Copper-Catalyzed Synthesis of *N*-Aryl and *N*-Sulfonyl Indoles from 2-Vinylanilines with O₂ as the Terminal Oxidant and TEMPO as Co-Catalyst

Timothy W. Liwosz and Sherry R. Chemler*

Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, <u>schemler@buffalo.edu</u>

Supporting Information

Table of Contents

General Information	S-2
Synthesis of Aniline Substrates	S-2
Representative Procedure for the Cu(eh) ₂ / TEMPO-Catalyzed Aerobic Intramolecular C-H Amination	S-4
Representative Procedure for the One-Pot Chan-Lam / C-H Amination	S-7
References	S-9
¹ H and ¹³ C Spectra	S-10

General Information:

All reagents were used out of the bottle as purchased from the supplier without further purification unless otherwise noted. Substrates **1a,e,g** were synthesized according to literature procedures.¹ Achiral bis(oxazoline) ligand **3** was synthesized according to the procedure reported by Miao et. al.² ¹H NMR spectra were recorded in CDCl₃ (using 7.26 ppm as internal reference) at 300, 400 or 500 MHz. ¹³C NMR spectra were recorded in CDCl₃ (using 77.0 ppm as internal reference) at 75 MHz unless otherwise noted. ¹⁹F NMR spectra were recorded in CDCl₃ with α,α,α -trifluorotoluene as an internal reference. IR spectra were taken neat using a Nicolet-Impact 420 FTIR. Wave numbers in cm⁻¹ are reported for characteristic peaks. High resolution mass spectra were obtained at SUNY Buffalo's mass spec. facility on a ThermoFinnigan MAT XL spectrometer. Melting points are reported as uncorrected.

Synthesis of Aniline Substrates:

Substrates 1b-d,f

Substrates **1b-d,f** were synthesized by sulfonylation of the corresponding aniline.

N-(2-(Prop-1-en-2-yl)phenyl)-2-(trimethylsilyl)ethane-1-sulfonamide (1b)

The aniline (0.5 g, 3.75 mmol, 1 equiv) was dissolved in dry CH₂Cl₂ (7.5 mL, 0.5 M), and the solution was treated with sulfonyl chloride (0.79 g, 4.13 mmol, 1.1 equiv) and pyridine (0.91 mL, 11.3 mmol, 3 equiv). The mixture was stirred at room temperature for 24 h, diluted with H₂O (25 mL) and extracted with CH₂Cl₂ (3 x 25 mL). The combined organic layers were washed with 1M HCl, brine, dried over Na₂SO₄, and concentrated in vacuo. Flash chromatography of the resulting crude mixture on SiO₂ (0-30% EtOAc in hexanes gradient) afforded the sulfonamides in good yields. Substrate **1b** was synthesized according to the above procedure using 2-isopropenylaniline and 2-(trimethylsilyl)ethanesulfonyl chloride. Sulfonamide **1b** was obtained (0.33 g, 97%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.56 (d, J = 8.0 Hz, 1H), 7.25 (t, J = 7.2 Hz, 1H), 7.16 (d, J = 8.0 Hz, 1H), 7.08 (t, J = 7.2 Hz, 1H), 6.83 (bs, 1H), 5.42 (t, J = 1.6 Hz, 1H), 5.02 (t, J = 0.8 Hz, 1H), 3.06-3.02 (m, 2H), 2.08 (d, J = 1.6 Hz, 3H), 1.01-0.98 (m, 2H), -0.20 (s, 9H). ¹³C NMR (75 Hz, CDCl₃) δ 142.0, 133.4, 133.3, 128.3, 123.8, 118.2, 117.6, 48.1, 24.6, 10.4, -2.1; IR (neat): 3343, 3288, 2953, 1493, 1396, 1335, 1251, 1169, 1149, 911, 861, 841, 761 cm⁻¹; HRMS (EI) calcd for [M]⁺ C₁₄H₂₃O₂NSSi: 297.1204, found: 297.1213.

