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Supplementary Figure 1: Top CpG sites associated with blood cell type surrogates (principal components),

evaluated in purified human leukocyte subtype methylation data sets.
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Supplementary Figure 2: Genomic positions of 1,388 SNPs involved in distal SNP-CpG associations, pruned
for linkage disequilibrium.
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Supplementary Figure 3: UCSC browser illustration of the chr16:29093157-29236964 region.
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Supplementary Figure 4: Average proportion of all CpG sites having a 3 value that differs by 0.01-0.02 (green),
0.02-0.05 (yellow), 0.05-0.10 (pink) and more than 0.10 (light gray) in intra-plate duplicates, based on data
transformation method. CpG sites are further stratified in deciles, based on the average methylation level of the
site calculated from the raw data.
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Supplementary Figure 5: Average proportion of all CpG sites having a 3 value that differs by 0.01-0.02 (green),
0.02-0.05 (yellow), 0.05-0.10 (pink) and more than 0.10 (light gray) in inter-plate duplicates, based on data
transformation method. CpG sites are further stratified in deciles, based on the average methylation level of the
site calculated from the raw data.
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Supplementary Figure 6: Correlation between intra-plate duplicates based on data transformation method. CpG
sites are further stratified in deciles, based on the average methylation level of the site calculated from the raw

data.
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Supplementary Figure 7: Correlation between inter-plate duplicates based on data transformation method. CpG
sites are further stratified in deciles, based on the average methylation level of the site calculated from the raw

data.
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Supplementary Figure 9: Principal component analysis of 2228 samples. The first 3 principal components are
plotted; collectively they explain 95% of the total variance. Each sample is color coded according to its 96-well
DNA plate.
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Supplementary Figure 10: Principal component analysis of 2228 samples. The first 3 principal components are
plotted; collectively they explain 95% of the total variance. Each sample is color coded according to the source
of its DNA: from lymphocytes (gray) or lymphoblastoid cell lines (red); blue points represent spots left blank
on the arrays.
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Supplementary Figure 11: Densities of X chromosome methylation values (Beta) in females (left) and males
(right). Blue: raw data; red: quantile normalized data.



Supplementary Methods

Normalization of methylation values

Red and green intensities -- or the methylation values calculated from them -- were normalized
(1) using the algorithms described in the GenomeStudio Methylation Module v1.8 User Guide
(IMumina, Inc.); these algorithms use control probes specifically designed to normalize the
intensities (between sample color bias adjustment) and estimate the level of background
intensities, which can be subtracted from signal intensities; (2) using the same color adjustment
probes and algorithms, but using out-of-band signals (from the Infinium I probes) to estimate and
correct for background intensities (NOOB) [1]; (3) using SWAN [2] and (4) BMIQ [3], two
methods that adjust the differences in the distributions of methylation values between Infinium |
and Infinium Il probes; (5) quantile normalization [4] on red and green intensities separately.
We illustrate the adverse effects of quantile normalization on methylation values by comparing
DNA from samples that were extracted from lymphocytes with 99 DNAs extracted from
lymphoblastoid cell lines (LCL); these two groups are expected to display substantially different
methylation profiles throughout the genome [5]. This situation does not warrant the use of
normalization methods that assume similar intensity distributions or similar biological conditions
in all samples [6].

For each normalization strategy, we compared the resulting B values in all pairs of duplicate
samples. Sixty-five SNPs with high heterozygosity were assayed on the HumanMethylation450
array; they were used to ensure that duplicates were indeed corresponding to the same DNA
sample. We counted the number of sites for which the B values differed by more than 1%, 2%,
5% and 10% in pairs of duplicates, either duplicates belonging to the same 96-well DNA plate

(intra-plate pairs) or different plates (inter-plate pairs). We further stratified these counts in



strata of CpG sites based on their average p values, calculated from the raw methylation profiles
in all samples.  Supplementary Fig. 4 illustrates these counts, averaged over all intra-plate
duplicate pairs, while Supplementary Fig. 5 illustrates counts averaged over inter-plate duplicate
pairs. Based on these, the NOOB background correction consistently outperforms
GenomeStudio’s, while BMIQ peak-based correction globally outperforms SWAN, but not
consistently throughout all ranges of methylation profiles. Quantile normalization (QN)
underperforms globally compared to NOOB, but not consistently. Combining NOOB with
GenomeStudio’s description of dye-bias correction, followed by BMIQ peak-based correction
outperforms all methods taken individually, but not consistently. For this combination, the
differences between the beta values in duplicates are markedly reduced, except for intermediate
methylation values (20-80% range). Supplementary Fig. 6 and 7 in focus on the correlation
coefficients between the set of beta values in pairs of duplicates; similar conclusions can be

drawn.

GenomeStudio’s implementation of background and dye-bias correction (GS:BCK+DB)
performs generally well and is a reasonable choice. This is a somewhat discrepant message
compared to the interpretation found in [7]. In there, it is argued that using GenomeStudio’s
background and dye-bias corrections leads to increased differences between duplicates compared
to raw data. However, their interpretation was based on comparing the M-values in duplicates
instead of beta values. Since M is a logit transformation of  (M=log.{p/(1-B)}), M becomes
larger as beta approaches 0 or 1; small differences in the B scale translate into larger differences
in the M scale. Since applying a background correction moves [ values closer to these

boundaries, the associated M-values get larger and differences are amplified. To illustrate, the



difference between the M-values corresponding to beta values of 8% (M=-3.52) and 4% (-4.58)
is approximately the same as the difference between M-values corresponding to beta values of
0.2% (-8.96) and 0.1% (-9.96). We do not think that the M scale is an appropriate scale to

compare methods, especially if background correction is involved.

Despite words of warnings against its use [6], quantile normalization has been recommended as a
normalization method of choice in the literature [7]. While quantile normalization appears to
improve reproducibility, subsets of samples with substantial differences in their methylation
profiles will see substantial changes following quantile normalization, and will look more alike.
Supplementary Fig. 8 illustrates this, where we compare the mean differences in methylation
values between samples whose DNA were extracted from lymphocytes and from LCLs. LCL
samples (which were removed in the SNP-CpG association analyses) display substantially
different methylation profiles throughout the genome compared to lymphocytes [5]
(Supplementary Fig. 9-10): globally, CpG sites tend to display lower methylation levels in LCL
samples compared to lymphocyte samples at a majority of sites (Supplementary Fig. 8); this
observation is preserved irrespective of the data transformation method (between 63-72% of sites
display lower methylation in LCL, depending on the data transformation method), except for
quantile normalization where the differences are more symmetrical and interpretation is
qualitatively different (45% of sites display lower methylation values in LCL and skewness is
noticeably reduced).  While it could be argued that the possibility exists that quantile
normalization is the only method that appropriately transforms the data (in absence of a gold
standard dataset), we note that the mean methylation values were adjusted for sex, age, array and

position on the array, and were calculated only for arrays presenting at least two LCL and two



lymphocyte samples; batch, technical or other effects are thus not expected to have a strong
influence on those adjusted mean differences. In absence of a gold standard dataset, extracting
probes from chromosome X and applying a data transformation method only on them can be
used as a model to confirm that the method does not disrupt the unique features of male and
female methylation profiles. Females typically show 3 methylation peaks (a methylated peak,
an unmethylated peak and, because of X inactivation, a hemi-methylated peak) while males only
display two peaks (a methylated peak and an unmethylated one). Supplementary Fig. 11 is a
typical illustration of the effects of quantile normalization on X chromosome probes: after
normalization, males show 3 peaks, similar to females, while in females the weight of the hemi-

methylated peak moves toward the unmethylated state.
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