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S1. Role ofMicrotubules. It has been reported that, in addition to the substrate, part (of the order of 13%) of the cortical tension could
be balanced by the resistance to compression of microtubules (1). We have, thus, controlled the influence of microtubules in our
setup, in particular for low external stiffness, which corresponds to lower length of cells and thus, is geometrically more likely to
involve microtubule compression. The results, shown in Fig. S6, indicate that there is no such influence within experimental
error. Thus, we neglect the role of microtubules compared with actomyosin tension and microplate resistance to bending in
the modeling that follows.

S2.Model Derivation.As stated in the text, we are looking for the simplest model consistent with a dominant loss modulus at low frequencies in
cell-scale rheological probing (2) and in vitro studies (3) and with the fact that cross-linkers in vivo are transient with a short residence time
(4). Basic models of transiently cross-linked networks based on rubber-like models were first explored by Green and Tobolsky (5) and
Yamamoto (6), and their nonlinear properties are still being investigated (7). Their response, up to the first order, turns out to be the same
as the one of polymer solutions (that is, their stress–strain relationship is governed by Maxwell constitutive equation 1),

τασ
▿
+ σ − 2ταE_e= 0;

with σ = 2Eðβ2hRRi− IÞ (ref. 8, p. 116). The parameter 1=β corresponds to the reference length of the strand R in a state free of
network stress. This reference length is set by thermal fluctuations, because networks of semiflexible actin filaments were shown to
exhibit entropic elasticity (9). Here, the upper convected Maxwell tensor derivative σ

▿
= _σ −∇vTσ − σ∇v takes into account the affine

stretching of the strand vectors R, the basic units of the network, by the velocity gradient ∇v. The difference is that, for polymer
solutions, the time τα is the ratio of solvent viscosity to polymer elasticity, because this time is the characteristic time at which the
polymers can deform relative to an affine global deformation of their surroundings (the solvent) (ref. 8, p. 116), whereas in the case
of transiently cross-linked networks, τα is the characteristic unbinding time of the cross-links. Thus, the product ταE, which has the
dimension of a viscosity, is only some apparent viscosity at the macroscopic scale and corresponds, in fact, to an elastic energy
dissipation at rate 1=τα. If there is a large number of cross-linkers present along a single filament, there will not be a single
relaxation time τα but several (10). In this work, we choose to investigate the properties of the single relaxation time model above,
which allows us to calculate analytically the model solution while retaining the essence of a long-time viscous-like and short-time
elastic-like material.
A fraction αmyo of the cross-linkers considered is myosin bipolar filaments. In addition to their cross-linking role, they may effectuate

a power stroke at a frequency 1=τmyo, which results in sliding the corresponding cross-linker by the myosin step length ℓ. If ψðρÞ is the
orientational distribution function (8), power strokes appear as additional sink and source terms on the right-hand side of the
probability balance equation,
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which multiplied by ρρ and integrated over all configurations, yields an additional term of contractility:

τασ
▿
+ σ − 2ταE_e= σa = σaA;

where σa =Eτα=τmyoαmyoðℓβÞ2 is proportional to the myosin concentration and power stroke frequency. The tensor A is the local
orientation tensor of the actin fibers:

A=
Z
ρ

ρρ

jρj2 ψ   dρ:

The ratio of the apparent viscosity ταE and contractile stress σa provides us with another characteristic time, τc = 2ταE=σa =
2τmyoα−1myoðℓβÞ−2, which characterizes the dynamics of shrinking of an actomyosin network in the absence of cross-linkers, which
is the case in experiments in vitro (3).
Note that both characteristic times of cross-linker unbinding τα and myosin power stroke τmyo have been taken as constants in-

dependent of the stress or strain to which they are submitted. It is, of course, well-established that there is a dependence of these
parameters on stress and strain (11–13), which introduces nonlinearities in the model. An important unsolved question is to determine
whether these dependences are or are not major players in the cell-scale mechanical behavior of actomyosin (e.g., through a stress-
driven ripping of cross-links). Because their effect is a nonlinear variation of the above model, we study the linear response first (with
constant characteristics times) before considering the full nonlinear model in SI Text, S3.9. It is found that the linear model is sufficient
to reproduce the experimental data (that is, for our experiments, collective effects explain the observed behavior by themselves). Note
that collective effects are also sufficient in Huxley’s (14) model of muscle contraction, where Huxley (14) observes (ref. 14, p. 290) that
assuming specific force-dependent binding kinetics only tunes the system’s efficiency, not affecting its ability to fit Hill’s force–velocity
experimental observations.
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The model obtained is the one of a viscoelastic liquid, in line with the seminal model by He and Dembo (15), who modeled the
cytoskeleton as a viscous fluid and used it in numerical simulations of the cytokinesis. This modeling approach is also similar to the
actin dynamics part of the model used by ref. 16 to simulate keratocyte migration. We provide above a microstructure-based deri-
vation of this class of models, which allows us to interpret the dissipation in terms of molecular behaviors (discussion on Hill’s law in SI
Text, S3.5). This type of model, to the best of our knowledge, was never used to study mechanosensing behaviors of single cells. In the
sequel (SI Text, S4.2), we compare it to models that have been used to analyze cell-scale mechanosensing but will first investigate its basic
predictions.

S3. 1D Problem.
S3.1. In the absence of treadmilling. In this section, we investigate the behavior of a material modeled by the constitutive law (Eq. 2) in
a simplified, 1D geometry described in Fig. 3B. The actomyosin network is assumed to occupy an infinite cuboid between two hor-
izontal plates: one of which is fixed, and the vertical position of the other is governed by a spring of stiffness k=S (per unit area) and
equilibrium distance with the other plate L0. If the current distance between the plates is L, the force exerted by the top plate on the
material is, thus, F=S= kðL0 −LÞ=S per unit area.
We assume that the bulk forces acting on the actomyosin network (such as the friction with the cytosol) are negligible compared with the

force developed by myosin contraction, thus

∇ · σ = 0; [S2]

with the boundary condition σez = ðF=SÞ  ez at the upper plate, and corresponds to neglecting friction with the cytosolic fluid in the
balance between the actomyosin stress and the force at the plates. By symmetry, only the vertical component σzz of the stress tensor σ
in the actomyosin material is nonzero. We denote it ζ; from the above, we have ∂zζ= 0, and thus, the boundary condition imposes
ζ=F=S= kðL0 −LÞ=S at every z. The stress is fully transmitted through the material. However, the rate-of-strain tensor _e is also limited
to a vertical component _«= _L=L. Using these equalities, the constitutive Eq. 2 describes the complete dynamics of the system.
The mechanical response of this 1D case can be schematized by a spring-and-dashpot system as in Fig. S5C by noticing that we can

decompose the strain rate as

_«= _«1 + _«2 + _«3 = −
σa

2ταE
+

ζ

2ταE
+
ζ
▿

E
:

The second and third terms are classical viscous and elastic rates of strain that can be represented as a spring and a dashpot, respectively.
The first one is not classical and may be represented as a winding reel of constant rate of strain _«1 =−σa=2ταE. Alternatively, we choose
to represent it as a generator of constant tension 2σa in parallel with a dashpot of viscosity 4ταE, in order to illustrate better the
dissipation that occurs when myosin is working, which will appear below. (When a dashpot of viscosity η is in parallel with a generator
of constant tension 2σa, the rate of strain is _«1 = ζdashpot=η, where ζdashpot is the stress in the dashpot, such that the total stress is
ζ= ζdashpot + 2σa. Hence, _«1 = ðζ− 2σaÞ=η.) For this choice, one obtains that the different elements need to behave as

_«1 =
ζ− 2σa
4ταE

Generator  of   tension  in  parallel  with  a  dashpot;

_«2 =
ζ

4ταE
dashpot; and

«3 =
ζ

2E
spring:

With this rheology, a permanent regime ( _« = 0 and _ζ= 0) is reached for
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[S3]

with kc = σaS=L0. The actomyosin model’s response is, thus, very close to the behavior of a spring of stiffness kc and free length = 0 when
put in series with an external spring of stiffness k. Indeed, the asymptotes are the same for k→ 0 and k→∞ (Fig. 3C), which is not
obvious, because in the permanent regime, the model only includes viscous dissipation and contractility. We have, thus, shown
that a contractile fluid behaves like a spring in these conditions.
Indeed, when the cell is pulling on a spring of stiffness k, the maximum deflection that it can impose to the spring is L0 (e.g., the initial

cell length and consequently, the maximum length that it can shorten). However, this maximum deflection is achieved only if the
maximum force generated by the cell σaS is larger than the external spring force at maximum deflection kL0; in other words, only if k is
lower than kc = σaS=L0. In that case, the force reached is kL0 and thus, proportional to k. In the other case (k> kc), the deflection is
less than L0 and set by having an equal tension σaS in both the external equivalent spring k and the cell.
One can get some mechanistic understanding of why the collective behavior of actomyosin as modeled in Eq. 2 gives this result using

the schematic of the equation in Fig. S5C, although it is important to bear in mind that the schematics are not representing the actual
mechanical processes at molecular scale but only provide a system that can be modeled with the same equation as Eq. 2.
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In the case of infinite external stiffness k, it is impossible to deflect the plates, and thus, «= 0. After a transient state, a steady state is
attained, with F and, thus, ζ reaching a plateau value (which we have to determine). Thus, the spring element also reaches a plateau
elongation «3 = ζ=ð2EÞ. Hence, because _«1 + _«2 + _«3 = 0, we have

_«2 =− _«1 =
ζ

4ταE
=−

2σa − ζ

4ταE
;

and from that, ζ= σa. The two nonzero strains _«1 =− _«2 compensate internally and dissipate away the energy provided by myosin
motors through the term σa.
In the other extreme of k= 0, the tension ζ is zero in the spring («3 = 0) and dashpot ( _«2 = 0). Hence, the tension in the other dashpot

is −2σa, which as a result, will contract at a rate of _«1 =−σa=ð2ταEÞ=−1=τc. This contraction illustrates the dissipation of myosin energy
internally by a viscous-like effect, causing a sustained deflection of the microplate until some equilibrium length is reached, which is
explained in the following section.
S3.2. In the presence of treadmilling.We now introduce the fact that actin filaments in vivo are constantly being polymerized from one end
(plus end) and depolymerized, mostly from the other (minus end), which results in the so-called treadmilling phenomenon (17).
Assuming that this treadmilling is at steady state in the cell on average at the relevant timescale of our experiment, the effect of
treadmilling in the bulk does not affect the modeling assumptions done in SI Text, S2: the elastic modulus E of the cross-linked network
at any instant will have a constant average. However, at the boundary, some filaments will have their plus end oriented toward the
boundary, and thus, polymerization of these will entail a net extension of the material (before stress equilibration depending on the
boundary conditions).
In the framework of our 1D toy problem, this extension introduces a drift between the deformation of the material and

the displacement of the boundary, which can be expressed as

_L=L _«+ 2vt; [S4]

with vt as the treadmilling speed (that is, the speed at which actin protrudes at the edge) (Fig. 3D). The factor 2 is caused by this effect
taking place at both ends of our 1D sample.
When injected into the constitutive model, Eq. S4 modifies the level of force (and length Lp) in the permanent regime:

Fp = ζpS=
σaS
2

0
@k+ kc

kc
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
k+ kc
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�2

−
4k
σaS

ðL0 −LeÞ
s 1

A; [S5]

with a modified critical stiffness kc = σaS=ðL0 +LαÞ. Here, Lα = 4ταvt is a characteristic elastic length of newly polymerized material. The
critical stiffness kc is lowered in proportion with the corresponding relative increase of height. We have also introduced another parameter,
the length Le = 2τcvt = 4τmyovt=½ðℓβÞ2αmyo�. This length is discussed in the text; it is a tradeoff between the rate at which actin contracts under
the effect of myosin and the speed at which the actin network expands by polymerization at its edges. It defines the shortest length that the
cell achieves in the 1D model, when the stiffness of the plates is vanishingly small: in that case, all of the work of myosins is spent in
contracting the part of the actin network newly polymerized.
For a low stiffness, this expression has for asymptote Fp ∼ kðL0 −LeÞ, and for a large stiffness,

Fp → σa S
L0 −Le

L0 +Lα
: [S6]

Treadmilling does not change the qualitative spring-like response of the material, but the equilibrium length of the equivalent spring is
not zero anymore but Le. As the device stiffness goes to zero, the length of the model meshwork will tend to Le = 2τcvt, which is
a dynamic balance between the speed 2vt at which new material is added at the two boundaries (modeling polymerization) and the rate
1=τc at which the existing material is contracted by the myosin motors. Inside this model material, even after the final length Le is
reached and the boundaries are immobile, there remains a continuous centripetal flow (Fig. 1C) that is very reminiscent of the
retrograde actin flow observed in both crawling (17) and immobile spread cells (18). Exactly as in these cases, retrograde flow is made
possible by depolymerization inside the model material. This behavior induced by treadmilling is an additional source of energy
dissipation in the steady state, when the cell is apparently at equilibrium with constant length Le and force Fp.
S3.3. Dynamics. The above constitutive and force balance equations can be written in terms of one equation only with the tension as the
unknown:

∂ζ
∂t

=
σaðkðL0 −LeÞ=S− ζÞ+ ζðζ− kðL0 +LαÞÞ

τcσa + ταðζ+ kL0=SÞ : [S7]

One can analyze the rate of tension increase when the system begins to pull and ζ is still much smaller than σa for a low stiffness
k � ES=L0:

∂F
∂t

=
kðL0 −LeÞ−FðtÞ

τc
∼
FpðkÞ−FðtÞ

τc
: [S8]

Also, for high stiffness, k � ES=L0:
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∂F
∂t

=
σaSðL0 −LeÞ−FðtÞðL0 +LαÞ

ταL0
=

�
FpðkÞ−FðtÞ�ðL0 +LαÞ

τα   L0
: [S9]

Experiments for very low values of the microplate stiffness k allow us to identify the parameters τc and vt of the model.
From n= 9 experiments with k≤ 1:6 nN/μm, we find 2τcvt = Le = 6:6± 1:1μm and L0 = 13:2± 0:1μm. These values are consistent with

the fact that ∂F=ð∂kÞ=L0 −Le = 6:8± 0:4μm in ref. 19. Additionally, the maximum force attained Fp, the current force FðtÞ, and the rate
of growth of this force ∂F=∂t allow us to calculate τc using Eq. S8: τc = ðFp −FðtÞÞð∂F=∂tÞ−1 = 521± 57 s. This value yields vt = 6:5± 1:5
nm/s, which is consistent with the literature (18) as stated in the text.
S3.4. Response to a step change of external stiffness. In ref. 20, we are able to vary instantaneously (within 0.1 s) the stiffness k of the external
spring while ensuring that there is no instantaneous change of the force F felt by the cell or the microplate spacing L. In the modeling,
these experimental conditions correspond to an instantaneous change of both k and L0 at time t*, such that F and L are continuous.
We can, thus, write the following relations ensured by the experimental setup:

kðtÞ=
�
k0; t< tp;
k1; t> tp;

FðtÞ=Fp +ϕðtÞ; LðtÞ=Lp −
ϕðtÞ
kðtÞ;

where ϕðtÞ is the variation of force around the force at time tp [ϕðtpÞ= 0].
Changing only the stiffness in this manner ensures that the cell does not feel any step change: indeed, force and geometry are

preserved, and the only change is the response of the microdevice to a variation of the force applied to it. The experimental result is that,
despite the fact that none of the physical observables have been changed for the cell, its rate of loading ∂F=∂t of the device is in-
stantaneously modified. In ref. 20, it is found that, when going from a stiffness k0 to a stiffness k1, the new rate of loading matches the rate
of loading that the same cell type exhibits in a constant stiffness k= k1 experiment at a time such that F =Fp. In ref. 21, this experiment is
repeated with another cell type, and it is also found that the rate of loading is instantaneously changed. However, the value ∂F=∂t for tJ tp

exhibits an overshoot: it is initially different from the value of the corresponding constant stiffness experiment and exhibits a relaxation
toward it.
We can rewrite Eq. S7 around ζp =Fp=S, and we find

∂F
∂t

ðtpÞ= kðtÞL
pðσaS−FpÞ−LαFp −LeσaS
τcσaS+ ταðkðtÞLp + 2FpÞ : [S10]

The result is, thus, a step function, with a value for tJ tp that is exactly the rate of growth predicted by the model for a constant stiffness
experiment with k= k1. This model prediction corresponds to the experimental results in both refs. 20 and 21, except for the overshoot
found in the latter.
The step change of the rate of loading can, thus, be explained by a purely intrinsic property of the cell’s cytoskeleton as developed in

the text.
In ref. 21, a model is proposed that accounts for a step change and relaxation as they are observed experimentally. However, this

model has limited validity around tp and breaks down at long times, predicting infinite force. Here, our model originally aiming at
describing the long-time behavior of the cell depending on stiffness predicts the main feature of the experiments (the step change of
the rate of loading) but not the overshoot found in one of the experiments. Our model, however, may produce this type of overshoot if
more than a single relaxation time is used. This refinement of the model would correspond to replacing the spring k1 in the model in
ref. 21 by our viscoelastic constitutive equation. We find that such a refinement is not necessary to explain the data studied here.
In Fig. 2C, we give a numerical simulation result that corroborates the step change of ∂F=∂t found in Eq. S10 and can be compared

with an experimental curve without any parameter adjustment. The time profile of the microplate effective stiffness is imposed to be
the same in the numerical simulation as in the experiment. The profile of force increase obtained presents the same instantaneous
change of slope as the stiffness is varied, and the overall profiles match quantitatively.
S3.5. Hill’s law.We examine the power dissipation predicted by the 1D model between two boundaries. The boundaries move toward the
sample at velocity v (which is, thus, positive when the sample contracts) and feel a force F exerted by the sample (positive in the
direction of contraction).
Hill’s historical experiment (22) takes place at a constant level of force F. Our experiments (19), however, prescribe a relationship

between F and v through the microplate stiffness ∂F=∂t=−kv. Both can scan the F–v relationship by varying F for the former or k for the
latter (in the case of ref. 19, we needed to investigate this relationship for a fixed L=L0 − δ, where δ is small) (Fig. 4A and Fig. S5A). The
calculation below does not require us to use either of these experimental ways to scan the F–v relationship. It relies only on the material
properties of the sample.
As above, the mechanical equilibrium of the sample imposes that the vertical component of the stress tensor ζ is equal to F=S. Also,

treadmilling produces a mismatch between the plate velocity v= _L and the recoil of the existing network at the plate −L _« expressed by
v=−L _«+ 2vt (Eq. S4). These relations can be injected into the constitutive Eq. 2:

τα
�
_F − 2 _«F

�
+F − 2ταES _«= σaS:

We recover a virtual work formulation by multiplying this by the velocity L=ð2ταÞ. Adding the constant ESL=ð2ταÞ to both sides, this
work can now be factorized in the manner of Hill’s law:
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2τα
−

L
2S

_F: [S11]

The meaning of some of these terms is explained in the text.
In the case when the velocity v is zero, the force generated is finite as calculated above in Eq. S6, which can also write as

Fmax

S
= σa

�
1−

E+ σa
σa

2vt
vα + 2vt

�
:

Even if both v and vt are zero, and thus, the actomyosin does not contract macroscopically ð _«= 0Þ, the force generated remains finite,
because it does work at a molecular scale. Actin polymerization, by adding new material at the edges, introduces a boundary creep,
which consumes additional work in conditions of fixed length ðv= 0Þ.
As stated in the text, apart from the polymerization boundary creep, the dissipative mechanism is the same as in the model of muscle

contraction by Huxley (14). In this model, myosin elastic tails are prestretched preferentially in one direction before binding the actin
thin filament. When there is no net sliding ðv= 0Þ, they eventually unbind without having had the opportunity to provide work (that is,
they have conserved this level of stretching). Although this fact is not explicitly written in the 1957 paper by Huxley (14), the prestretch
that had been bestowed on the myosin elastic tail is, thus, lost.
The zero force F = 0 condition is a (theoretical) limit corresponding to zero stiffness of the microplate. This limit is not attainable

experimentally, because cells do not spread on both plates if their displacement does not generate any external force, which corre-
sponds to the impossibility to apply any normal force to the plates. This effect probably has to do with the mechanism of force re-
inforcement of adhesions. In the model, however, the limit can be studied and yields a maximum velocity

vmax + 2vt =
σavα
E

=
L
τc
:

This velocity corresponds to the power injected by the myosin motors divided by the elastic modulus of the cross-linked network (minus
the treadmilling contribution): indeed, in this limit, the myosins work against the elasticity of the actomyosin itself. The maximum ve-
locity is, thus, limited by the rate τα at which the actin network fluidizes thanks to the detachment of cross-linkers. Compared with the
case of muscles, actin treadmilling reduces the maximum speed of shortening by 2vt, because the receding speed of the edge of the
actin network must compensate for this speed of protrusion. Quantitatively, using the values obtained in SI Text, S3.3, we predict
vmax ’ 12:3 nm/s, which is very close to vmax = 13 nm/s published in ref. 19.
Again, the dissipation here is of the same nature as for muscles in the model by Huxley (14): in his case, the only cross-linkers between

thin and thick filaments are myosin heads, and zero force is obtained at the finite velocity at which the work rate performed by pulling
myosin heads is exactly balanced by the work rate needed to deform myosin heads that have not yet detached from the actin filament.
They will eventually detach, thus dissipating at a fixed rate the elastic energy that has been transferred to them.
When neither F nor v is zero, there is nonzero productive work performed on the plates. Because of the existence of maximum force

and velocity, it is necessarily written

Fv
Fmaxvmax

= r
�
1−

F
Fmax

−
v

vmax

�
:

In both the experiments by Hill (22) and our experiments (19), r is found to be mostly independent of F and v, and r ’ 0:25. In Huxley’s
model of muscles, r is a signature of the preferential prestretch of myosins that models the power stroke normalized by the detachment
rate (14, 23). In our model of cells, 2r ’ τc=τα is the ratio of the characteristic times of contraction and stress relaxation through cross-
linker unbinding. This observation does not explain the coincidence of finding the same value of r in both cells and muscles; however,
we note that this parameter has a similar signification in both models.
Specifically,

r=
E

σa

�
1−

E+ σa
σa

2vt
vα + 2vt

�: [S12]

Thus, in our case, Hill’s parameter r is such that

E
σa

=
τc
2τα

≤ r≤
τc
2τα

+
�

τc
2τα

�2

; [S13]

depending on vt.
Note that these equations can be applied to the actomyosin pushing against an obstacle, with 0≤ −F ≤ES and 0≤ − v≤ vt.

S3.6. Quantitative analysis. Because r ’ 0:25 in experiments (19), τc=τα has to be in the range 0.4–0.5; thus, because τc = 521± 57 s, we
have τα = 1; 186± 258 s. In turn, using also vt = 6:5 nm/s (SI Text, S3.3), we find σaS=FmaxðL0 +LαÞ=ðL0 −LeÞ= ð2:0± 0:9Þ · 103 nN
ðn= 13Þ. Thus, the four parameters of the 1D model, namely τα, τc, vt, and σaS, are identified using only the average maximum force
(equilibrium of infinite stiffness experiments), maximum velocity (dynamics of experiments with very low stiffness), and shortest length
at equilibrium (experiments with very low stiffness) plus the shape of the Hill-type law (parameter r).
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The other experimental data (stiffness dependence of the force [Fig. 3C], dynamics as the microplate stiffness is modified [Fig. 2C],
and values of FðtÞ at L0 −L= 1μm [Fig. 4A]) are matched by the model without any adjustable parameter [e.g., the values found yield
a critical stiffness kc = σaS=ðL0 + 4ταvtÞ= 41 nN/μm, which is consistent with the experimental results] (Fig. 3C).
Moreover, the values for τc, τα, and especially, vt are independently measurable and consistent with the literature (in the text).

S3.7. Blebbistatin experiments.We check that the model predicts correctly the decrease of the plateau force that is recorded in experiments
with infinite microplate stiffness when an increasing dose of blebbistatin is used to prevent myosin activity (19). We expect that the
fraction αmyo will decrease according to the inhibition of myosin-II ATPase activity:

α½Blebb�myo = αmyo
Ki

Ki + ½Blebb�;

where Ki is the inhibitory constant. Because σa is proportional to α½Blebb�myo and following Eq. S5, the predicted plateau force will decrease
with α½Blebb�myo . This prediction coincides with what is observed experimentally (19) and reported in Fig. 2D, Inset, where the prediction of
the decrease of plateau force is shown to match closely the one observed experimentally. The inhibitory constant Ki used in Fig. 2D is
Ki = 2:8  μM, similar to that measured experimentally in mouse cardiac muscles (24).
When running the model with the modified fraction αmyo, we obtain the prediction of a shift in the mechanoresponse of cells: the

maximum force exerted by cells is lower, as expected, and this saturating force is reached for a reduced critical stiffness k½Blebb�c =
kcα

