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This section reports additional information regarding methodologies, experiments and 

images as support to the main text.  

 

Protein expression and purification 

CoREST1 mutants and H3 Lys4Cys-Cys110Ala double mutant were prepared 

using standard mutagenesis procedures (QuickChange Mutagenesis Kit, Agilent 

Technologies Milano, Italy), and purified as the wild type proteins. Human LSD1 

(residues 123–852), CoREST1 (305-482), and CoREST3 (200-406), were expressed 

and purified as previously described (1). The LSD1-CoREST complexes were stored in 

25 mM KH2PO4 pH 7.2, 5% glycerol. The short LSD1 (residues 171-852) and CoREST1 

(residues 305-440) variants were co-purified as for the longer proteins except for the 

storage buffer which was 25 mM HEPES/NaOH pH 7.4, 200 mM NaCl, 2 mM DTT. 

Recombinant nucleosomes were prepared using X. laevis histones expressed in E. coli 

following the Luger protocol (2) and 146 bp DNA 601 positioning sequence as described 

previously (3). Native mono-nucleosomes were extracted and purified from fresh 

chicken blood according to published protocols (4) and stored in buffer 20 mM TRIS/HCl 

pH 7.5, 1 mM EDTA, and 1 mM DTT.  

 

Procedure for the synthesis of 1-methyl-1-(prop-2-ynyl)aziridinium chloride 

Chemistry. Melting points were determined on a Buchi 530 apparatus and are 

uncorrected. 1H NMR and 13C NMR spectra were recorded at 400 MHz on a Bruker AC 

400 spectrometer. Chemical shifts are reported in δ (ppm) units relative to the internal 

reference tetramethylsilane (Me4Si). EIMS spectra were recorded with a Fisons Trio 
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1000 spectrometer; only molecular ions (M+) and base peaks are given. All compounds 

were routinely checked by TLC and 1H NMR. TLC was performed on aluminum-backed 

silica gel plates (Merck DC, Alufolien Kieselgel 60 F254) with spots visualized by UV 

light. All solvents were reagent grade and, when necessary, were purified and dried by 

standard methods. Concentration of solutions after reactions and extractions involved 

the use of a rotary evaporator operating at reduced pressure of ca. 20 Torr. Organic 

solutions were dried over anhydrous sodium sulphate. Analytical results are within ± 

0.40% of the theoretical values. All chemicals were purchased from Aldrich Chimica, 

Milan (Italy), or from Alfa Aesar, Milan (Italy), and were of the highest purity. 

Reaction. 2-(methyl(prop-2-ynyl)amino)ethanol (1.77 mmol, 0.2 g), previously prepared 

according to the literature (5), and thionyl chloride (5 ml) were stirred at 80°C for 1 hour. 

Then the reaction was cooled down to room temperature, the precipitated solid was 

filtered, washed with diethyl ether (3 x 5 ml) and dried to obtain the pure salt. Melting 

point: 142-145°C. Yield: 74%; 1H-NMR (DMSO-d6) δ 2.81 (s, 3H, -NCH3), 3.45-3.49 (t, 

2H, -NCH2CH2), 3.87 (s, 1H, -CCH), 4.00-4.04 (t, 2H, -NCH2CH2), 4.13 (s, 2H, 

HCCCH2-) ppm; 13C NMR (DMSO-d6) δ 48.5 (2C), 53.9, 58.3, 71.7, 80.8 ppm. 

 

Preparation of semi-synthetic histones 

Lyophilized H3 Lys4Cys-Cys110Ala histone was dissolved in 1 M HEPES/NaOH pH 

7.8, 4 M guanidinium chloride, 10 mM L-Met, 10 mM DTT. Alkylation was performed in 

the same buffer using a final 50 mM concentration of the 1-methyl-1-(prop-2-

ynyl)aziridinium chloride alkylating agent, as described previously (6). The complete 

installation of the propargylamine analogue of dimethyl-lysine was confirmed by ESI-
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ITMS (LCQFleet Thermo Scientific Ion Trap) mass spectrometry, indicating that 100% 

H3 molecules were modified (Figure S12).  

