Supplementary materials

Common variation in COL4A1/COL4A2 is associated with sporadic cerebral

small vessel disease

Materials included.

- Supplementary table e-1: Cohort characteristics and summary statistics.
- Supplementary table e-2: Original measures of association and imputation quality
 - A. Original measures of association (β) and the derived odds ratios (ORs).
 - B. Imputed and directly genotyped SNPs.
- Supplementary table e-3: Functional annotations.

A. Functional annotation of SNPs in moderate LD (r²>0.3) with rs9521732, rs9521733 and rs9515199.

B. Functional annotation of SNPs in high LD (r^2 >0.9) with rs9521732, rs9521733 and rs9515199: Regulome db database results.

Reference list

Supplementary table e-1. Cohort characteristics and summary statistics

	A. Cohorts contributing data for the ICH phenotype										
Cohort name	GOCHA	ISGC	GERFHS								
		STUDY INFORMATION	-								
Study design	Prospective hospital-based case-control	3 separate prospective hospital- based case-control cohorts	Prospective population-based case-control								
Study inclusion and exclusion criteria	Included: primary acute ICH cases press >55 years, confirmation of primary ICH brain tumor-, vascular malformation re transformation of ischemic stroke, othe	Included: spontaneous ICH in the Greater Cincinnati/ Northern Kentucky region; age ≥18 years. Excluded: trauma-, brain tumour-, vascular malformation related ICH.									
ICH diagnosis criteria	Non-traumatic abrupt onset of severe headache, altered level of consciousness, and/or focal neurological deficit that is associated with a focal collection of blood within the brain parenchyma as observed on CT or at autopsy and is not due to hemorrhagic transformation of an infarction.										
Deep ICH diagnosis criteria	Involving predominantly the basal ganglia, periventricular white matter, or internal capsule, and infratentorial ICH										
Lobar ICH diagnosis criteria	Involving predominantly the cortex and underlying white matter										
Key study references	Falcone et al. Stroke 2013(1)	Woo et al. Am J Hum Genet 2014(2)	Woo et al. Stroke 2002(3)								
		SUBJECTS' CHARACTERISTICS									
Ancestry of study sample		European descent	-								
Total number of ICH cases	298	450	797								
Age of all cases with ICH (mean \pm SD)	74 ±10	72 ±12	67 ±15								
Number of deep ICH cases	125	279	470								
Age of cases with deep ICH (mean \pm SD)	71 ±13	69 ±14	65 ±16								
Number of lobar ICH cases	173	171	327								
Age of cases with lobar ICH (mean \pm SD)	76 ±11	71 ±12									
Number of controls	457	489	539								

	A. Cohorts contributing data for the ICH phenotype								
Cohort name	GOCHA	ISGC	GERFHS						
Age of controls (mean \pm SD)	72 ±8	73 ±12	66 ±15						
	GENOTYPING INFORMATION								
GWAS panel used	Illumina Human	Hap 610 Quad	Affymetrix 6.0						
QC steps done before imputation	QC steps before imputation done in ev	QC steps before imputation done in every centre, including removal of population outliers, missing data and HWI departures							
Imputation software	IMPUTE2 (<u>https://mathgen.stats.ox.ac.uk/impute/impute_v2.html</u>)								
Which reference imputation done to		1000-genomes (June 2011)							
Imputation quality metric reported	IMPUTE info score & PLINK info score (<u>http://pngu.mgh.harvard.edu/~purcell/plink/</u>)								
QC filtering applied to imputed variants	Removed SNPs with PLIN	K info score of <0.7 and minimum allele	e frequency (MAF) <1%						
Software and statistical model used for association analyzed	ICH = bo	PLINK + b1*SNP + b2*age + b3*sex + b4*PC1	PC4						
Handling of population stratification	Principal component (PC) analysis. Rem by ir	notion of population outliers by visual i nclusion of PC1-PC4 in regression mode	nspection of PC1*PC2 plot, followed ls						
Hardy Weinberg Equilibrium (HWE)		Excluded if HWE p<1x10 ⁻⁶							
Adjusting for cryptic or overt relatedness	Excluded individuals with an inferred first- or second-degree relative in the sample identified on the basis of pairwise allele sharing estimates (estimated genome proportion shared identical by descent) π>0.1875								
Strand and build of the human genome on which results are provided	d + strand, build 37/hg19								

GOCHA: Genetics of Cerebral Hemorrhage with Anticoagulation; ISGC: International Stroke Genetics Consortium; GERFHS: Genetic and Environmental Risk Factors for Hemorrhagic Stroke

