


Supplementary Figure 1 | Imaging measurements. (a) Photoluminescence image taken at zero gate voltage. (b) Image of the same nanotube under square-wave gate voltage with $V_a = 2.0$ V and $V_b = -2.0$ V at f = 100 kHz. A nanotube with a chirality of (10,9) is measured under $P = 10 \mu$ W and $\lambda_{ex} = 872$ nm. 50-nm wide spectral integration window centered at $\lambda_{em} = 1515$ nm is used for I_{PL} . Scale bar is 1 μ m.

Supplementary Figure 2 | Higher frequency behavior. For another nanotube with a chirality of (9,8), frequency dependence measurements have been performed up to f = 10 MHz for $V_a = 3.0$ V and $V_b = -3.0$ V. The spectral integration window for I_{PL} is from $\lambda_{em} = 1360$ nm to 1410 nm. $\lambda_{ex} = 802$ nm and $P = 0.1 \mu$ W to 10.0 μ W are used.

Supplementary Note 1

From the resistivity of $18.0 \pm 4.5 \Omega$ cm and the thickness of 260-nm for the top Si layer, sheet resistance becomes 690 k Ω . Capacitance to the substrate is 3.5 nF cm⁻² for the oxide thickness of 1 µm with relative permittivity of 3.9 for SiO₂. For a gate dimension of 10 µm × 200 µm, the relevant resistance and capacitance are 35 k Ω and 69 fF, respectively, resulting in a capacitive cut-off frequency of 67 MHz.