 

Fluorescence polarization assays 

DNA and histone peptides binding assays were carried out monitoring the 

change in polarization properties of fluorescent molecules upon binding to LSD1-

CoREST or nucleosomes. The labeling fluorophore was 5(6)-

carboxytetramethylrhodamine. In order to allow comparative analysis of binding 

affinities, all experiments were carried out in the same assay buffer, which consisted of 

15 mM KH2PO4 pH 7.2, 1 mg/ml BSA, 5% glycerol, and 0-100 mM KCl at room 

temperature. CLARIOstar (BMG Labtech) or PHERAstar FS (BMG Labtech) plate 

readers were used with 540 nm excitation and 590 nm emission filters. Experiments 

were performed in triplicates using 384-well microplates (CORNING, UK). 

Direct binding of LSD1-CoREST to DNA was assayed using a 5’- 

carboxytetramethylrhodamine-AGTCGCCAGGAACCAGTGTCA-3’ oligonucleotide 

(Table S1). A second DNA molecule was also employed, containing a G/T mismatch at 

position 11 (forward strand 5’-carboxytetramethylrhodamine-

AGTCGCCAGGGACCAGTGTCA-3’). Protein samples (2 M final concentration) were 

incubated with labeled oligonucleotides (1 nM final) followed by serial 1:1 dilutions with 

the assay buffer supplemented with 1 nM oligonucleotide as to maintain the same 

oligonucleotide concentrations in all wells. Experiments were repeated using 5 nM and 

10 nM fixed ligand concentrations to confirm consistent binding. The plates were 

incubated for 10 minutes at room temperature before measurements. Binding of histone 
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H3 N-terminal tail to LSD1-CoREST was assayed using a C-terminally 

carboxytetramethylrhodamine-labeled histone H3 peptide with sequence 

ARTdimeKQTARKSTGGKAPRKQLA (Table S2). Direct binding was assayed by 

preparing protein samples (2 M final concentration) with labeled peptide (1 nM final 

concentration) followed by serial 1:1 dilutions. For competitive experiments, each well 

contained LSD1-CoREST (60 nM final concentration) and labeled peptide (1 nM final). 

Next, decreasing concentrations (typically in the 0-2 M range) of the unlabeled 

competing peptides were added. Binding of H3 peptides to the nucleosome was 

detected using very similar protocols (Table S3). Direct binding experiments were 

performed with 0-4 M nucleosomes and 1 nM tetramethylrhodamine-labeled peptide. 

Competitive experiments were carried out with 4 nM nucleosomes, 1 nM labeled 

peptide, and 0-10 M competing peptides. For the sake of comparison, binding was 

probed using both recombinant and chicken blood nucleosomes. Experiments were 

then repeated using 5 nM and 10 nM fixed ligand concentrations to confirm consistent 

binding. 

For direct experiments, non-linear regression was used to fit the binding curves 

using fluorophore concentration as constrain, yielding dissociation constants (Kd) 

according to the following equation:  

ܻ ൌ Af  ሺAb െ Afሻ ൈ
ሺc  Kd  Xሻ െ ඥሺെܿ െ ܺ െ ሻଶ݀ܭ െ 4ܿܺ

2c
 

which indicated that the total recorded signal (Y) depends on that of bound (Ab) and 

free (Af) fluorescent ligand, as function of total protein concentration (X) and total ligand 

concentration (c, 1 nM in our case).  

As for competitive assays, the non-linear fitting equation was modified as follows: 
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This modification takes into account ligand depletion by adding to the fitting non-

labeled ligand concentration (cn) to calculate the new dissociation constant (Kc). 

Graphs were prepared using GraphPad Prism. Tetramethylrhodamine-conjugated 

peptides were synthesized at the peptide synthesis facility of Netherlands Cancer 

Institute, The Netherlands. Conjugated oligonucleotides were purchased from Sigma. 

 

Analytical and preparative chromatography of LSD1-CoREST/nucleosome 

complexes 

Analytical size-exclusion chromatography was performed on silica gel columns 

WTC-030N5 and WTC-030S5 (Wyatt Technology, California, US) equilibrated in 15 mM 

TRIS/HCl pH 7.3, 0.4 mM EDTA, and 200 mM KCl at room temperature. LSD1-CoREST 

(in 25 mM  KH2PO4 pH 7.2, 5% glycerol) were mixed with semi-synthetic nucleosomes 

(in 20 mM  TRIS/HCl pH 7.5, 1 mM EDTA, 1 mM DTT) at different molar ratios and were 

typically incubated on ice for 2 hours. Protein elution profiles were recorded with 

detection wavelengths set at 214 nm (peptide bond), 260 nm (DNA), and 280 nm 

(aromatic protein side chains) using an AKTAmicro purification system (GE Healthcare). 

