SUPPLEMENTARY MATERIALS

Table S1. Study design

Mice (age of treatment)	Control/SD (genotype)	Treatment with AAV9
Neonates (1-2 day)	Control (+/+ or +/-)	HexB (n=5)
(denoted as 'n' in		LacZ (n=5)
manuscript)	SD (-/-)	HexB (n=5)
		LacZ (n=5)
Adults (6 weeks)Control (+/+ or +/-)		HexB (n=5)
(denoted as 'a' in		LacZ (n=5)
manuscript)	SD (-/-)	HexB (n=5)
		LacZ (n=5)

Table S2. Statistical comparisons of control groups that are merged within figures.

Data/Related Figure	Comparison	P value	Test
Total distance travelled/	at Wk 14		
Figure 1b	a Control-LacZ (n=5)	P = 0.7290	one way ANOVA
	a Control-HexB (n=5)		
	n Control-LacZ (n=4)		
	n Control-HexB (n=5)		
	ot Wit 15		
	at WK 15 a Control L as $7 (n-5)$	P = 0.7177	ODO WOW ANOVA
	a Control HavB $(n=5)$	P = 0.7177	one way ANOVA
	n Control L $acZ(n-4)$		
	n Control-HevB $(n-5)$		
	II CONTOL·LICKD (II=3)		
	at Wk 16		
	a Control-HexB (n=5)	P = 0.2498	one way ANOVA
	n Control-LacZ (n=5)		
	n Control-HexB (n=4)		
			two tailed T-test
	at Wk 21	P = 0.8723	
	a Control-HexB (n=2)		
	VS		
	n Control-HexB (n=5)		
	at Wk 30		none
	n Control-HexB (n=5)	1 group no intragroup	
		comparison	
Vacuolization /	a Control-LacZ (n=5)	•	one way ANOVA
Figure 2b	a Control-HexB (n=5)		
_	n Control-LacZ (n=5)		
	n Control-HexB (n=5)		
		0.0057	
	In CB	p = 0.9257	
	Md/Po	p = 0.4182	1

	Mid	p = 0.8900	
	CX/Hp	p = 0.5847	
	Thy/HY/Sen	p = 0.9328	
		p = 0.5520 p = 0.5472	
Gganglioside proportions/	a Control-Lac $Z(n=5)$	p = 0.0913	one way ANOVA
Eigura 2d	a Control HavB $(n=5)$	p = 0.0715	one way AINOVA
Figure 20	a Control L $a = 7$ (n=5)		
	II COINTOI-Lacz $(II=3)$		
S	II Collutol-HexB $(II=3)$		
Serum nex activity/	At wk: 10, 12-14, final		
Figure 3a	a Control-LacZ vs	p > 0.05 at all times	two tailed t-tests
	n Control-LacZ	points	
	a Cantual HanDara		
	a Control-Hexb vs	p > 0.03 at all time	
	n Control-HexB	points	
	a Control-LacZ and	*p value < 0.05 at all	
	n Control-LacZ vs	time points (see Fig. S2a)	
	a Control-HeyB	time points (see Fig. 524)	
	a control flexb	*n value < 0.05 at all	
	a Control-LacZ and	time points (see Fig. S2a)	
	n Control-LacZ vs	time points (see Fig. 52a)	
	n Control-HeyB		
Brain hay activity/	a Control LacZ vs	p > 0.05	Two tailed T test
Figure 2h	a Control LacZ vs	p > 0.05	I wo talled I-test
Figure 50	II COILITOI-Lacz		
	a Control-HexB vs	*n value – 0.0117	
	n Control-HexB	(see Fig. S2h)	
Vector conv number in brain/	male vs female	a Control = 0.3192	two tailed T-test
Figure 5	male vs temale	M(n-14) = 0.5192	two tanea 1-test
Figure 5		n Control = 0.7340	
		M(n=8) = C(n=12)	
		$M (II-6), \Gamma (II-12)$	
		a Collutor-Hexb $=0.7870$ M $(n=6)$ E $(n=4)$	
		M(II=0), F(II=4)	
		a Control-Lacz = 0.1026	
		M(n=8), F(n=2)	
		n Control-HexB = 0.4203	
		M (n=3), F (n=7)	
		n Control-Lac $Z = 0.3241$	
		M (n=5), F (n=5)	
Vector copy number in liver/	male vs female	a Control = 0.4215 M	two tailed T-test
Figure 5		(n=14), F (n=6)	
		n Control = 0.3524	
		M (n=8), F (n=12)	
		a Control-HexB =0.5390	
		M (n=6), F (n=4)	
		a Control-LacZ = 0.4323	
		M (n=8), F (n=2)	
		n Control-HexB = 0.2740	
		M (n=3), F (n=7)	
		n Control-Lac $Z = 0.4650$	
		M (n=5), F (n=5)	

Figures

Figure S1 Head rotations. Mice were videotaped in an open field at 3-5 time points post rAAV9 administration, and head rotations were analyzed using ANY-maze software. Plotted values are average number of head rotations ± SEM. **** p<0.0001; ***p<0.001; **p<0.01; ns- not significant.

Figure S2 β -hexosaminidase activity levels in control groups. Total β -hexosaminidase activity was determined using 4-MUG as a substrate. Bars represent the average activity + SEM. (a) Sera were collected at 10, 12-14, and 15-43 wks (just before death). Control animals injected with HexB had significantly more activity than normal LacZ-injected mice. Therefore only LacZ-injected mice were included in Fig.3 of the manuscript as controls. (b) brains were collected at death. The significant difference between the HexB-injected adults and neonates reflects the

different genotypic composition of these two groups ($Hexb^{+/+}$ vs $Hexb^{+/-}$). ** indicates p<0.01, *indicates p<0.05, ns- not significant.

Figure. S3 AAV9 Integration Sites. (a) Integrations per chromosome. (b) Genes with largest number of integrations per kb of DNA.

Video S1. Comparison of the activity of neonatally-treated mice. A SD mouse treated with AAV9-HexB as a neonate (female), an AAV9-LacZ-treated SD mouse (front), and a normal control ($HexB^{+/-}$ male) treated neonatally with AAV9-HexB were place in an open field at 16 wks. The LacZ-treated SD mouse at the front of the field exhibits tremors, little movement and does not splay its rear limbs on the tail suspension test. The SD mouse treated as a neonate with AAV9-HexB is on the left side at the beginning of the video.

Video S2. Comparison of the activity of adult-treated mice. A SD mouse treated with AAV9-HexB as an adult, an AAV9-LacZ-treated SD mouse (front), and a normal control ($Hexb^{+/-}$) treated with AAV9-HexB as an adult were placed in an open field at 16 wks of age. The LacZ-treated SD mouse exhibits little movement and does not splay its rear limbs on a tail suspension

test. The SD mouse treated with AAV9-HexB as an adult is obviously slower than its normal counterpart; its body is very close to the ground compared to the normal mouse.