3-Nitro-4-((2-(prop-1-en-2-yl)phenyl)amino)benzenesulfonic acid (1c)³

Substrate **1c** was synthesized according to the above procedure using 2-isopropenylaniline and *p*-nitrobenzenesulfonyl chloride. The known sulfonamide **1c** was obtained (0.48 g, 99%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.27 (d, J = 8 Hz, 2H), 7.94-7.91 (m, 2H), 7.63 (d, J = 8.4 Hz, 1H), 7.26 (t, J = 7.2 Hz, 1 H), 7.13-7.04 (m, 2H), 5.28 (t, J = 1.6 Hz, 1H), 4.67 (s, 1H), 1.70 (s, 3H).

N-(2-(Prop-1-en-2-yl)phenyl)methanesulfonamide (1d)⁴

Substrate **1d** was synthesized according to the above procedure using 2-isopropenylaniline and methanesulfonyl chloride. The known sulfonamide **1d** was obtained (0.3 g, 99%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.59 (d, J = 8.0 Hz, 1H), 7.28 (t, J = 8.0 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 6.85 (bs, 1H), 5.42-5.41 (m, 1H), 5.01-5.00 (m, 1H), 3.01 (s, 3H), 2.08-2.07 (m, 3H).

(E,Z)-4-Methyl-N-(2-(1-phenylprop-1-en-1-yl)phenyl)benzenesulfonamide (1f)

Substrate **1f** was synthesized according to the above procedure using 2-(1-phenylprop-1-en-1yl)aniline⁵ and p-toluenesulfonyl chloride. Sulfonamide **1f** was obtained (0.14 g, 88%) as a colorless oil in a 3:2 Z:E ratio. Product characterized as a mixture of isomers. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 7.6 Hz, 1H), 7.57 (d, J = 8.4 Hz, 0.6H), 7.46 (d, J = 8.8 Hz, 2H), 7.37 (d, J = 8.4 Hz, 1.3H), 7.32-7.07 (m, 13H), 7.00-6.93 (m, 4H), 6.54 (bs, 1H), 6.42 (bs, 0.6H), 6.38 (q, J = 7.2 Hz, 1H), 5.42 (q, J = 7.2 Hz, 0.6H), 2.38 (s, 2H), 2.36 (s, 3H), 1.77 (d, J = 6.8 Hz, 2H), 1.47 (d, J = 7.2 Hz, 3H); ¹³C NMR (75 Hz, CDCl₃) δ 143.6, 143.5, 139.6, 138.1, 137.0, 136.1, 134.6, 134.0, 130.8, 129.5, 129.4, 129.0, 128.9, 128.7, 128.6, 128.3, 127.7, 127.7, 127.4, 127.2, 127.2, 125.9, 124.9, 124.2, 121.7, 119.0, 21.5, 15.4, 15.3; IR (neat): 3326. 3057, 1491, 1396, 1336, 1166, 1090, 918, 760, 667 cm⁻¹; HRMS (ESI) calcd for [M+Na]⁺ C₂₂H₂₁O₂NNaS: 386.1199, found: 386.1185.

Substrates 1h-j

Substrates **1h-j** were synthesized using a procedure reported by Buchwald et. al.⁶ The ArB(OH)₂ (0.28 g, 2.26 mmol, 1.2 equiv), Cu(OAc)₂ (0.07 g, 0.38 mmol, 0.2 equiv) and myristic acid (0.172 g, 0.75 mmol, 0.4 equiv) were dissolved in toluene (3.8 mL, 0.5M) in a 100 mL round bottom flask. The reaction was stirred and 2,6-lutidine (0.22 mL, 1.88 mmol, 1 equiv) and the corresponding aniline (0.26 mL, 1.88 mmol, 1 equiv) were added. The reaction was stirred at room temperature with the flask uncapped and open to air for 24 h. The reaction was filtered through a SiO₂ plug with ether (100 mL) and the filtrate was condensed. Crude mixtures were purified via flash chromatography on SiO₂ (0-10% Et₂O in hexanes gradient) to afford the anilines in high yields.