Milligram quantities of the covalent complex were purified on Superdex 200 10/300 

(three columns connected in series) equilibrated in 15 mM TRIS/HCl pH 7.5, 0.4 mM 

EDTA, and 200 mM KCl. A mix containing 20 µM semi-synthetic nucleosomes and 30 

µM LSD1-CoREST (1:1.5 molar ratio) in their storage buffers was supplemented with 50 

mM KCl and let 4 hours on ice. The elution profile was recorded at 260 nm, 280 nm, 
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and 400 nm (alkyl-FAD absorbance peak) using an AKTApurifier10 (GE Healthcare). 

The eluted fractions corresponding to the covalent LSD1-CoREST1/nucleosome 

complex were collected, mixed 1:1 with salt-free buffer, concentrated in Amicon 30 KDa 

cut-off (Merck Millipore, Germany), and stored on ice for 2-3 weeks (storage buffer 15 

mM TRIS/HCl pH 7.5, 0.4 mM EDTA, and 100 mM KCl). 

 

Gel-shift assay 

Gel shift assays were performed using non-denaturant gel electrophoresis on 5% 

TBE (25 mM TRIS/Boric acid pH 8.2, 1 mM EDTA) acrylamide gels, pre-run for 3 hours 

at 150V in the same buffer. Equal amount (~2 µg) of LSD1-CoREST1 and semi-

synthetic nucleosomes were loaded separately on the gel as standards. Each sample 

was supplemented with 25% glycerol and the run was performed at 150V for 1 hour in 

fresh 5% TBE buffer. Gel was first stained with ethidium bromide and visualized using a 

standard UV transilluminator to check DNA content of each sample. The same gel was 

then rinsed and stained with Coomassie blue solution (0.1 % Brilliant blue R250, 10% 

Acetic acid, 25% isopropanol). 

 

Insight gained from data on salt composition 

In preparation of the SAXS experiments, we evaluated the effect of varying salt 

concentrations (i.e. ionic strength) on the efficiency of LSD1-CoREST/nucleosome 

association. Remarkably, moderately increased salt concentrations (up to 200 mM KCl) 

turned out to facilitate complex assembly (Figure S13). This effect was even more 

pronounced for mutants hampered in their DNA binding. For instance, the CoREST1 
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K418E-N419D protein is a very weak DNA binder (Table S1) and nonetheless, in 

presence of salt, it becomes able to bind to nucleosome as efficiently as wild type. 

Based on Table S3 data, the salt promotes the detachment of the histone tails from the 

nucleosome. In this way, the tails may become fully available for binding to LSD1 active 

site, which is far less influenced by higher salt concentrations (Table S2). It is such a 

differential sensitivity to ionic strength of tail binding that ultimately favors formation of 

the complex, which has mechanistic implications as discussed in the main text. 

 

Small-angle X-ray scattering experiments  

SAXS measurements were initially performed on a laboratory instrument Nanostar 

(Bruker) with a Microstar rotating anode generator, a double multilayer focusing optics, 

scatterless-slits (design Dr. J.S. Pedersen, Aarhus Univ., Danemark), and a Vantec 

2000 electronic detector. 30 µl of sample (either LSD1/CoREST1 or nucleosomes) were 

placed in a quartz capillary thermalized cell inserted into an evacuated sample 

chamber. Series of 20 minute frames were recorded in various buffer and salt 

conditions. A 25 mM HEPES/NaOH pH 7.4, 1 mM DTT, NaCl (0-200 mM) buffer was 

chosen for subsequent measurements. LSD1-CoREST1 was studied also at the 

SWING beamline at the SOLEIL synchrotron (Saint-Aubin, France), using a CCD-based 

detector (AVIEX) and X-rays with a wavelength λ = 1.033 Å. 40 µl of LSD1-CoREST1 

solution were loaded onto a size exclusion-HPLC column (Agilent BioSEc-3, 4.6x300 

mm) online with the SAXS measuring cell. The solution eluting from the column was 

circulated through the quartz capillary at a flow rate of 150 µl/min, high enough to 

prevent any detectable radiation damage. The scattering patterns of the purified 1:1 and 
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2:1 covalent complexes (15 mM TRIS/HCl pH 7.3, 100 mM KCl, and 1 mM DTT) were 

recorded at the BM29 SAXS beamline of ESRF with λ = 0.992 Å (Grenoble) (7). 