	B. Cohorts contributing data for the ischemic stroke phenotype														
Cohort name	WTCCC	WTCCC	ISGS &	Rotter-	Milano	ARIC	ASGC	Brains	CHS	deCODE	FHS	GASROS	GEOS	HPS	HVH
	2_UK	2_D	SWISS	dam											
1				1		1	STUDY INF	ORMATIO	N			1			
Study design [⊥]	CS	CS	CS	PB	CS	PB	CS	CS	PB	CS	PB	CS	CS	CS	CS
Inclusion and exclusion criteria	Included	Included: Patients with ischemic stroke who were of European ancestry from Europe, North America, and Australia, together with controls of matched ancestry. All studies used a case-control methodology.													
IS definition	Stroke was o	defined as	a typical clir	nical syndro	ome with rad	liological c	onfirmatio	n. Stroke s	ubtyping w	vas done wit	h the TOA	ST classifica	ition syste	em.	
Reference						Traylor e	et al, Lance	t Neurolog	y 2012(4)						
		SUBJECTS' CHARACTERISTICS													
Ancestry of study sample		European ancestry (from Europe, North-America, Australia)													
Total no.cases/con trols	2374/ 5175	1174/ 797	1070/ 2329	367/ 5396	372/ 407	385/ 8803	1162/ 1244	361/ 444	454/ 2817	2391/ 26970	171/ 4164	516/ 1202	448/ 498	578/ 468	566/ 1290
No. CE cases	460	330	247	-	65	93	240	29	147	399	48	169	90	-	88
No. LVD cases	498	346	229	-	74	31	421	120	-	255	-	95	37	-	61
No. SVD cases	474	106	201	-	25	63	310	97	73	240	-	38	54	-	173
Age of cases and controls (mean ± SD)	72±13/ 52 ²	67 ±13/ 63±11	67±14/ 65±13	71±8/ 69±9	57±16/ 51±8	57±5/ 54±6	73±13/ 70±12	74±14/ ≥65	82±6/ 86±6	73±12/ 57±21	80±11/ 72±12	67±15/ 48±9	41±7/ 40±7	65±8/ 59±9	69±9 / 67±9
						GEN	NOTYPING	INFORMA	TION						
GWAS panel used	Illumina	660	Illumina 550/610/ 660	Illumina 550	Illumina 610/660	Affy- metrix 6.0	Illumir	าล 610	Illumina 370	Illumina 317/370	Affy- metrix 550	Affymetr ix 6.0	Illumi na H Omni	Illu- mina 610	Illu- mina 370
QC filters applied before imputation	QC steps before imputation done in every center, including removal of ancestry outliers defined by principal component analysis and poorly typed individuals.														
Imputation software	MaC http://www.s	H : <u>ph.umich.</u>	MaCH v1.0.16	M	laCH	1	MaCH v1.0.16		BIM- BAM(5)	IMPUTE	MaCH v1.0.15	MaCH v1.0.16	Not impute	MaC H	BIM- BAM

				B. Col	horts contri	buting da	ata for the	ischemic	stroke pł	nenotype					
Cohort name	WTCCC	WTCCC	ISGS &	Rotter-	Milano	ARIC	ASGC	Brains	CHS	deCODE	FHS	GASROS	GEOS	HPS	HVH
	2_UK	2_D	SWISS	dam											
	edu/csg/abec H/down	casis/MAC											d		
Reference imputed to	НарМар:	2 CEU	1000G (Aug 2010)	HapMa p#22	HapMap2 CEU	HapM ap2 CEU	HapMapII	#24 CEU	NCBI b35	HapMap2 CEU	p2 HapMap #22 HapMap #22 CEU+TSI impute training d set		НарМа	p2 #22	
Imputation quality metric reported		MaCH oevar ³ O/E IMPUTE MaCH oevar n/a MaCH oevar n/a MaCH oevar							O/E rati o						
QC filtering applied to imputed variants Software and		Included SNPs with imputation quality ≥0.3 (O/E variance or IMPUTE info score) and MAF ≥1%													
statistical model used for association analyzed	Logistic reį against and	Logistic regression for all cohorts with a cross-sectional study design to model the multiplicative SNP effects on risk of the dichotomous outcome of stroke against ancestry-matched controls. Cox proportional-hazards models for prospective studies to assess time to first stroke, fitting an additive model relating genotype dose to the stroke outcome.													
Handling of population stratification	Four cohorts used ancestry-informative principal components as covariates to correct for population stratification (ISGS/SWISS, GEOS, ASGC, Brains). Age and sex were included as covariates in two centers (ISGS/SWISS and Brains), sex was used as a covariate in one center (GASROS) and one center used recruitment phase (1 or 2) as a covariate (GEOS). In all other centers no covariates were included.														
HWE				А	Il centers scr	eened SNI	Ps for HWE e	rrors prio	r to imputa	ation or ana	lysis				
Adjusting for cryptic or overt relatedness	All centers screened individuals for relatedness prior to imputation or analysis														

¹CS: cross sectional study; PB:population-based study. ²The approximate age of genotyping of the 2738 controls from the 1958 Birth Cohort. Age was not available for the remaining controls. ³MaCH oevar: the measure is the ratio of the empirically observed variance of the allele dosage to the expected binomial variance at Hardy–Weinberg equilibrium