N-(4-Fluorophenyl)-2-(prop-1-en-2-yl)aniline (1h)

Substrate **1h** was synthesized according to the above procedure using 2-isopropenylaniline and 4-fluorophenylboronic acid. Aniline **1h** was obtained (0.22 g, 65%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.18-7.15 (m, 3H), 7.07-6.97 (m, 4H), 6.92-6.87 (m, 1H), 5.80 (bs, 1H), 5.32 (q, J = 2.2 Hz, 1H), 5.08 (t, J = 1.6 Hz, 1H), 2.09 (d, J = 2.4 Hz, 3H); ¹³C NMR (75 Hz,

CDCl₃) δ 158.1 (d, J_{CF} = 239.3), 143.8, 140.2, 139.3, 139.3, 132.8, 128.7, 127.8, 120.7, 120.5 (d, J_{CF} = 45.8), 116.1, 116.0 (d, J_{CF} = 5.7 Hz), 115.7, 24.0; ¹⁹F NMR (282 MHz, CDCl₃): δ -123.1; IR (neat): 3407, 3076, 2968, 1575, 1508, 1450, 1310, 1218, 821, 757 cm⁻¹; HRMS (EI) calcd for [M]⁺ C₁₅H₁₄FN: 227.1098, found: 227.1105.

N-(4-Methoxyphenyl)-2-(prop-1-en-2-yl)aniline (1i)⁷

Substrate **1i** was synthesized according to the above procedure using 2-isopropenylaniline and 4methoxyphenylboronic acid. The known aniline **1i** was obtained (0.18 g, 79%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.12-7.01 (m, 5H), 6.88-6.79 (m, 3H), 5.74 (bs, 1H), 5.32 (s, 1H), 5.09 (s, 1H), 3.80 (s, 3H), 2.09 (s, 3H).

N-(4-methoxyphenyl)-2-vinylaniline (1j)⁷

Substrate **1j** was synthesized according to the above procedure using 2-vinylaniline and 4methoxyphenylboronic acid. The known aniline **1j** was obtained (0.24 g, 62%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.41 (d, J = 8 Hz, 1H), 7.15 (t, J = 6.8 Hz, 1H), 7.04 (d, J = 7.6 Hz, 1H), 7.00-6.97 (m, 2H), 6.92-6.85 (m, 4H), 5.68 (dd, J = 17.6, 1.6 Hz, 1H), 5.41 (bs, 1H), 5.33 (dd, J = 10.4, 1.6 Hz, 1H), 3.80 (s, 3H).

Representative Procedure for the $\mbox{Cu}(eh)_2$ / TEMPO-Catalyzed Aerobic Intramolecular C-H Amination

3-Methyl-1-tosyl-1H-indole (2a)¹

To an oven dried 100 mL round bottom flask was charge with **1a** (50 mg, 0.174 mmol, 1 equiv), Cu(eh)₂ (9 mg, 0.026 mmol, 0.15 equiv), TEMPO (5 mg, 0.035 mmol, 0.2 equiv) and toluene (1.74 mL, 0.1M). The flask was purged with O₂, put under an O₂ atmosphere using an O₂ balloon and stirred for 24 h at 120 °C. Filtration of the cooled reaction mixture through a pad of silica gel with ethyl acetate (100 mL), and subsequent evaporation of the solvent in vacuo afforded crude mixture. Flash chromatography of the resulting crude mixture on silica gel (0-20% ethyl acetate in hexanes gradient) afforded the known indole **2a** (36 mg, 71% yield) as an off-white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 7.2 Hz, 1H), 7.34-7.29 (m, 2H), 7.26-7.22 (m, 1H), 7.19 (d, J = 8.4 Hz, 2H), 2.32 (s, 3H), 2.24 (d, J = 0.8 Hz, 3H).