½Blebb�
myo =αmyo. Below k½Blebb�c , the force exerted by cells for a given external stiffness is predicted to tend to the same trend as in control

conditions. These model predictions match well with experimental results (Fig. 2D).
S3.8. Mechanical energy budget and metabolism. The experiments give access to the maximal mechanical power that the cell can develop
(around 0.5 fW for some optimal load F ’ 120 nN) (Fig. 4B). As discussed in SI Text, S3.5, this power goes to zero when the load is too
high and the cell stalls ðF =FmaxÞ and of course, when the load is zero. The model explains this by describing the dissipative phenomena
that are at play at a molecular scale in the cascade of events from myosin power strokes down to the mechanical action on microplates.
Because these dissipative terms are expressed in terms of the same quantities as the effective mechanical work of the cell (namely
the four parameters E, τα, σa, and vt), we are able to evaluate the dissipated power through each of these mechanisms (Fig. 4B). The
total of these dissipative terms and the mechanical power corresponds to the total mechanical power provided by myosin power strokes
and is evaluated around 10 fW.
It is instructive to compare these 10 fW spent in mechanics with both what was actually transmitted to the cell’s environment (0.5 fW at

best) and the total power that is being injected in all of the cell’s functions (that is, the metabolic rate, which is estimated around 30 pW
for a single cell) (25). On the one hand, the mechanical efficiency of our nonmuscle cells seems to be rather low, because only 5% of
the power provided by myosins is actually being used to act on the cell’s environment. On the other hand, 10 fW of 30 pW is a very low
share in the total energy budget of the cell. In the text, we argue that this relatively low energetic cost is a plausible reason why evolutionary
pressure would not have led to an increase of efficiency in nonmuscle cells.
We can verify that this value of 10 fW is plausible with respect to what is known on the expenditure of metabolic energy in single cells:

ATPase receives some 60% of the metabolic power (26) (thus, around 20 pW), 90% of which goes to protein synthesis, RNA/DNA
synthesis, and calcium and sodium cycling. The remaining power, of the order of 103 fW, must be distributed between all mechanisms
based on ATP-consuming molecular motors and also, actin turnover. Our estimate of 10 fW for the share of this going to myosin could,
thus, plausibly be one order of magnitude too low. Because this figure is being obtained only from the modeling of the dynamics of
contraction of cells in the microplate setup, it is an acceptable level of error.
S3.9. Nonlinear extensions of themodel.The binding kinetics of actin cross-linkers have been shown to be dependent on the mechanical stress
that is felt locally [e.g., α-actinin-4 is a catch bond with binding affinity that is higher when under load (12), a property characteristic of
catch bond-like behavior]. Also, myosin molecules are known to stall when the tension is too high (13). Here, we investigate in what
degree these molecular sensitivities to stress affect mechanical behavior that emerges out of their collective dynamics according to the
predictions of this model.

Cross-linkers stress-dependent affinity. The first-order correction to the cross-linker bond lifetime τα is τα = τ0α + τ1ασ=E, where τ0α is the
zero stress average lifetime, and τ1α is an additional lag positive for catch bonds and negative for slip bonds. Injected into Eq. 2 and
following the same procedure as in SI Text, S3.2, we obtain the equation governing the plateau height Hp as a function of external
stiffness k:

k
S

�
H0 −Hp

��
Hp + 4

�
τ0α + τ1α

k
ES

�
H0 −Hp

��
vt

�
=−2k

�
τ0α + τ1α

k
ES

�
H0 −Hp

��
Evt + σa

�
1+

τ1αk
τ0αES

�
H0 −Hp

��
Hp:

Solving for Hp, we obtain the behavior shown in Fig. S1A: in the catch bond case, the maximal force attained against stiff microplates is
increased, whereas it is decreased in the slip bond case. For low stiffness, because the tension does not build up much in the actomyosin
cortex, we have τα ’ τ0α and an unchanged behavior.

Myosin stalling. If we assume following ref. 27 that the rate at which myosin performs power strokes decreases with stress and take a linear
law 1=τmyo = ð1− λmyoσ=EÞ=τ0myo, the equation to be solved is

k
S

�
H0 −Hp

��
Hp + 4τ0αvt

�
=−2kτ0αEvt + σ0a

�
1− λmyo

k
ES

�
H0 −Hp

��
Hp;

where σ0a =Eðτα=τ0myoÞαmyoðℓβÞ2. Results are shown in Fig. S1B. As above, at low external stiffness, the results do not change because
stress does not build up much in the cortex. When external stiffness is high, myosin activity is reduced, and thus, the maximum force
that can be attained is lower.
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In sum, we obtain a shift of the maximum force exerted by cells against a stiff environment when catch bond cross-linker or stress-
sensitive myosin dynamics are considered (Fig. S1). The shift is taking place in the expected direction: catch bonds lead to higher force,
whereas slip bonds or stalling myosin lead to lower force. It is interesting to note that the overall profile of stiffness-dependent
plateau force is not modified by these nonlinear variants of the rheological model. This robustness of the overall profile means that
the collective effect that we describe using the linear model is rather robust with respect to the specific kinetics of the molecules.
Another consequence is that, in the absence of direct measurement of these kinetics at the molecular scale during our cell-scale
experiments, we cannot hope to determine from cell-scale behavior the modulation of the measured maximum force that is caused
by these nonlinear effects.

S4. Comparison with Other Models of Rigidity-Dependent Response.
S4.1. Computational bottom-up models of actomyosin networks. Molecular dynamics of individual actin filaments and actin-binding proteins
can be simulated numerically in a simple geometry (box) with boundary conditions that correspond to different stiffness of the sur-
rounding. These simulations are an alternative to the analytical route chosen in SI Text, S3.2 to test whether some rules of molecular
interaction lead to rheologies that exhibit a differential response to external stiffness, although these computational approaches do
not provide a rheological law such as Eq. 2.
In ref. 28, Borau et al. consider molecular dynamics, including models of actin (no treadmilling), cross-linkers with affinity with actin

that follow Bell’s equation, and motors that have a Bell’s affinity and stall against a predetermined force. They obtain a stiffness-
dependent plateau stress, which has the same profile as in Fig. 3C, with Fp ∝ k against low stiffness and a constant Fp against high stiffness,
but for reasons that are different: the maximum stress is set by the stall force of individual molecules (whereas it emerges from collec-
tive effects in our model).
When the external stiffness is low, the network contracts until a maximal strain is reached; this maximal strain corresponds to a

jamming of motors along filaments (whereas the maximal strain in our model corresponds to a dynamic balance between myosin-driven
contraction and polymerization-driven protrusion). These effects are also found by ref. 27, where the motors jam at the barbed end of
filaments. In this case again, this network-scale stalling is caused by jamming of individual motor molecules in the models of refs. 27
and 28, whereas it emerges from the competition between network myosin-driven contraction and polymerization-driven growth in the
case of our model (which is in agreement with the observations of actin retrograde flow in spreading cells).
These models, thus, offer alternative mechanisms by which stress and strain are limited during actomyosin contraction. These al-

ternative mechanisms may combine with the collective effects that we describe, which are shown in SI Text, S3.9. Note that these
alternative mechanisms do not predict a retrograde flow of actin after a plateau stress and strain are reached, whereas such a flow is
observed in plated cells (18). It is likely that during cell contraction, these mechanisms and the collective effects that we describe
appear combined to yield cell behavior. As noted in SI Text, S3.9, molecular-scale microscopy observing the dynamics of motors and
cross-linkers during cell contraction would be necessary to determine the contribution of these nonlinear terms.
S4.2. Cell-scale phenomenological models. In refs. 29 and 30, the cell is modeled as a linear elastic body having an intrinsic equilibrium
shape that is prestretched to some maximum strain. In our notation, their constitutive equation is