WTCCC2: Wellcome Trust Case Control Consortium 2; UK: The United Kingdom of Great Britain and Northern Ireland; D: Germany; ISGS: Ischemic Stroke Genetics Study; SWISS: Sibling with Ischaemic Stroke Study; ARIC: Atherosclerosis Risk in Communities study; ASGC: Australian Stroke Genetics Collaborative; BRAINS: Bio-Repository of DNA in stroke; CHS: Cardiovascular Health Study; FHS: Framingham Heart Study; GASROS: Genes Affecting Stroke Risk and Outcome Study; GEOS: Genetics of Early-Onset Stroke: HPS: Heart Protection Study; HVH: Heart and Vascular Health Study

	C. Cohorts contributing data for the WMH in ischemic stroke phenotype										
Cohort name	ASGC	GASROS	SWISS	ISGS	Edinburgh	Milano	SGUL	Oxfor d FLAIR	Oxfor d T2	Munich FLAIR	Munich T2
					STUDY INFOR	MATION					
Study design ¹	HB	НВ	HB	HB	HB	HB	HB	PB	PB	HB	HB
Study inclusion and exclusion criteria		Exc	ischemic stroke velinating and n	e of any s nitochon	ubtype drial disor	ders					
WMH quantification method used	WMH asses ischemic str included in WMH corre FLAIR image automated	sed in hemisphere co oke. All supratentori WMH volume (WMH sponding to lacunar i es analyzed using a v protocol (MRIcro, Un	o acute hs were exception of uential axial ni- nam)	WMH assesse supratentorial the exception semi-automat	d in the hemisp I white matter I of WMH corres ed lesion drawi	ohere con esions wo sponding ing softw	tralateral ere includ to lacuna are.	to acute ed in WN r infarcts	ischemic strc 1H volume (V ; Analyzed us	oke. All VMHV) with ing DISPunc	
MRI scanner used	1.5 T Siemens Magneto m Avanto	T ens eto nto			1.5T GE Medical Signa, 1.5 T Siemens	1.5T Siemens, 0.5T Philips	1.5 T Philip s, 1.5T GE Signa LX	1.51 Medica 1.5 T F	- GE I Signa, Philips	1.5T Siemens Magneto m, 1T Siemens, 1.5 T GE Medical Signa	1.5T Siemens Magneto m, 3T and 1.5T GE Medical Signa, 1T Siemens
MRI sequence used for assessing WMH	Axial FLAIR				Axial FLAIR	Coronal FLAIR or Axial FLAIR	Axial FLAIR	Coron al FLAIR	Axial T2	Axial FLAIR	Axial T2
Key study references	Adib-Samii et al, Stroke 2013; Rost et al Neurology 2010;(6, 7)										
				SL	JBJECTS' CHARA	ACTERISTICS					
Ancestry of study sample	European ancestry										

	C. Cohorts contributing data for the WMH in ischemic stroke phenotype										
Cohort name	ASGC	GASROS	SWISS	ISGS	Edinburgh	Milano	SGUL	Oxfor d FLAIR	Oxfor d T2	Munich FLAIR	Munich T2
Number of cases assessed for WMH	104	975	115	209	65	152	323	65	75	447	203
Age of cases assessed for WMH (mean ± SD)	65±13	66±14	66±11	68±14	69 ± 13	58 ± 14	71 ± 13	65 ± 15	68 ± 13	66 ± 12	67 ± 12
		·	·	GENOTYP	ING INFORMA	ΓΙΟΝ					
GWAS panel used QC filters applied to genotype	Human61 0-Quad Individua	Affymetrix 6.0, Illumina Human610-Quad or Illumina OmniExpress beadchips als removed if inferre	Illumina6	550K-Quad dant with data:	Illumina Human660 W-Quad Individuals re SNPs wer	Illumina Human610- Quad or Human660 W-Quad emoved if inferr	red sex di genc minor alle	Illumi scordant otype data ele freque	ina Huma with reco a; ency <1%	n660W-Quad orded sex; if > or >5% missir	l 5% missing ng data;
data before imputation			00 /1	,							
Imputation software					IMPUTI	E 2					
Which reference imputation done to	HapMap3 and 1000 Genomes Project Phase pilot (June 2010)	HapMap3 and 1000 Genomes Project Phase pilot (June 2010) or 1000 Genomes Integrated Release (June 2011)	HapMap3 a Genomes F Phase pilot 2010)	and 1000 Project : (June) 1000 Genomes Phase 1 integrated variant set (Ma				(March 2012)	