3-Methyl-3-((2,2,6,6-tetramethylpiperidin-1-yl)peroxy)-1-tosylindoline (2aa)

The TEMPO-peroxide product **2aa** was obtained (15 mg, 20% yield) as an off-white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.66-7.61 (m, 3H), 7.40 (t, J = 7.2 Hz, 1H), 7.32-7.22 (m, 5H), 6.98

(d, J = 8.1 Hz, 1H), 5.73 (d, J = 9.6 Hz, 1H), 4.81 (d, J = 9.6 Hz, 1H), 2.60 (s, 3H), 2.43 (s, 3H), 1.58-1.25 (m, 9H), 1.13 (s, 3H), 0.96 (s, 3H), 0.67 (s, 3H); ¹³C NMR (75 Hz, CDCl₃) δ 143.6, 141.4, 137.1, 136.1, 132.1, 130.8, 129.2, 128.9, 128.8, 128.2, 84.9, 59.9, 39.8, 33.0, 32.0, 30.0, 29.7, 21.6, 20.3, 20.2, 16.9; IR (neat): 2973, 2928, 2871, 1697, 1347, 1165, 1141, 1024, 869, 814, 686, 660 cm⁻¹; HRMS (ESI) calcd for [M+H]⁺ C₂₅H₃₅O₄N₂S: 459.2312, found: 459.2301.

Possible Mechanistic Pathway to 2aa

The following scheme shows a possible rationale for product **2aa**. After *N*-radical addition to the alkene (see **Scheme 2** in manuscript), oxygen can trap the benzylic radical. Reduction by [Cu(I)] and protonation can give a peroxide intermediate that undergoes either Cu-catalyzed or thermal homolysis to an alkoxy radical that can then be trapped by TEMPO to yield **2aa**.

3-Methyl-1-((2-(trimethylsilyl)ethyl)sulfonyl)-1H-indole (2b)

The indole **2b** was obtained (27 mg, 55% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.87 (d, J = 7.6 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.35-7.30 (m, 2H), 7.21 (s, 1H), 3.15-3.10 (m, 2H), 2.30 (d, J = 1.2 Hz, 3H), 0.90-0.84 (m, 2H), -0.05 (s, 9H); ¹³C NMR (75 Hz, CDCl₃) δ 135.4, 131.5, 124.6, 123.6, 122.8, 119.5, 117.1, 113.1, 50.3, 9.9, 9.6, -2.2; IR (neat): 2954, 2922, 1448, 1365, 1273, 1252, 1174, 1158, 1121, 1001, 972, 860, 841, 756, 680 cm⁻¹; HRMS (EI) calcd for [M]⁺ C₁₄H₂₁O₂NSSi: 295.1057, found: 295.1057.

3-Methyl-1-((4-nitrophenyl)sulfonyl)-1H-indole (2c)³

The known indole **2c** was obtained (25 mg, 51% yield) as an yellow solid. ¹H NMR (300 MHz, CDCl₃): δ 8.24 (d, J = 9.0 Hz, 2H), 8.03-7.96 (m, 3H), 7.46 (d, J = 8.1 Hz, 1H), 7.37-7.28 (m, 3H), 2.25 (s, 3H).

3-Methyl-1-(methylsulfonyl)-1H-indole (2d)⁴

The known indole **2d** was obtained (25 mg, 50% yield) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.39-7.31 (m, 2H), 7.20 (s, 1H), 3.03 (s, 3H), 2.30 (s, 3H).

3-Phenyl-1-tosyl-1H-indole (2e)¹

The known indole **2e** was obtained (36 mg, 73% yield) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, J = 8.0 Hz, 1H), 7.82-7.77 (m, 3H), 7.70 (s, 1H), 7.61 (d, J = 8.0 Hz, 2H), 7.47 (t, J = 7.4 Hz, 2H), 7.39-7.35 (m, 2H), 7.30-7.22 (m, 3H), 2.34 (s, 3H)

2-Methyl-3-phenyl-1-tosyl-1H-indole (2f)⁸

The known indole **2f** was obtained (11 mg, 22% yield) from a 3:2 Z:E ratio of alkene isomers as an off-white solid. Obtained a 22% yield of unreacted (Z)-isomer after reaction. ¹H NMR (300 MHz, CDCl₃): δ 8.26 (d, J = 8.1 Hz, 1H), 7.72 (d, J = 8.1 Hz, 2H), 7.46-7.19 (m, 10H), 2.60 (s, 3H), 2.37 (s, 3H).