σ = 2Eðe− e0Þ;

with e0 as an equilibrium shape that the cell would take in the absence of external stresses. This model is supplemented with a
phenomenological feedback on the elastic modulus on the timescale of hours or days, which corresponds to the phenomenon of stress-
fiber polarization (31). This long-term effect is out of the scope of our model and experiments; thus, our model compares with their
model before this feedback comes into play. In a 1D setting, their model, thus, corresponds to the prestretched spring in Fig. 3A, which
yields a stiffness dependence closely mimicking experimental data and our model predictions (Fig. 3C). Our model, in addition,
provides a microstructure basis for this qualitative behavior and a quantitative reading of experiments; particularly, the equilibrium
shape e0 and cell stiffness kc in ref. 29 are explicated as proportional to the product of a characteristic contraction time and the
treadmilling speed, τcvt, and as the ratio of the myosin contractile stress and a length, kc = σaS= ðL0 + 4ταvtÞ, respectively.
In ref. 32, a model is introduced also in the framework of active gel theory. However, it resorts to the stress–strain relationship in ref.

29 so as to avoid calculating the orientation tensor Qij of the cytoskeleton and uses a 1D linear elastic stress–strain relationship;
equation S7 in ref. 32 in our notation is σ = 2EðL−LeÞ.
In ref. 33, a 1D viscoelastic solid model is presented; combining equations 2 and 5 in ref. 33 is in our notation

σ = 2EðL−LeÞ+ 2η _L;

with Le = l0C −FS=kC in their notation. Different from the previous models, the viscous term added in this model allows for the study of the
dynamics of the cell shortening. However, the equilibrium shape in all three models is a static elastic balance between the environment
resistance to deformation and a phenomenological internal elasticity, which corresponds to the spring model described in Fig. 3A.

S5. 3D Problem. In this section, we present a full 3D model of the cell mechanics as a contractile viscoelastic thin shell, obeying the
rheological Eq. 2 and enclosing an incompressible cytosol. Forces are transmitted to the microplates at the contact line between the cell
boundaries and the microplates.
S5.1. Geometry. It is seen from experimental observations that the cell boundaries connecting the plates are, in most cases, very well
approximated by an arc of a circle (Fig. 1C). This shape had already been observed in the case of cells spread on a microneedle
array having reached a stationary shape (34); in this setup, we find that it is also true while the cell is spreading (Fig. S3A).
When observing cells from the side, we assume that the cell shape is cylindrical. This assumption is supported by other experiments,

where cells are observed from the bottom in TIRF (Fig. S3B). Thus, along the z-axis orthogonal to the microplates which have a location
that is parameterized as z=±l, where l is the half-length of the cell, we can fit experimental results using the law
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rðzÞ=Rc −
1
κ

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðκzÞ2

q �
; [S14]

where Rc is the radius at the cell equator ðz= 0Þ, and κ is the signed curvature in the vertical plane (Fig. 1C). The curvature κ evolves in
time from a positive curvature (t= 10 s in Fig. S3A) to a negative one (t= 120 s and later in Fig. S3A).
To the physicist, it may be a surprise that the cell shape is not well-fitted by a surface of constant mean curvature, such as a catenoid.

Indeed, although each boundary seen on Fig. S3A can be reasonably fitted with an hyperbolic cosine function, the asymptotes of these
fits do not match: the cell shape is close to a minimal surface with a different weight on its curvatures, κσ + κ⊥σ⊥ = 0, where κ⊥ is the
curvature in a plane orthogonal to the side view. In light of Laplace law, these weights can be interpreted as tensions of different
magnitude in the longitudinal (es in Fig. 1C) and orthoradial ðeϕ = en × esÞ directions. The reason for these different tensions and details
of this Laplace law are given in the next section. We cannot fit the cell shape with an analytical function matching this law, because
first, functions solving the corresponding differential equation have never been investigated and do not have the same properties as the
hyperbolic cosine and second, the tensions σ and σ⊥ actually vary in some measure along the vertical direction.
From this fitting, we can calculate the volume of the cell through time. Here again, the physicist is surprised to find that the volume

defined by Eq. S14 and the plate positions z=±l are not a constant (Fig. S2). However, this volume is not the volume of the cell itself
but the volume enclosed by the lateral cell boundaries: indeed, it is observed in side views of cells presenting such a large enclosed
volume increase that the cell detaches from the microplates in the central region of the contact area (Fig. S2), forming a pocket
between the cell membrane and the microplate, which has every reason to be filled by culture medium seeping between the adhesions
seen in Fig. S3B. Although it was not possible to track the volume of these pockets through time and compare it with the enclosed
volume variations, we can estimate the energetic cost of the corresponding water flow: adhesions are more than 1 μm apart over a 10-
to 20-μm length between the periphery and the central region, where medium pocket is being formed. Assuming a low estimate of
N > 30 passages of height 0.1 μm through which medium can flow from the periphery to the cell interior, we obtain that the pressure
needed to drive the flow noted in Fig. S2 is about 10 Pa and that the power needed is of the order 10−17 W (that is, two orders of
magnitude smaller than the actomyosin power transmitted to the microplate and measured in the experiments). The formation of such
pockets is, thus, very plausible and indeed, observed in most experiments when the force is large.
The data that we present do not allow us to check whether the totality of the change of apparent volume is caused by this water seepage.