	C. Cohorts contributing data for the WMH in ischemic stroke phenotype											
	ASGC	GASROS	SWISS	ISGS	Edinburgh	Milano	SGUL	Oxfor	Oxfor	Munich	Munich	
Cohort name								d	d T2	FLAIR	T2	
Imputation quality metric				IMPUT	E info score & I	LINK info scor	e					
QC filtering applied to imputed variants		Removed SNPs with IMPUTE info score <0.3 and SNPs with MAF <1%										
Software and statistical model used for association analyzed	WMHV from the hemisphere contralateral to acute ischemic stroke was doubled to obtain whole brain values and adjusted for normal inter- individual variation in head size. Values were natural log transformed to a normal distribution. Within each group, rank- transformed residuals were derived from a linear regression model predicting WMHV with age, sex, and the first 2 ancestry principle components as covariates in GenABEL. Thus, the phenotype was adjusted for age because WMHV is highly age dependent. Principal components, derived using EIGENSTRAT, were included to correct for potential population stratification. Association analysis was undertaken in PLINK using pseudodosages, a fractional count of 0 to 1 alleles for each genotype weighted by imputation probability, within a linear regression (additive) model.											
Handling of population stratification	Principal co outliers by by inclu	omponent analysis. I visual inspection of usion of PC1-PC4 into	Remotion of p PC1*PC2 plot pregression r	oopulation t, followed nodels.	2 ancestry i	nformative pri model us	ncipal cor ed to deri	nponents ive the W	covariate MH phen	es were includ otype	ded in the	
HWE					Excluded if HWI	E p<1x10 ⁻⁶						
Adjusting for cryptic or overt relatedness	Excluded individuals with an inferred first- or second- degree relative in the sample identified on the basis of pairwise allele sharing estimates (estimated genome proportion shared identical by descent) π >0.2											
Strand and build of the human genome on which results are provided	+ strand, build 37/hg19											

¹HB: hospital-based stroke study; PB: population-based stroke study SGUL: ST George's University London

	D. Cohorts contributing data for the WMH in the population phenotype											
Cohort name	ARIC	CHS	FHS	Rotterdam	Rotterdam	AGES	ASPS					
				Study I	Study II							
			ST	UDY INFORMATIO	N .							
Study design			Prospective p	opulation-based c	ohort studies							
Study inclusion and	In all cohorts, pa	rticipants were ex	cluded if they lacked ir	nformation on MR	I, genotypes, or bot	h, or if they suffered	d a stroke or					
exclusion criteria	transient ischem	ic attack prior to N	/IRI. In addition, CHS d	id not genotype pa	articipants with clini	cal cardiovascular d	lisease at					
	baseline. ASPS ar	nd RS did not perf	orm MRI scans in parti	cipants with deme	ntia, and FHS analys	ses excluded partici	pants who had					
	dementia at the	time of MRI.										
WMH	In AGES-Reykjavi	k, ASPS, FHS, and	Rotterdam, WMH volu	ime was estimated	d on a quantitative s	cale using custom-w	vritten computer					
quantification	programs based	on an automatic s	egmentation algorithn	n or a semiautoma	itic segmentation ar	alysis involving ope	erator-guided					
method used	removal of nonb	rain elements. In A	ARIC and CHS, WMH vo	olume was estimat	ed on a semiquanti	tative 10-point scale	e by visual					
	comparison with	8 templates that	successively increased	from barely detec	table white matter	lesions to extensive	, confluent					
	abnormalities. St	udy participants'	brain images were con	npared with the re	ference standards a	fter aligning them t	o approximately					
	the same appare	he same apparent size. Hence, visual grades are inherently normalized for brain size.										
				1		1	1					
MRI scanner used	General	1.5T General			1 5 T GF	1 5 T Signa						
	Electric or	Electric or	1 or 1.5 T Siemens	1.5 T Siemens	Healthcare	TwinSneed	1.5 T Gyroscan					
	Picker 1.5 Tesla	Picker or 0.35 T	Magnetom scanner	Vision scanner	scanner	system	S15 and ACS					
	scanners	Toshiba			Scanner	System						
MRI sequence used	T1- and T2-weigh	nted scans in the a	xial plane were obtain	ed for all participa	nts. These were cor	nplemented by eith	er scans					
for assessing WMH	obtained with flu	id attenuation inv	version recovery or pro	oton density seque	nces to allow better	r separation of whit	e matter					
	hyperintensities	and cerebrospinal	fluid.									
Key study			Fornage M et	al, Annals of Neuro	ology 2011(8)							
references												
			SUBJE	CTS' CHARACTERI	STICS							
Ancestry of study	European ancestry											
sample												
Number of cases in												
the study assessed	798	2184	2200	380	567	2467	765					
for WMH												

