Supporting Information

A novel class of bis- and tris-chelate diam(m)inebis(dicarboxylato)platinum(IV) complexes as potential anticancer prodrugs

Hristo P. Varbanov[†]*, Simone Goschl[†], Petra Heffeter^{§‡}, Sarah Theiner^{†‡}, Alexander Roller[†], Frank Jensen^I, Michael A. Jakupec^{†‡}, Walter Berger^{§‡}, Markus Galanski[†]*, and Bernhard K. Keppler^{†‡}

[†] University of Vienna, Institute of Inorganic Chemistry, Waehringer Strasse 42, A-1090 Vienna, Austria

[§] Comprehensive Cancer Center and Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria [‡] Research Platform "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria

^f University of Aarhus, Department of Chemistry, Langelandgade 140, 8000 Aarhus C, Denmark

Contents

- Page S3Figure S1. TG/DTA curves of compound 1b.
- **Page S4** Figure S2. ¹H¹³C HMBC spectra of complex 5b* after addition of ascorbate.
- Page S4Figure S3. Scheme of the proposed reduction pathway of noveldiam(m)inebis(dicarboxylato) platinum(IV) complexes.
- Page S5Figure S4. Platinum accumulation in mice tissues, blood and urine after treatmentwith 4b (CT-26 model, 30 mg/kg, i.p.).
- Page S6Table S1. 195 Pt and 15 N NMR chemical shifts of novel diam(m)inebis-
(dicarboxylato)platinum(IV) complexes
- Page S7Table S2. Crystal data and details of data collection for 1c and 4a.
- Page S8Table S3. Elemental analysis data.

Figure S1. TG/DTA curves of compound **1b**; heating up to 900°C with a rate of 5°C/min and flushing with air.

Figure S2. Time dependent ${}^{1}\text{H}{}^{13}\text{C}$ HMBC spectra of ${}^{13}\text{C}$ -labeled complex **5b*** after addition of ascorbate; after 10 min (top), 19 h (middle) and 68 h (bottom); shift correlation signals between CH₂ protons in the region 3.09-4.20 ppm and ${}^{13}\text{C}$ =O resonances in the region 174.3-178.1 ppm are shown.

Figure S3. Scheme of the proposed reduction pathway of novel diam(m)inebis(dicarboxylato)platinum(IV) complexes ($A = NH_3$, EtNH₂ or cyclohexylamine, or $A_2 =$ ethane-1,2-diamine or (*IR*,2*R*)-diaminocyclohexane; R(COOH)₂ = oxalic, malonic, 3-methylmalonic or 1,1-cyclobutanedicarboxylic acid).

Figure S4. Platinum accumulation in mice tissues, blood and urine collected on day 15 from the CT-26 experiment. Mice were treated on day 4, 7, 11 and 14 with 30 mg/kg of **4b** (i.p.).

TableS1.¹⁹⁵Ptand¹⁵NNMRchemicalshiftsofnovel

diam(m)inebis(dicarboxylato)platinum(IV) complexes (in DMF-d₇, values in ppm).

complex	¹⁹⁵ Pt	¹⁵ N			
1a ^a	2782	-13.7			
1b	3162	-10.1			
1c	3171	-9.1			
1d	3198	-10.3			
2b	3324	-21.8			
3b ^a	3375	-43.8			
4 a	2815 and 2811	-3.7			
4 b	3206 and 3198	0.9			
5b	3370	-12.2; -44.0			

^a spectra measured in DMSO-d₆.

Compound	1c	4 a
Empirical formula	$C_{16}H_{31}N_3O_{11}Pt$	$C_{16}H_{28}N_4O_{10}Pt$
Fw	636.53	631.51
space group	$P2_{1}/n$	$P2_{1}2_{1}2_{1}$
a, Å	13.8623(4)	8.9059(5)
$b, \mathrm{\AA}$	8.8623(4)	11.2218(6)
$c, \mathrm{\AA}$	18.7397(5)	22.0760(11)
β (deg)	97.841(1)	
V[Å ³]	2217.81(10)	2206.3(2)
Ζ	4	4
λ [Å]	0.71073	0.71073
$\rho_{\rm calcd}, {\rm g \ cm}^{-3}$	1.906	1.901
crystal size, mm ³	$0.16 \times 0.16 \times 0.04$	$0.08 \times 0.06 \times 0.05$
<i>T</i> [K]	100(2)	100(2)
μ , mm ⁻¹	6.388	6.419
$R_1^{\ a}$	0.0258	0.0472
wR_2^b	0.0645	0.1087
GOF^c	1.069	1.098
Flack parameter		-0.002(18)

 Table S2. Crystal data and details of data collection for 1c and 4a.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| \Sigma |F_{o}|. {}^{b}wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}] \}^{1/2}. {}^{c} \text{ GOF} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / (n - p) \}^{1/2}, \text{ where } n \text{ is the number of reflections and } p \text{ is the total number of parameters refined.}$

Table S3.	Elemental	analysis	data.
-----------	-----------	----------	-------

Complex	Formula	MW	Calculated (%)			Found (%)				
			С	Η	Ν	0	С	Η	Ν	0
2	$C_4H_{18}N_2O_4Pt \bullet 0.1H_2O$	355.08	13.53	5.17	7.89	18.47	13.61	4.90	7.59	18.43
1b	$C_8H_{12}N_2O_8Pt{\scriptstyle\bullet}H_2O$	477.28	20.13	2.96	5.87	30.17	20.05	2.95	5.82	29.78
1c	$C_{10}H_{16}N_2O_8Pt{\scriptstyle\bullet}H_2O$	505.34	23.77	3.59	5.54	28.49	23.63	3.48	5.56	28.11
1d	$C_{14}H_{20}N_2O_8Pt \bullet 2.5H_2O$	584.43	28.77	4.31	4.79	28.74	28.55	4.03	4.65	28.79
2b	$C_{10}H_{18}N_2O_8Pt$	489.34	24.55	3.71	5.73	26.16	24.65	3.49	5.47	26.44
3b	$C_6H_{10}N_2O_8Pt{\scriptstyle\bullet}H_2O$	451.25	15.97	2.68	6.21	31.91	15.76	2.74	6.24	32.25
4 a	$C_{10}H_{14}N_2O_8Pt$	485.31	24.75	2.91	5.77	26.37	24.63	2.83	5.66	26.38
4 b	$C_{12}H_{18}N_2O_8Pt{\scriptstyle\bullet}H_2O$	531.37	27.12	3.79	5.27	27.10	27.11	3.52	5.14	26.74
5b	$C_{12}H_{20}N_2O_8Pt{\bullet}0.6H_2O$	526.18	27.39	4.06	5.32	26.15	27.33	3.90	5.22	26.42