Aliquots were diluted two- and four-fold and SAXS patterns were recorded for both 

complexes at three concentrations (1-5 M). 

Primary data reduction was performed using the Bruker developed software, the 

SWING in-house software Foxtrot, and IspyB (BM29) (8), respectively. All data were 

processed using the program package PRIMUS (9). The scattering intensity at the 

origin I(0) and Rg were evaluated using the Guinier approximation (10). P(r) profiles 

were determined using the indirect Fourier transform method as implemented in the 

program GNOM (11), yielding the value of the maximum diameter DMax and an 

alternative estimate of the radius of gyration. The molecular mass of each sample 

(LSD1-CoREST1, nucleosome, and complexes) was evaluated by comparison of the 

forward scattering with that of water recorded in the same capillary using the value of 

0.001637 cm-1 for the theoretical scattering intensity of water. The Porod volume of 

each particle was estimated using PRIMUS. Calculation of the Porod exponent for each 

complex scattering pattern yielded values of 3.9 and 3.5 for the 1:1 and 2:1 complexes 

respectively, showing that the two particles are essentially compact (12). The atomic 

coordinates of the crystal structure of LSD1-CoREST1 (PDB code 2V1D) were used to 

calculate the scattering patterns using the program Crysol (13). The structure of the 

nucleosome (PDB code 1KX5) was used for nucleosome and the positions of the 

various N-terminal tails were refined against the experimental data using SASREF (14). 

The few missing residues at the C-terminal end of LSD1 (residues 837-852; see below) 

and N-terminal end of CoREST1 (residues 305-307) of LSD1-CoREST1 were 
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positioned as dummy residues using the program Bunch (14). All atom descriptions 

were then substituted using the program SABBAC (15). 

As gathered from the scattering curves, LSD1-CoREST1 solutions display strong inter-

molecular interactions at low ionic strength, leading to higher-order oligomers at protein 

concentrations as low as ≈10 M. We reasoned that these interactions might be 

mediated, at least in part, by the unstructured and highly charged termini of our LSD1 

(disordered N-terminal amino acids 124-170) and CoREST1 constructs (disordered C-

terminal residues 441-482). Therefore, we produced a shorter version of each protein, 

LSD1 171-852 and CoREST1 305-440. Indeed, at 200 mM NaCl, the solution turned out 

to be essentially mono-dispersed, exhibiting an excellent agreement between the 

measured data and the patterns calculated from the corresponding crystal structure 

(Figure S8, panel B; this construct was however unsuitable for studying complexes 

because it led to precipitation upon mixing with nucleosomes). SAXS characterization of 

recombinant nucleosomes indicated significant inter-particle interactions that increase 

with salt concentration and distort the scattering pattern at concentrations higher than 

100 mM NaCl, in agreement with previous reports (16). The excellent match between 

measured and calculated (from crystal structure) (17) scattering curves nicely 

demonstrated that the nucleosomal particles were perfectly reconstituted (Figure S8). 

 

The opposing behavior of the two interacting partners in their response to salt made 

SAXS characterization of the LSD1-CoREST1/nucleosome clearly challenging. We 

came to the conclusion that 100 mM NaCl would represent an acceptable compromise 

to perform such experiments, having also observed that the LSD1-

CoREST1/nucleosome complex stably forms at this salt concentration (Figure S13). 
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Noticeably, a range of 50-150 mM NaCl is typically referred to as “nearly physiological” 

ionic strengths in nucleosome biophysics literature (18, 19). 
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Supplementary Table S1 