D. Cohorts contributing data for the WMH in the population phenotype Cohort name ARIC CHS FHS Rotterdam AGES ASPS Rotterdam Study I Study II Age of cases assessed for WMH 63±4 72+5 73+8 64 + 1167±5 76±5 65±8 $(mean \pm SD)$ **GENOTYPING INFORMATION** GWAS panel used Affymetrix Affymetrix Illumina Illumina 610-Illumina Illumina Illumina Human GeneChip SNP Human 370-GeneChip Human Quad HumanHap550 HumanHap550 370-Duo Array 6.0 Duo BeadChip mapping 500K Duo BeadChip Duo BeadChip BeadChip BeadChip Array Set and 50K Human gene Focused panel QC filters applied to Participant-specific quality control filters were applied based on missing call rate, cryptic relatedness, and number of Mendelian genotype data errors per individual. SNP-specific quality controls included filters for call rate, minor allele frequency, Hardy-Weinberg before imputation equilibrium, differential missingness by outcome or genotype. MaCH (v1.0.15 MaCH (v1.0.15 or 1.0.16) Imputation BIM-BAM 15 or 1.0.16) software HapMap2 CEU Which reference +strand of HapMap2 CEU #22; +strand of NCBI build 36 imputation done to #22: +strand of NCBI build 35 NCBI build 36 Imputation guality O/E ratio and oevar metric reported QC filtering applied Excluded SNPs with O/E ratio & oevar <0.3 and MAF<1% to imputed variants Software and Within each study, a linear regression model was used to evaluate the association of the natural log-transformed volume of WMHs (log[WMH + 1]) with the number of minor alleles (0 to 2) at each SNP. Analyses were adjusted only for age, sex, and total statistical model used for association intracranial volume (except in ASPS, ARIC, and CHS). ARIC and CHS also adjusted for study site, and FHS adjusted for familial analyzed structure. HWE Excluded if Hardy-Weinberg p<1x10⁻⁵ in CHS and p<1x10⁻⁶ in AGES-Reykjavik, ARIC, ASPS, FHS, and Rotterdam

D. Cohorts contributing data for the WMH in the population phenotype										
Cohort name	ARIC	CHS	FHS	Rotterdam	AGES	ASPS				
				Study I	Study II					
Adjusting for										
cryptic or overt	Ctudios woro cor	tudios ware careened for latent nonvelation substructure, including countie relatedness, using suitable programs, FICENCEDAT in								
relatedness and	ADIC FUS and AC	Studies were screened for latent population substructure, including cryptic relatedness, using suitable programs: EIGENSTRAT in ARIC, FHS and AGES-Reykjavik, an IBD matrix in ASPS and Rotterdam, and using principal component analysis in CHS.								
population	ARIC, FITS and AC									
stratification										
Strand and build of										
the human genome	+ strand; ng18									

AGES: Aging Gene-Environment Susceptibility-Reykjavik Study ASPS: Austrian Stroke Prevention Study

Supplementary table e-2.

A. Original measures of association (β) and the derived odds ratios (ORs).

	Phenotype	β (minor allele)	SE of β	OR (minor allele)	95% CI of OR
(All ICH	0.1548	0.0519	1.17	1.05 to 1.29
e A	Deep ICH	0.2451	0.0614	1.28	1.13 to 1.44
lle	Lobar ICH	0.0489	0.068	1.05	0.92 to 1.20
or a	All IS	0.0261	0.0161	1.03	0.99 to 1.06
2 (min	CE IS	0.022	0.0321	1.02	0.96 to 1.09
	LVD IS	-0.0465	0.0354	0.95	0.89 to 1.02
173	Lacunar IS	0.0858	0.0357	1.09	1.02 to 1.17
521	WMH in IS*	0.0707	0.0289	1.07	1.01 to 1.14
6 <u>s</u>	WMH in	0 0088	0.008	1 01	0 00 to 1 04
1	population *	0.0088	0.008	1.01	0.99 (0 1.04
(All ICH	0.1706	0.0521	1.19	1.07 to 1.31
ele C	Deep ICH	0.2547	0.0614	1.29	1.14 to 1.46
- alle	Lobar ICH	0.0674	0.068	1.07	0.94 to 1.22
inoi	All IS	0.0294	0.0164 1.03		1.00 to 1.06
33 (n	CE IS	0.0151	0.0326	1.02	0.95 to 1.08
2173	LVD IS	-0.0466	0.0353	0.95	0.89 to 1.02
s 95	Lacunar IS	0.0979	0.0365	1.10	1.03 to 1.18
-	WMH in IS*	0.0691	0.0288	1.07	1.01 to 1.13
(All ICH	0.1554	0.0519	1.17	1.06 to 1.29
С О	Deep ICH	0.2465	0.0614	1.28	1.14 to 1.44
llel	Lobar ICH	0.0487	0.068	1.05	0.92 to 1.20
or a	All IS	0.0308	0.0165	1.03	1.00 to 1.07
nin	CE IS	0.02	0.0332	1.02	0.96 to 1.09
9 (r	LVD IS	-0.0406	0.036	0.96	0.89 to 1.03
519	Lacunar IS	0.0891	0.0365	1.09	1.02 to 1.17
)51 5	WMH in IS*	0.0707	0.0289	1.07	1.01 to 1.14
rs 5	WMH in population *	0.0088	0.008	1.01	0.99 to 1.04

We calculated the ORs from the β -coefficients by using the EXP function in Excel (inverse of the natural logarithm). We calculated the 95% CIs of the ORs by first calculating the error factor (EF=EXP(1.96*SE)) and then dividing and multiplying the OR with the EF to calculate the lower and upper 95% CIs respectively.

