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S2 Appendix: Equivalent Forms for the Generalized

Total-Least-Squares (GTLS) Problem of Aligning

Corresponding Point Sets

In this appendix, we establish the equivalence between two different representations for the generalized

total-least-squares (GTLS) problem of registering two corresponding point sets under a generalized noise

model. Our aim is to show that the unconstrained optimization

EGTLS(X,Y,MX ,MY ) = min
R,~t

n∑
i=1

(
~yi −R~xi − ~t

)T
(RMxiR

T +Myi)
−1 (

~yi −R~xi − ~t
)

(1)

is equivalent to the constrained optimization

EGTLS(X,Y,MX ,MY ) = min
R,~t

n∑
i=1

(~xi − ~xi
∗)

T
M−1

xi (~xi − ~xi
∗) +

n∑
i=1

(~yi − ~yi
∗)

T
M−1

yi (~yi − ~yi
∗)

subject to: ~yi
∗ = R~xi

∗ − ~t

(2)

where X = {~xi} and Y = {~yi} are the measured source and target point sets and MX = {Mxi} and

MY = {Myi} are the noise covariances of the measured points. The point sets {~xi∗} and {~yi∗} represent

the optimizer’s estimates for the unknown, noise-free positions of the source and target points which, due

to the correspondence assumption, are constrained to have perfect alignment under the transformation

parameters, R and ~t, that are being solved by the optimization.

To establish an equivalence between (1) and (2), we begin at (2) by deriving expressions for the

estimates of the noise-free point sets {~xi∗} and {~yi∗} in terms of the measured points, noise covariances,

and transformation parameters. These expressions will then be substituted into the cost function of (2)

which, through a subsequent series of algebraic simplifications, will be shown to be equivalent to the form

of (1).

To begin, we solve for expressions of the noise-free estimates {~xi∗} and {~yi∗}. This may be accom-

plished using the method of Lagrange multipliers. Redefining the constraints as

Fi(~xi
∗, ~yi

∗, R,~t ) = ~yi
∗ −R~xi∗ − ~t = 0 (3)
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we obtain the following Lagrangian function

L =

n∑
i=1

(~xi − ~xi
∗)

T
M−1

xi (~xi − ~xi
∗) +

n∑
i=1

(~yi − ~yi
∗)

T
M−1

yi (~yi − ~yi
∗) + λT

i Fi(~xi
∗, ~yi

∗, R,~t ) (4)

which may be expressed in matrix form as

L = (X −X∗)
T
M−1

X (X −X∗) + (Y − Y ∗)
T
M−1

Y (Y − Y ∗) + λTF (5)

where we have defined

X =


~x1
...

~xn

 , X∗ =


~x∗1
...

~x∗n

 , Y =


~y1
...

~yn

 , Y ∗ =


~y∗1
...

~y∗n

 ,

MX =


Mx1

. . .

Mxn

 , MY =


My1

. . .

Myn

 , λ =


λ1
...

λn

 , F =


Fi( ~x1

∗, ~y1
∗, R,~t )

...

Fi( ~xn
∗, ~yn

∗, R,~t )

 .

The next step is to minimize the Lagrangian function with respect to the estimates of the noise-free

point sets. This is done by solving for the partial derivatives of the Lagrangian function with respect to

each estimate

∂ L
∂X∗ = −2M−1

X (X −X∗)− diag(RT )λ (6)

∂ L
∂Y ∗ = −2M−1

Y (Y − Y ∗) + λ (7)

and setting the partial derivatives to zero which leads to the following equations

(X −X∗) = −1

2
MX diag(RT )λ (8)

(Y − Y ∗) =
1

2
MY λ . (9)
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We now have all the equations required to solve for expressions of ~xi
∗ and ~yi

∗ in terms of the other

parameters. Solving (9) for λi

λi = 2M−1
yi (~yi − ~yi

∗) (10)

and substituting into the relevant sub-component of (8) we obtain

(~xi − ~xi
∗) = −MxiR

TM−1
yi (~yi − ~yi

∗) . (11)

Substituting the constraint from (2) into (11) we have

(~xi − ~xi
∗) = −MxiR

TM−1
yi (~yi −R~xi∗ − t) . (12)

Rearrangement of (12) produces the following expression for ~xi
∗

~xi
∗ =

(
I +MxiR

TM−1
yi R

)−1 (
~xi +MxiR

TM−1
yi (~yi − t)

)
(13)

= ~xi +MxiR
T (Myi +RMxiR

T )
−1

(~yi −R~xi − t) . (14)

The derivation of (14) from (13) is accomplished by expanding the multiplication with the inverse ex-

pression and applying the following helpful identities

(I +AB)−1 = I −A(BA+ I)−1B (15)

(A+B)−1C = (C−1A+ C−1B)−1 (16)

C(A+B)−1 = (AC−1 +BC−1)−1 . (17)

The identity of (15) follows as a simplification of

(A+BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1 , (18)

which is described in [1], while those of (16) and (17) are easily verified.

An expression for ~yi is obtained in similar manner by solving (8) for λi and substituting into (9) along
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with the constraint of (2), which leads to the equations

~yi
∗ =

(
I +MyiRM

−1
xi R

T
)−1 (

~yi +MyiRM
−1
xi (~xi +RT t)

)
(19)

= ~yi −Myi (RMxiR
T +Myi)

−1
(~yi −R~xi − t) . (20)

The next step is to substitute the expressions of ~xi from (14) and of ~yi from (20) into the cost function

of (2). To simplify the resulting equations, we make the following definitions

Mi = (RMxiR
T +Myi)

~di = ~yi −R~xi − ~t .

Applying these substitutions, the two terms within the cost function of (2) become

(~xi − ~xi
∗)TM−1

xi (~xi − ~xi
∗) = ~dT

i M
−1
i RMxiR

TM−1
i
~di (21)

(~yi − ~yi
∗)TM−1

yi (~yi − ~yi
∗) = ~dT

i M
−1
i MyiM

−1
i
~di . (22)

Substituting these equations into the cost function of (2), we have

EGTLS(X,Y,MX ,MY ) = min
R,~t

n∑
i=1

[
(~xi − ~xi

∗)
T
M−1

xi (~xi − ~xi
∗) + (~yi − ~yi

∗)
T
M−1

yi (~yi − ~yi
∗)
]

subject to: ~yi
∗ = R~xi

∗ − ~t

= min
R,~t

n∑
i=1

[
~dT

i M
−1
i RMxiR

TM−1
i
~di + ~dT

i M
−1
i MyiM

−1
i
~di

]
= min

R,~t

n∑
i=1

~dT

i

(
M−1

i RMxiR
TM−1

i +M−1
i MyiM

−1
i

)
~di

= min
R,~t

n∑
i=1

~dT

i

(
M−1

i (RMxiR
T +Myi)M

−1
i

)
~di

= min
R,~t

n∑
i=1

~dT

i

(
M−1

i MiM
−1
i

)
~di

= min
R,~t

n∑
i=1

~dT

i M
−1
i
~di

= min
R,~t

n∑
i=1

(
~yi −R~xi − ~t

)T
(RMxiR

T +Myi)
−1 (

~yi −R~xi − ~t
)

(23)
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where the final form of (23) is equivalent to (1), which completes the derivation of equivalence between

(1) and (2) that we aimed to show.
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