S2 Appendix: Equivalent Forms for the Generalized
Total-Least-Squares (GTLS) Problem of Aligning
Corresponding Point Sets

In this appendix, we establish the equivalence between two different representations for the generalized
total-least-squares (GTLS) problem of registering two corresponding point sets under a generalized noise

model. Our aim is to show that the unconstrained optimization
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is equivalent to the constrained optimization
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where X = {z;} and Y = {y;} are the measured source and target point sets and Mx = {My;} and
My = {My;} are the noise covariances of the measured points. The point sets {#;"} and {g;"} represent
the optimizer’s estimates for the unknown, noise-free positions of the source and target points which, due
to the correspondence assumption, are constrained to have perfect alignment under the transformation
parameters, R and t, that are being solved by the optimization.

To establish an equivalence between (1) and (2), we begin at (2) by deriving expressions for the
estimates of the noise-free point sets {#;*} and {g;*} in terms of the measured points, noise covariances,
and transformation parameters. These expressions will then be substituted into the cost function of (2)
which, through a subsequent series of algebraic simplifications, will be shown to be equivalent to the form
of (1).

To begin, we solve for expressions of the noise-free estimates {7;"} and {7;*}. This may be accom-

plished using the method of Lagrange multipliers. Redefining the constraints as
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we obtain the following Lagrangian function
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which may be expressed in matrix form as
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where we have defined
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The next step is to minimize the Lagrangian function with respect to the estimates of the noise-free

point sets. This is done by solving for the partial derivatives of the Lagrangian function with respect to

each estimate
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and setting the partial derivatives to zero which leads to the following equations
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We now have all the equations required to solve for expressions of #;* and ;" in terms of the other
parameters. Solving (9) for \;
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and substituting into the relevant sub-component of (8) we obtain
(i — #) = —MaRTM (5 — ) - (11)
Substituting the constraint from (2) into (11) we have
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Rearrangement of (12) produces the following expression for z;*
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The derivation of (14) from (13) is accomplished by expanding the multiplication with the inverse ex-

pression and applying the following helpful identities
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The identity of (15) follows as a simplification of
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which is described in [1], while those of (16) and (17) are easily verified.

An expression for g; is obtained in similar manner by solving (8) for A; and substituting into (9) along



with the constraint of (2), which leads to the equations
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The next step is to substitute the expressions of #; from (14) and of y; from (20) into the cost function

of (2). To simplify the resulting equations, we make the following definitions

M; = (RMy;R" + My;)
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Applying these substitutions, the two terms within the cost function of (2) become
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Substituting these equations into the cost function of (2), we have
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where the final form of (23) is equivalent to (1), which completes the derivation of equivalence between

(1) and (2) that we aimed to show.
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