* For WMH cohorts the ORs represent the OR per 1 unit standard deviation (SD) change in WMH volume. For WMH in ischemic stroke cohorts, we calculated this from the β -coefficient by simply using the EXP function in Excel, as the WMH values had a SD of 1. For WMH in population cohorts, we divided the β -coefficients and SEs by their respective pooled SD across cohorts (0.684) first and then used the transformed β -coefficient and SE to calculate the respective ORs and their 95% CIs.

Phenotype	Ctudu	Imputation quality measures						
Phenotype	Study	rs9521732	rs9521733	rs9515199				
H	ISGC	1 ^a	G	1 ^a				
С С	GOCHA	1 ^a	G	0.99 ^a				
—	GERFHS	G	G	1 ^a				
	ARIC	G	n/a	1 ^b				
	ASGC	0.96 ^b	G	0.97 ^b				
	Brains	0.99 ^b	G	0.98 ^b				
ш	CHS	0.92 ^c	G	0.92 ^c				
SCHEMIC STROK	deCODE	0.99 ^d	G	0.99 ^d				
	GASROS	1 ^b	0.99 ^b	n/a				
	GEOS	G	n/a	n/a				
	HVH	0.92 ^c	G	0.91 ^c				
	ISGS & SWISS	0.98 ^b	G	0.98 ^b				
	Milano	0.97 ^b	1 ^b	0.97 ^b				
	WTCCC2_D	0.98 ^b	G	0.97 ^b				
51	WTCCC2_UK	0.99 ^b	G	0.99 ^b				
	FHS	0.94 ^b	0.94 ^b	0.94 ^b				
	HPS	0.97 ^b	G	0.97 ^b				
	Rotterdam	0.99 ^b	1 ^b	0.99 ^b				
	Edinburgh	0.97 ^d	G	0.97 ^d				
ic	Munich_T2	0.90 ^d	G	0.90 ^d				
lat	Munich_FLAIR	1 ^d	G	1 ^d				
mo	Oxford_T2	0.94 ^d	G	0.94 ^d				
otc e	Oxford_FLAIR	0.77 ^d	G	0.77 ^d				
m k	SGUL	0.98 ^d	G	0.98 ^d				
sy tro	Milano	0.80 ^d	0.84 ^d	0.80 ^d				
in s	ASGC	1 ^d	1 ^d	1 ^d				
I	GASROS_affy	G	G	1 ^d				
M	GASROS_illumina	1 ^d	G	1 ^d				
3	GASROS_omni	G	1 ^d	1 ^d				
	ISGC-SWISS	0.93 ^d	G	0.93 ^d				
	AGES	0.99 ^b	n/a	0.98 ^b				
L U	ARIC	G	n/a	1 ^b				
l ir Itio	CHS	0.92 ^c	n/a	0.92 ^c				
ЛF ula	FHS	0.94 ^b	n/a	0.94 ^b				
NN	Rotterdam Study I	0.99 ^b	n/a	0.99 ^b				
> lod	Rotterdam Study II	0.99 ^b	n/a	0.99 ^b				
	ASPS	0.98 ^b	n/a	0.98 ^b				

B. Imputed and directly genotyped SNPs.

G: directly genotyped; n/a: SNP not available for the study.

Imputation quality numbers provided reflect the minimum quality measure across sub-phenotypes, rounded to 2 decimal places.

^a PLINK info ^b MaCH oevar ^c BIMBAM O/E ratio ^d IMPUTE info

Supplementary table e-3.