Therefore, there may be also some volume variations because of a regulation of cell volume (35) superimposed to the one caused by the
formation of the pocket. Although the accurate measurement of these variations would be important to understand the spreading
dynamics of the cells in our setup, the model below does not require us to assume volume conservation to predict the vertical de-
flection dynamics of the microplates.
S5.2. State of stress of the actin cortex in experiments.Experiments of single-cell stretching (19) allow us to track simultaneously the geometry
and force generated by cells between two microplates with an arbitrary stiffness (Fig. 1 and Figs. S2 and S3). To check whether the
rheological model developed above can explain the observed cell behavior, we need to first calculate the state of stress within the actin
cortex from the experimental observables.
Since it was shown in ref. 19 that the force generation in these experiments is caused by actomyosin contraction, we modeled the cells as

an actomyosin surface (shell) surrounding an incompressible but passive cell body (cytosol, nucleus, and noncortical cytoskeleton), with
mechanical action that is solely represented by a homogeneous internal pressure difference with the medium outside, P=Pcell −Pmedium.
Actomyosin being considered here as a thin structure, we perform the calculations in terms of a surface tension wσ, where w is the
thickness of the actomyosin cortex; σ is assumed to be a tensor tangential to the cortex and assumed to have no variation across w.
Because inertia is irrelevant at this scale, the spring force F = 2kðl0 − lÞ of the microplate device needs to be balanced at any instant by

the combination of the cell body pressure force and the tension force in the cell cortex:

F = 2πRp   wσjz=l − πR2
p   P: [S15]

Here, Rp is the radius of the cell at a microplate, and σ is the tension of the actomyosin cortex along the vertical direction. It is
dependent on z and corresponds to the component σ along eses of the stress tensor σ (Fig. 1C). Because of the symmetry and the
assumption of a thin actomyosin cortex, this tensor can only have one other nonzero component along the orthoradial direction,
σ⊥eϕeϕ. Using curvilinear coordinates, we can show that the force balance in the es and eϕ directions at any position z writes

0=Pen +∇ · σ =

0
BB@

P− κwσ −
sin θ
r

wσ⊥

w
∂σ
∂s

+
cos θ
r

wðσ − σ⊥Þ

1
CCA; [S16]

where the first line is Laplace law written with different tensions in the vertical and orthoradial directions, and the second line describes
the equilibrium along direction es.
To solve these equations, we need to specify the geometry of the actomyosin walls using Eq. S14. One can then use power series and

get σ = σ0 + σ1z2 and σ⊥ = σ0⊥ + σ1⊥z
2 in a closed form depending on geometrical parameters (l, Rc, and κ) and the pressure difference P:

σ = σ0 + z2
κ
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� [S17]

with
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wσ0 =
1
2
RcP+

F
2πRc

:

The presence of P in these equations means that we cannot read directly the state of stress of the actin cortex from its geometry and the
measurement of F. However, if we have, for example, an indication on the orthoradial stress σ⊥, which is possible when the shape is
stationary and thus, no dissipation takes place in the orthoradial direction, then both P and σ can be determined. Note that, in this section, we
have not made use of any assumption on the rheology of actomyosin; in particular, we have not used the constitutive Eq. 2 yet: the
experimental observations fitted by a geometry are sufficient to describe the state of stress in the cortex.
S5.3. Equilibrium length and force.We apply the rheological model Eq. 2 to predict the rate of strain ∂vs=∂s in the actin cortex along es and
obtain its value as a power series in z and function of Fp, the geometry, and the model parameters τc, τα, and σa. Thus, we need to write
the tensorial constitutive Eq. 2 in curvilinear coordinates, assuming that A= eses + λeϕeϕ (i.e., that the contractile stress in the or-
thoradial direction eϕ is a fraction λ of the contractile stress orthogonal to the plates):
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− 2
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[S18]

Let us consider a cell that has reached an equilibrium shape, such as the cell in Fig. S2, at time t= 2;000 s. The force plateaus at a value
Fp, the curvature κ has reached a stable negative value, and the equator length 2πRc is steady. Thus, _l= 0, _Rc = 0, vn = 0, and the force
does not evolve ( _F = 0 and hence, ∂σ=∂t= 0); these constitutive equations simplify to

ταvs
∂σ
∂s

+
�
1− 2τα

∂vs
∂s

�
σ − τcσa

∂vs
∂s

= σa

σ⊥ = λσa:

Using the force balance (Eq. S17), we can calculate vsðzÞ as a function of Fp:
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where

ϕ=
2−Rcκ

2−Rcκ+ 2
τα
τc

�
λ+

Fp

πRcσa

�∈ ð0; 1�:

This flow is the balance between a contractile term proportional to 1=τc and an extensional term in 1=ð2ταÞ. In practice, it is always
negative: it corresponds to a retrograde flow that vanishes at the cell’s equator for obvious symmetry reasons and increases in
magnitude with z. It is modulated by geometric factors but it is also modulated by the force Fp. This retrograde flow is present for
all values of the external stiffness.
To reach an equilibrium, we need the retrograde flow to compensate exactly the addition of the new cortex through polymerization at z= l,

which means that

vs
�
lp
�
=−vt: [S20]

Thus, we have a relation for lp when the geometry is known in terms of Rc and κ. When the force Fp is low (in the case of vanishing
k), there is an asymptote value le for lp provided that it is much smaller than Rc, which is found to be the case. Experiments
provide a redundant reading of le, because the force has to be 2kðl0 − leÞ at low k values. Thus, we also have,

lim
k→0

∂Fp

∂k
= 2ðl0 − leÞ:

These redundant experimental observations consistently give le=l0 = 0:46± 0:06. In Eq. S19, le is proportional to τcvt as in the 1D
model but modulated by both the curvature (which is observed) and the contractility in the orthoradial direction, which cannot be
accessed. Using the values τc = 521± 57 s and τα = 1;186± 258 s obtained from the dynamics of the 1Dmodel (SI Text, S3.3), it is found
that the model can predict the cell behavior only if the orthoradial contractility σa;⊥ = λσa is significantly lower than σa (λK 0:5);
otherwise, the pressure buildup in the cytosol prevents the cell from contracting. Thus, we take λ= 0:5 and vt = 4 nm/s, which is
close to the value found in 1D ð6:5± 1:5 nm=sÞ and the literature (4:3± 1:2 nm/s) (18).
There remains one last free parameter in the 3D model, the (surfacic) contractility wσa. Its value can be assessed in the limit of