Binding of LSD1-CoREST to DNA 

 Kd (nM)* 

LSD1-CoREST 1 72.2 ± 5.3 

 103.5 ± 7.3† 

LSD1-CoREST 1+ 25 mM KCl 176.1 ± 40.7 

LSD1-CoREST 1+ 50 mM KCl ~ 2000 

LSD1-CoREST 1+ 100 mM KCl > 2000 

LSD1-CoREST3 405.4 ± 26.5 

LSD1-CoREST1 R308E 44.7 ± 4.1 

LSD1-CoREST1 K312E 103.9 ± 13.5 

LSD1-CoREST1 P369E 38.7 ± 4.1 

LSD1-CoREST1 C379D 129.8 ± 12.0 

LSD1-CoREST1 A381E 86.5 ± 17.0 

LSD1-CoREST1 R400E 529.5 ± 62.5 

LSD1-CoREST1 V414E 497.3 ± 68.5 

LSD1-CoREST1 K418E 739 ± 84.6 

LSD1-CoREST1 N419D 481 ± 152.5 

LSD1-CoREST1 K418E-N419D > 2000 

LSD1-CoREST1 R425E 498 ± 155.2 

LSD1-CoREST1 R426E-R427A 101.4 ± 15.4 

* All Kd values were measured using double stranded DNA with the sequence 5’-
carboxytetramethylrhodamine-AGTCGCCAGGAACCAGTGTCA-3’.  
† Experiment carried out using DNA sequence 5’-AGTCGCCAGGGACCAGTGTCA-3’ 
which contains a G instead of A at position 11 (underlined). 
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Supplementary Table S2 

Binding of  the H3 N-terminal peptide to LSD1-CoREST 

 Kd (nM) 

LSD1-CoREST 1 55.8 ±  5.1* 

 114.6 ±  19.4† 

LSD1-CoREST 1 + 50 mM KCl 197.9 ±  21.9* 

LSD1-CoREST 1 + 100 mM KCl 528.3 ±  102.2* 

LSD1-CoREST 1 R308E 44.7 ±  4.1* 

LSD1-CoREST 1 K312E 103.8 ±  7.1* 

LSD1-CoREST 1 K418E-N419D 87.1 ±  11.7* 

* Kd was measured by direct binding assay using a 21-amino acid peptide corresponding 
to the H3 N-terminal tail (ARTdimeKQTARKSTGGKAPRKQLA-
carboxytetramethylrhodamine).  
† Measured by competitive assay.  
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Supplementary Table S3 

Binding of H3 peptides to the nucleosome* 

Peptide Kd (nM) 

dimethylLys4, acetylLys9, acetylLys14, acetylLys18 > 5000 

dimethylLys4, acetylLys9, acetylLys14 > 5000 

dimethylLys4, acetylLys9 319.5 ±  0.2 

dimethylLys4 6.9 ±  0.2 

dimethylLys4  1.9 ±  0.3† 

dimethylLys4 2.2 ±  0.5†,‡

dimethylLys4  + 50 mM KCl 98.3 ±  12.1†

dimethylLys4  + 100 mM KCl 1174 ±  94.7†

monomethylLys4 15.5 ±  0.2 

* Kd values were measured with modified ARTKQTARKSTGGKAPRKQLA peptides 
using a competition assay with ARTdimeKQTARKSTGGKAPRKQLA-
carboxytetramethylrhodamine. The data listed in the table were measured with 
nucleosomes purified from chicken erythrocytes. 
† Measured by direct binding assay.   
‡ Measured using recombinant nucleosomes. 
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Supplementary Table S4 

 
Structural parameters derived from SAXS analysis * 

 Rg (Å) 
Guinier

Rg (Å) 
P(r)

DMax (Å)  VolPorod (Å
3) 

Nucleosome 42.6 ± 0.2  42.6 ± 0.2  140   390,000 

LSD1-CoREST1† 44.0 ± 0.5  46.0 ± 0.5  160  130,000 

Covalent 1:1 complex‡ 55.4 ± 1.0  55.2 ± 1.0  180  570,000 

Covalent 2:1 complex‡ 65.0 ± 1.0  64.9 ± 1.0  230  715,000 

 
* Calculated with the programs PRIMUS and GNOM. 
† Measured with the construct LSD1 171-852/CoREST1 305-440. 
‡ Measured with the construct LSD1 123–852/CoREST1 305-482. The construct LSD1 
171-852/CoREST1 305-440 was unsuitable for studying complexes because it led to 
precipitation upon mixing with nucleosomes. 
 
 