A. Functional annotation of SNPs in moderate LD (r²>0.3) with rs9521732, rs9521733 and rs9515199*.

Gene	hg 19	Consequence Ensembl	Consequence SeattleSeq	Haploreg: dbSNP functional annotation
COL4A2	rs111269249	-	-	intronic
COL4A2	rs115945569	-	-	intronic
COL4A2	rs11619425	intron variant	intron-variant	intronic
COL4A2	rs11619427	 intron_variant	intron-variant	intronic
COL4A2	rs11619430	intron_variant	intron-variant	intronic
COL4A2	rs11838637	intron_variant	intron-variant	intronic
COL4A2	rs11838776	intron_variant	intron-variant	intronic
COL4A2	rs12853693	intron_variant	intron-variant	intronic
COL4A2	rs1888004	intron_variant	intron-variant	intronic
COL4A2	rs1888005	intron_variant	intron-variant	intronic
COL4A2	rs1927342	intron_variant	intron-variant	intronic
COL4A2	rs1927343	-	intron-variant	intronic
COL4A2	rs1927344	intron_variant	intron-variant	intronic
COL4A2	rs1927345	intron_variant	intron-variant	intronic
COL4A2	rs1927346	intron_variant	intron-variant	intronic
COL4A2	rs1927347	intron_variant	intron-variant	intronic
COL4A2	rs1927349	intron_variant	intron-variant	intronic
COL4A2	rs1927355	intronic downstream_ gene_variant†	-	intronic
COL4A2	rs1999013	intron_variant	intron-variant	intronic
COL4A2	rs2149067	intron_variant	intron-variant	intronic
COL4A2	rs2391825	intron_variant	intron-variant	intronic
COL4A2	rs34402154	intron_variant	intron-variant	intronic
COL4A2	rs34992019	intron_variant	intron-variant	intronic
COL4A2	rs3899318		intron-variant	intronic
COL4A2	rs4283091	intron_variant	intron-variant	intronic
COL4A2	rs4492912	intron_variant	intron-variant	intronic
COL4A2	rs4547215	intron_variant	intron-variant	intronic
COL4A2	rs4586292	intron_variant	intron-variant	intronic
COL4A2	rs4771674	intron_variant	intron-variant	intronic
COL4A2	rs4771675	intron_variant	intron-variant	intronic
COL4A2	rs4771676	intron_variant	intron-variant	intronic
COL4A2	rs4773157	intron_variant	intron-variant	intronic
COL4A2	rs4773169	intron_variant	intron-variant	intronic
COL4A2	rs4773170	intron_variant	intron-variant	intronic
COL4A2	rs4773171	-	intron-variant	intronic
COL4A2	rs4773173	intron_variant	intron-variant	intronic
COL4A2	rs4773174	intron_variant	intron-variant	intronic
COL4A2	rs4773177	intron_variant	intron-variant	intronic
COL4A2	rs55940034	intron_variant	intron-variant	intronic
COL4A2	rs61963197	intron_variant	intron-variant	intronic

Gene	hg 19	Consequence Ensembl	Consequence SeattleSeq	Haploreg: dbSNP functional annotation	
COL4A2	rs7318424	-	intron-variant	intronic	
COL4A2	rs7318742	intron_variant	intron-variant	intronic	
COL4A2	rs7321362	intron_variant	intron-variant	intronic	
COL4A2	rs7323228	intron_variant	intron-variant	intronic	
COL4A2	rs7326145	-	intron-variant	intronic	
COL4A2	rs7328731	intron_variant	intron-variant	intronic	
COL4A2	rs7333596	intron_variant	intron-variant	intronic	
COL4A2	rs7333748	-	intron-variant	intronic	
COL4A2	rs7334022	intron_variant	intron-variant	intronic	
COL4A2	rs750598	intron_variant	intron-variant	intronic	
COL4A2	rs7982993	-	intron-variant	intronic	
COL4A2	rs7983374	intron_variant intron-variant		intronic	
COL4A2	rs7990844	intron_variant	intron-variant	intronic	
COL4A2	rs7991842	intron_variant	intron-variant	intronic	
COL4A2	rs7999034	intron_variant	intron-variant	intronic	
COL4A2	rs872587	-	intron-variant	intronic	
COL4A2	rs872588	intron_variant	intron-variant	intronic	
COL4A2	rs872589	intron_variant	intron-variant	intronic	
COL4A2	rs913746	-	intron-variant	intronic	
COL4A2	rs9284253	intron_variant	intron-variant	intronic	
COL4A2	rs9301454	intron_variant	intron-variant	intronic	
COL4A2	rs9515195	-	intron-variant	intronic	
COL4A2	rs9515196	-	intron-variant	intronic	
COL4A2	rs9515197	intron_variant	intron-variant	intronic	
COL4A2	rs9515199	intron_variant	intron-variant	intronic	
COL4A2	rs9515201	-	intron-variant	intronic	
COL4A2	rs9515204	intron_variant	intron-variant	intronic	
COL4A2	rs9521717	-	intron-variant	intronic	
COL4A2	rs9521718	-	intron-variant	intronic	
COL4A2	rs9521719	intron_variant	intron-variant	intronic	
COL4A2	rs9521720	intron_variant	intron-variant	intronic	
COL4A2	rs9521721	-	intron-variant	intronic	
COL4A2	rs9521729	intron_variant	intron-variant	intronic	
COL4A2	rs9521730	-	intron-variant	intronic	
COL4A2	rs9521732	intron_variant	intron-variant	intronic	
COL4A2	rs9521733	intron_variant	intron-variant	intronic	
COL4A2	rs9521734	intron_variant	intron-variant	intronic	
COL4A2	rs9521735	intron_variant	intron-variant	intronic	
COL4A2	rs9521739	intron_variant	intron-variant	intronic	
COL4A2	rs9521740	intron_variant	intron-variant	intronic	
COL4A2	rs9521742	-	intron-variant	intronic	
COL4A2	rs9521743	intron_variant	intron-variant	intronic	
COL4A2	rs9521744	intron_variant	intron-variant	intronic	
COL4A2	rs9521746	intron_variant	intron-variant	intronic	
COL4A2	rs9521747	intron_variant	intron-variant	intronic	
COL4A2	rs9521748	intron_variant	intron-variant	intronic	