When reaction was run with exclusively the (E)-isomer the product was obtained in a 43% yield. When the (Z)-isomer was run it was determined to be unreactive under the reaction conditions.

N Ph

3-Methyl-1-phenyl-1H-indole (2g)¹

The known indole **2g** was obtained (41 mg, 82% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 7.6 Hz, 1H), 7.50-7.47 (m, 4H), 7.32-7.29 (m, 1H), 7.25-7.14 (m, 3H), 2.40 (d, J = 1.2 Hz, 3H)

1-(4-Fluorophenyl)-3-methyl-1H-indole (2h)⁹

The known indole **2h** was obtained (40 mg, 81% yield) as a yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.63 (d, J = 6.6 Hz, 1H), 7.47-7.41 (m, 3H), 7.25-7.16 (m, 4H), 7.08 (s, 1H), 2.40 (s, 3H).

1-(4-Methoxyphenyl)-3-methyl-1H-indole (2i)⁷

The known indole **2i** was obtained (42 mg, 85% yield) as a yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.62 (d, J = 7.2 Hz, 1H), 7.44 (d, J = 6.6 Hz, 1H), 7.39 (d, J = 7.2 Hz, 2H), 7.21-7.13 (m, 2H), 7.07 (s, 1H), 7.02 (d, J = 7.2 Hz, 2H), 3.88 (s, 3H), 2.39 (d, J = 1.2 Hz, 3H).

1-(4-Methoxyphenyl)-1H-indole (2j)⁷

The known indole **2j** was obtained (27 mg, 55% yield) as a yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.70 (d, J = 8.4 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.41 (d, J = 6.6 Hz, 2H), 7.29 (d, J = 3 Hz, 1H), 7.22-7.15 (m, 2H), 7.04 (d, J = 6.9 Hz, 2H), 6.67 (d, J = 2.4 Hz, 1H), 3.89 (s, 3H).

Representative Procedure for the One-Pot Chan-Lam Coupling / C-H Amination

3-Methyl-1-phenyl-1H-indole (2g)¹

PhB(OH)₂ (0.15 g, 1.2 mmol, 1.2 equiv), Cu(OAc)₂ (0.036 g, 0.2 mmol, 0.2 equiv) and myristic acid (0.091 g, 0.4 mmol, 0.4 equiv) were dissolved in toluene (2 mL, 0.5M). The reaction was stirred, 2,6-lutidine (0.12 mL, 1 mmol, 1 equiv) and 2-isopropenylaniline (0.14 mL, 1 mmol, 1 equiv) were added. The reaction was stirred at room temperature exposed to air for 24 h. TEMPO (0.031 g, 0.2 mmol, 0.2 equiv) and toluene (8 mL, 0.1M overall) were then added. The flask was purged with O_2 , put under an O_2 atmosphere using an O_2 balloon and stirred for 24 h at 120 °C. Filtration of the cooled reaction mixture through a pad of silica gel with ethyl acetate (100 mL), and subsequent evaporation of the solvent in vacuo afforded crude mixtures. Flash chromatography of the resulting crude mixture on silica gel (0-5% diethyl ether in hexanes gradient) afforded the known indole **2g** (0.11 g, 53% yield) as a yellow liquid.

3-Methyl-1-(p-tolyl)-1H-indole (1k)¹⁰

The known indole **2k** was obtained (0.12 g, 54% yield) as a yellow oil from the one-pot reaction using *p*-tolylboronic acid. ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, J = 7.2 Hz, 1H), 7.52 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 7.24-7.15 (m, 2H), 7.12 (s, 1H), 2.43 (s, 3H), 2.39 (d, J = 1.2 Hz, 3H).

