_at	203.7386398	582.2386398	2.86
Acs/3	1452771_s_at	336.868553	956.3677514	2.84
Jak2	1421065_at	136.5506239	386.4219271	2.83
Slc2a3	1437052_s_at	89.29266744	246.5897868	2.76
Car3	1449434_at	5208.809811	14357.96093	2.76
Jak2	1421066_at	351.5763815	964.7786623	2.74
Calca	1427355_at	31.86563439	87.23339695	2.74
Dio2	1418937_at	82.99111431	222.5508219	2.68
Tcf7	1433471_at	171.1299624	439.2747763	2.57
SIc2a3	1455898_x_at	23.78046307	60.61755574	2.55
Cdc42ep2	1428750_at	219.8579715	555.563065	2.53
Lgr5	1450988_at	46.89690313	117.2386398	2.50

Table S1. List of genes that are significantly increased (≥ 2.5 -fold) in Wnt3a-treated myoblasts.

Table S2. Primer list for genotyping PCR.

Gene Name	Forward Primer	Reverse Primer	T _{ann}
Cre	gcatttctggggattgctta	cccggcaaaacaggtagtta	58°
YFP/GFP	aagttcatctgcaccaccg	tccttgaagaagatggtgcg	58°
LacZ	gcatcgagctgggtaataagcg	gacaccagaccaactggtaatg	58°

Gene Name	Forward Primer	Reverse Primer	T _{ann}
mHprt	tcagaccgctttttgccgcga	atcgctaatcacgacgctgggac	60°
mHsp47	agcgattgccctgtcggtcc	cacagaggacctgtgagggcttga	60°
mCol1a1	tccggctcctgctcctctta	gtatgcagctgacttcagggatgt	60°
mCol3a1	gcccacagccttctacac	ccagggtcaccatttctc	60°
mTimp1	tacaccccagtcatggaaagc	cggcccgtgatgagaaact	60
mFn1	tgcctcgggaatggaaag	atggtaggtcttcccatcgtcata	60°
mVimentin	gcgagagaaattgcaggagga	cgttcaaggtcaagacgtgc	60°
mFSP1	agctgcctagcttcctggggaaaa	tgtccctgttgctgtccaagttgc	60°
mPerlecan	ttccagatggtctatttccggg	cttggcacttgcatcctcc	60°
mAxin2	cagagggacaggaaccactc	tgccagtttctttggctctt	60°
mLgr5	tcgccttccccaggtcccttc	gccgtggtccacaccccgat	60°
mTgfβ2	cgagcggagcgacgaggagt	tgggcgggatggcattttcgg	60°
mTgfbr1	ctgccataaccgcactgtca	aaatgaaagggcgatctagtgatg	60°
mTgfbr2	gggcatcgctcatctccac	tccctgtgaacaatgggcat	60°
mTgfbr3	cctcctccacagattttcca	cccagatcaagccttctgag	60°
h/mHprt	aactggaaagaatgtcttgattgt	gaatttcaaatccaacaaagtctgg	60°

 Table S3. Primer list for SYBR Green real-time PCR.

Antigen	Company	Species/Concentration
Pax7	DSHB	Mouse/ 1:200
MyoD	DAKO	Mouse/ 1:100
Myogenin	BD	Mouse/1:100
Col1	Cederlane	Rabbit/ 1:200
Col3	Abcam	Rabbit/ 1:200
HSP47	Abcam	Rabbit/ 1:200
Laminin	Abcam	Rat/ 1:1000
GFP	Invitrogen	Rabbit/ 1:500
GFP	Aves	Chick/1:250
LGR5	Abcam	Rabbit/ 1:100
β-Catenin	Abcam	Rabbit/ 1:100
eMyHC	DSHB	Mouse/ 1:20
Axin2	Abcam	Rabbit/ 1:500
TGFβ2	Santa Cruz	Goat/ 1:20
TGFβ2	Santa Cruz	Rabbit/ 1:200
pSMAD2/3	Santa Cruz	Goat/ 1:20

 Table S4. Antibody list for immunofluorescence.

Table S5. Primer list for ChIP assay.

Responsive Element	Forward Primer	Reverse Primer	T _{ann}
Tgfβ2 U1	atcgtggccacagagtcatc	tgctgtctcctgtcacacagt	60°
Tgfβ2 U2	gatggtgggtcatccttgtc	agtgtccctttcacccaatg	60°
Tgfβ2 U3	gctcgtggtcttagtaacagagg	gctgccagcagataacatca	60°
Tgfβ2 D1	gccgggctctaactgagaag	acatccacacgcacactcat	60°
Tgfβ2 D2a/b	cccagataggtcagcaggga	tgacttatgctaagagaccaagg	60°
Tgfβ2 D3a/b	agcgtcttttgaatagctgcac	tttacggatcctgtgccctg	60
Axin2 Pos1	ctcgcatacctcccttcc	ttccagcagtcactaggc	60°
Axin2 Pos2	gagcgcctctgtgattgg	gaccccaccttttacagcaa	60°
Axin2 Neg	atctgtatgtcctgtctgccagcg	tgtcctgattcccaagtcaagcac	60°