infinite microplate stiffness k; we find wσa = 15 nN/μm. Using these values, the 3D model yields a plateau force very close to the one of
the 1D model (Fig. 2A).
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Fig. S1. Nonlinear extensions of the model. (A) Effect of catch bond-type cross-linkers. Taking τα = τ0α + τ1ασ=E with τ1α = 5τ0α (SI Text, S3.9), a fivefold increase of
cross-linker affinity under high external stiffness conditions is obtained, resulting in a 30% increase of the maximum force. (B) Effect of myosin stalling. Taking
λmyo = 3 (SI Text, S3.9), a 30% decrease of the rate of myosin power strokes under high external stiffness conditions is obtained, resulting in a fivefold reduction
of the plateau force. (C) Comparison of the model predictions of stiffness-dependent force in the cases of myosin stalling, catch bonds, and slip bonds. The
mechanosensitivity caused by collective effects, with the minimal model that is the linear model, is preserved in the nonlinear cases.
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Fig. S2. Time evolution of the force and geometry of a single cell spreading between microplates of intermediate stiffness k= 176 nN/μm. (Top) The force
grows until it reaches a maximum value. (Middle) Concurrently with the force increase, the cell spreads on the microplates, and Rp increases. The radius at the
equator Rc also increases after a transient decrease. Both stabilize when the force is maximal. As the cell deflects the microplates, its half-length l decreases;
however, this decrease does not compensate for the spreading in terms of (apparent) volume, and the volume V enclosed by the lateral cell surfaces increases
more than twofold. (Bottom) Transmission images show that this apparent volume increase happens concurrently with the formation of pockets (arrowheads)
away from the peripheral cell adhesions (Fig. S3B), where the cell locally detaches from the microplate. Details are in SI Text, S5.1.
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Fig. S3. (A) Light transmission image of a cell spreading on microplates with infinite stiffness k seen from the side. The sequence of shapes assumed by the cell
walls in the course of an experiment can be described by arcs of circles. (B) TIRF visualization of fluorescent paxillin in a cell spreading on microplates with

Legend continued on following page

Étienne et al. www.pnas.org/cgi/content/short/1417113112 13 of 17

www.pnas.org/cgi/content/short/1417113112


infinite stiffness k seen from the bottom. The spreading is isotropic, which supports the axial symmetry hypothesis. Adhesion zones are clearly apart from one
another; along a circular region of interest, we find N ’ 40 adhesion zones separated by paxillin-free passages of average width 1:5  μm (SI Text, S5.1). (C)
Comparison of the features of cells spreading on (Left) two plates and (Right) a flat substrate. The spreading structure is preserved, with a lamellipodium
structure at the front and more proximally, focal adhesions of increasing maturity as well as the different phases of spreading, rates of spreading, and focal
adhesion dynamics (1). In cells spread on a flat substrate, actin polymerization at the edge and its retrograde flow compete to define the cell edge position and
hence, the cell size (2). This regulation of cell size through a competition between polymerization and retrograde flow is also predicted by our model in the
parallel plates geometry.

1. Fouchard J, et al. (2014) Three-dimensional cell body shape dictates the onset of traction force generation and growth of focal adhesions. Proc Natl Acad Sci USA 111(36):13075–13080.
2. Rossier OM, et al. (2010) Force generated by actomyosin contraction builds bridges between adhesive contacts. EMBO J 29(6):1055–1068.

Fig. S4. Comparison of the model prediction of dynamics of cell contraction with experimental observations of individual cells. Symbols measured force (blue)
and length (red) for three different cells contracting against a fixed external stiffness k= 7 nN/μm. These three cells are seen to have a different size (initial
length ∼10.5, ∼11.5, and ∼13 μm) and different but comparable dynamics. Solid lines show 1D model predictions (without any fitting) using actomyosin
parameters σa, E, τα, and vt determined independently of the k= 7 nN/μm data and are valid for experiments over the whole range of external stiffness (Fig. 2).
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Fig. S5. (A) Sketch of the phase portrait of active contraction against a load or a spring. Muscle contraction experiments performed by Hill (1) correspond to
contraction under a fixed load F (open arrowhead). The so-called Hill curve links this imposed force and the initial speed of retraction (solid blue curve). This
model predicts a similar curve for cell contraction and the following dynamics, corresponding to decreasing length L until an equilibrium length Lp is reached as
the contraction speed v vanishes. This length Lp is force-dependent (red curve). If treadmilling was absent, the limit of this curve would be a force-independent
final length for any F < Fmax and a length-independent force Fmax necessary to maintain any positive length. Experiments with cells cannot be performed at
constant force as in the case of muscles, because cells need to adhere and spread (2). These experiments are performed here at constant stiffness k; thus, the

Legend continued on following page
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trajectory in the phase portrait is in a plane defined by F = kðL0 − LÞ (solid arrowhead). The curve that we report in ref. 2 and compare with Hill’s curve needs,
thus, to be acquired for some fixed small deflection δ=1μm (dot dash blue line), for which tuning k allows us to obtain any level of force F = kδ. (B) The limiting
factors setting a maximum speed and force are of the same nature in both the case of muscle contraction (3) and this model. As illustrated in these cartoons,
the maximum speed arises when there is no external force, but the speed is such that some of the rowers generate friction before lifting up their oars and thus,
counteract, in part, the pushing of the others (i.e., myosins do not have time to detach). The maximum force, at zero speed, arises from the fact that myosins
detach after their stroke (as rowers will lift their oars) and thus, lose the elastic energy that they had achieved in the stroke, bending their oar. (C) A schematic
of the rheological model (Eq. 2) of actomyosin. The schematic using a spring of stiffness E, two dashpots of viscosity 2ταE, and a perfect generator of tension σa
illustrates the function of the rheological model in the cases k=∞ and k= 0 but has no molecular-scale relevance. (D) For k=∞, the total deformation « has to
be zero. At steady state, the tension is constant, and thus, «3 = F=ðSEÞ is constant as well: hence, «2 + «1 is also constant. The tension 2σa, thus, elicits equal and
opposite tensions σa in both dashpots, contracting one [ _«3 =−σa=ðταEÞ] and extending the other [ _«2 = σa=ðταEÞ], which illustrates the internal creep. (E) For k=0,
the tension in the main branch is zero, and thus, the spring and dashpot «2 do not work. Thus, tension 2σa is entirely absorbed by the dashpot «3, which
contracts in doing so; thus, _«= _«3 =−σa=ðταEÞ until the system reaches an equilibrium length (SI Text, S3.2 shows the additional role of treadmilling in this
process, which is not shown here).

1. Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci 126(843):136–195.
2. Mitrossilis D, et al. (2009) Single-cell response to stiffness exhibits muscle-like behavior. Proc Natl Acad Sci USA 106(43):18243–18248.
3. Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318.

Fig. S6. Microtubules have a negligible influence on stiffness-dependent force generation. Blue boxes show plateau forces exerted by cells in microplate
experiments in the presence of 1 μM Colchicine. Red crosses show controls. Discussion is in SI Text, S1.
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Fig. S7. Plateau force measured for two different cell types: Ref52 fibroblasts and C2-7 myoblasts. (A) Plateau force divided by external stiffness Fp=k mi-
crometers for k<kc . Welch two-sample t test cannot discriminate them (P value 0:083> 0:05). (B) Plateau force Fp for k> kc in nanonewtons. Welch two-sample
t test cannot discriminate them (P value 0:17> 0:05).
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