3-Methyl-1-(4-(trifluoromethoxy)phenyl)-1H-indole (2l)

The indole **2l** was obtained (0.12 g, 42% yield) as a yellow oil from the one-pot reaction using 4-(trifluoromethoxy)phenyl boronic acid. ¹H NMR (300 MHz, CDCl₃): δ 7.63 (d, J = 7.8 Hz, 1H),

7.54-7.49 (m, 3H), 7.35 (d, J = 8.7 Hz, 2H), 7.27-7.17 (m, 2H), 7.10 (s, 1H), 2.39 (s, 3H); ¹³C NMR (75 Hz, CDCl₃) δ 146.7, 138.6, 135.9, 129.9, 125.2, 125.0, 122.7, 122.3, 120.1, 119.3, 118.8, 113.4, 110.1, 110.0, 9.5; ¹⁹F NMR (282 MHz, CDCl₃): δ -59.0; IR (neat):2922, 1607, 1513, 1457, 1260, 1222, 1167, 740 cm⁻¹; HRMS (EI) calcd for [M]⁺ C₁₆H₁₂F₃ON: 291.0856, found: 291.0866.

1',3-Dimethyl-1'H-1,5'-biindole (2m)

The indole **2m** was obtained (0.1 g, 39% yield) as a brownish solid from the one-pot reaction using N-methylindole-5-boronic acid. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 2.0 Hz, 1H), 7.66-7.63 (m, 1H), 7.51-7.49 (m, 1H), 7.42 (d, J = 8.8 Hz, 1H), 7.35-7.32 (m, 1H), 7.20-7.15 (m, 4H), 6.54 (dd, J = 2.8, 0.8 Hz, 1H), 3.86 (s, 3H), 2.42 (d, J = 1.2 Hz, 3H); ¹³C NMR (75 Hz, CDCl₃) δ 136.9, 135.2, 132.3, 130.2, 129.2, 128.8, 126.6, 121.9, 119.2, 119.2, 118.9, 116.8, 111.5, 110.4, 109.8, 101.2, 33.0, 9.6; IR (neat): 3048, 2914, 1572, 1497, 1458, 1330, 1236, 801, 757, 740, 722 cm⁻¹; HRMS (EI) calcd for [M]⁺ C₁₈H₁₆N₂: 260.1305, found: 260.1308.

References

- 1. Liwosz, T. W.; Chemler, S. R. Chem. Eur. J. 2013, 19, 12771-12777.
- 2. Miao, L.; Haque, I.; Manzoni, M. R.; Tham, W. S.; Chemler, S. R. Org. Lett. 2010, 12, 4739-4741.

3. Okuma, K.; Yasuda, T.; Takeshita, I.; Shioji, K.; Yokomori, Y. *Tetrahedron* **2007**, *63*, 8250-8254.

- 4. Mahesh, M.; Murphy, J. A.; LeStrat, F.; Wessel, H. P. Beilstein J. Org. Chem. 2009, 5, 1.
- 5. Yanai, H.; Mimura, H.; Kawada, K.; Taguchi, T. *Tetrahedron* **2007**, *63*, 2153-2160.
- 6. Antilla, J. C.; Buchwald, S. Org. Lett. 2001, 3, 2077-2079.
- 7. Maity, S.; Zheng, N. Angew. Chem. Int. Ed. 2012, 51, 9562-9566.
- 8. Zhu, C.; Ma, S. Org. Lett. 2013, 15, 2782-2785.
- 9. Jensen, T.; Pedersen, H.; Bang-Andersen, B.; Madsen, R.; Jørgensen, M. Angew. Chem. Int. Ed. 2008, 47, 888-890.

10. Verma, A. K.; Jha, R. R.; Chaudhary, R.; Tiwari, R. K.; Danodia, A. K. Adv. Synth. Catal. 2013, 355, 421-438.

¹H and ¹³C Spectra