Gene	hg 19	Consequence Ensembl	Consequence SeattleSeq	Haploreg: dbSNP functional annotation
COL4A2	rs952359	intron_variant	intron-variant	intronic
COL4A2	rs9555692	-	intron-variant	intronic
COL4A2	rs9555694	-	intron-variant	intronic
COL4A2	rs9555695	intron_variant	intron-variant	intronic
COL4A2	rs9559780	-	intron-variant	intronic
COL4A2	rs9559781	-	intron-variant	intronic
COL4A2	rs9559788	-	intron-variant	intronic
COL4A2	rs9583489	intron_variant	intron-variant	intronic
COL4A2	rs9588151	intron_variant	intron-variant	Intronic

-:SNP not included in database

* the three SNPs significantly associated with deep ICH are shown in bold.

+ A sequence variant located 3' of a gene

HG19	Regulome db score	Motifs ¹	Histone modification ²	Protein binding ³	Chromatin structure ⁴
rs9521732	no data	n/a	n/a	n/a	n/a
rs9515199	no data	n/a	n/a	n/a	n/a
rs9521735	no data	n/a	n/a	n/a	n/a
rs4771674	no data	n/a	n/a	n/a	n/a
rs9521733	5	-	\checkmark	-	\checkmark
rs9521734	6	\checkmark	\checkmark	-	-
rs1999013	5	\checkmark	\checkmark	_	\checkmark
rs9555695	4	_	\checkmark	\checkmark	\checkmark

B. Functional annotation of SNPs in high LD (r²>0.9) with rs9521732, rs9521733 and rs9515199: Regulome db database results.

n/a: not applicable; - : no evidence; \checkmark : evidence

Gray boxes indicate that there is some evidence for this functional annotation based on experiments done on more relevant tissues: brain, spinal cord or blood vessel tissue.

Regulome db score: The scoring system represents with increasing confidence that a variant lies in a functional location and is likely to result in a functional consequence (lower scores indicate increasing evidence for a variant to be located in a functional region.)

- 1: Likely to affect binding and linked to expression of a gene target
- 2: Likely to affect binding
- 3: Less likely to affect binding

4-6: Minimal binding evidence (lack evidence of the variant actually disrupting the site of binding)

¹Motifs: the SNP is located in an area of short recurring patterns in DNA (motif) thought to have a regulatory function and hence may predict transcription factor binding sites.

²Histone modification: the SNP is located in an area of histone modification. Histones are proteins that associate with DNA in the nucleus and help condense it into chromatin. Histone modifications are a range of post-translational modifications to the N-terminal tails of the histones in chromatin, which include a series of methylations and acetylations at defined lysine and arginine residues. Histone modification profiles are associated with differences in gene transcription and hence can be used as a generic tool to identify functional elements in the genome.

³Protein binding: the SNP is located in an area binding a transcription factor.

⁴Chromatin structure: the SNP is located in an area of possible chromatin accessibility, suggesting the area has a regulatory function. Chromatin is a complex of DNA and proteins that forms chromosomes within the nucleus of eukaryotic cells.

Reference List

- (1) Falcone GJ, Biffi A, Devan WJ, et al. Burden of Blood Pressure-Related Alleles Is Associated With Larger Hematoma Volume and Worse Outcome in Intracerebral Hemorrhage. *Stroke* 2013;44:321-326.
- (2) Woo D, Falcone GJ, Devan WJ, et al. Meta-analysis of genome-wide association studies identifies 1q22 as a novel susceptibility locus for intracerebral hemorrhage. *American Journal of Human Genetics* 2014;pii: S0002-9297(14)00070-6. doi: 10.1016/j.ajhg.2014.02.012. [Epub ahead of print].
- (3) Woo D, Sauerbeck LR, Kissela BM, et al. Genetic and Environmental Risk Factors for Intracerebral Hemorrhage: Preliminary Results of a Population-Based Study. *Stroke* 2002;33:1190-1196.
- (4) Traylor M, Farrall M, Holliday EG, et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies. *Lancet Neurology* 2012;11:951-962
- (5) Servin B, Stephens M. Imputation-Based Analysis of Association Studies: Candidate Regions and Quantitative Traits. *PLoS Genetics* 2007;3:e114.
- (6) Adib-Samii P, Rost N, Traylor M, et al. 17q25 Locus Is Associated With White Matter Hyperintensity Volume in Ischaemic Stroke, But Not With Lacunar Stroke Status. *Stroke* 2013;44:1609-1615.
- (7) Rost NS, Rahman RM, Biffi A, et al. White matter hyperintensity volume is increased in small vessel stroke subtypes. *Neurology* 2010;75:1670-1677.
- (8) Fornage M, Debette S, Bis JC, et al. Genome-Wide Association Studies of Cerebral White Matter Lesion Burden: The CHARGE Consortium. *Annals of Neurology* 2011;69:928-939.