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Fig. S1. (A–F) alligatormutant allelesmi500 and tm342 have a defect in sensorimotor coupling. A puff of 1% DMSO to the tail of WT (A),mi500mutant (C), or
tm342 mutant (E) fails to evoke a motor response. A similar puff of mustard oil in 1% DMSO evokes an escape response in a WT larva (B), but not in mi500 (D)
or tm342 (F) mutant larva. The images are 100 ms of superimposed video stills of larval movement following the stimulus. (G–J) Activation of RBs as indicated
by an increase in Ca2+ from a Tg(SAIGFF213A;UAS:GCaMP7a;UAS:RFP) transgenic WT and mutant larvae. RBs in untreated WT (G) and mutant (I) larvae showed
no Ca2+ increase in RB cells. Exposure to mustard oil caused an increase in Ca2+ in WT (H) but not mutant (J) RBs. (K–O) Forced muscle contraction by exposure
to caffeine. (K) Schematic of caffeine experiment. The skin was removed on the left side of the trunk to enhance penetration of caffeine to the left muscle. This
procedure causes the trunk of the larvae to bend to the left. The application of caffeine triggers Ca2+ release, causing muscle contraction on the left side in
both WT (M) and mutant larva (O). A drop of water failed to evoke muscle contractions in WT (L) and mutant larva (N). The images are superimposed video
stills of larval movement from 5 s of assay.
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Fig. S2. (A) Meiotic mapping of the alligator locus between kif4a and z4074 in chromosome 21. Numbers indicate the frequency of recombination observed
near the rnf121 gene. (B) Protein alignment of vertebrate RNF121. Shaded residues indicate conserved amino acids. Signal peptide, six membrane domains, and
RING-finger motif are indicated. The positions of mi500 and tm342 mutations are indicated by arrows. Note that the V232, which is mutated in mi500, is
conserved in vertebrates. (C) The histograms represent the percentage of RNA-injected larvae showing a touch response at 48 hpf. Injection of WT RNF121 RNA
rescued touch responsiveness in mutants. However, injection of RNA encoding zebrafish RNF121V232A or human RNF121V228A had no effect on touch re-
sponsiveness. The uninjected control is the same as tm342 × tm342 in Fig. 1D. (D) The percentage of touch-responsive larvae following injections of the RNF121
MO. The uninjected control is the same as WT × WT in Fig. 1D. (E–L) Immunofluorescence labeling of RNF121 and protein disulfide isomerase (PDI), which is a
marker of ER and cis-Golgi compartments. HEK293T cells were transfected with empty vectors (E–H) or human RNF121WT expression vectors (I–L).
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Fig. S3. Mutants are susceptible to ER stress. (A) Schematic of tunicamycin treatment. Zebrafish larvae were raised in bath solution containing 0, 0.5, or 2 μM
tunicamycin, which is a typical ER stress inducer, from 48 to 72 hpf and subjected to RT-PCR at 72 hpf. (B) Exposure to tunicamycin induced transcription of BiP
and CHOP in 2 μM tunicamycin-treated WT and mutant larvae, and 0.5 μM tunicamycin-treated mutants, but not in 0.5 μM tunicamycin-treated WT larvae.
Likewise, alternative splicing of XBP1 was seen in 2 μM tunicamycin-treated WT and mutant larvae, and 0.5 μM tunicamycin-treated mutants, but not in 0.5 μM
tunicamycin-treated WT larvae. EF1α was included as a lane control because it is not affected by ER stress. Histograms represent the statics of four independent
experiments. Note that ER stress response was not seen in mutant larvae in the absence of stress inducer.

Table S1. Spontaneous coiling observed at 19 hpf

Spontaneous coiling WT (n = 51)
Mutant
(n = 21)

P value
(t test)

Frequency, Hz 0.076 ± 0.046 0.072 ± 0.044 >0.7

Table S2. Touch-evoked contractions observed at 24–25 hpf

No. of touch-evoked
coils WT (n = 51)

Mutant
(n = 21)

P value
(χ2 test)

0, % 5.9 9.5 >0.9
1, % 19.6 14.3
2, % 47.1 38.1
3, % 21.6 23.8
4, % 5.9 14.3
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Table S3. Electrophysiological properties of excitable cells

Cell and property WT Mutant P value (t test)

RB sensory neuron n = 10 n = 10
INa, pA 3,415 ± 379 48 ± 25 <0.001
IK, pA 4,497 ± 543 4,755 ± 445 >0.7
Resting membrane potential, mV −69 ± 3 −67 ± 2 >0.7

Motor neuron n = 11 n = 7
INa, pA 1,592 ± 162 92 ± 28 <0.001
IK, pA 2,573 ± 396 2,063 ± 184 >0.3
Resting membrane potential, mV −63 ± 1 −62 ± 2 >0.3

Skeletal muscle n = 5 n = 8
INa, pA 4,008 ± 960 1,197 ± 203 <0.005
IK, pA 5,228 ± 909 3,589 ± 1,759 >0.3
Resting membrane potential, mV −60 ± 1 −61 ± 2 >0.3

Voltage-gated inward and outward currents were measured in RB sensory neurons, motor neurons, and fast-
twitch skeletal muscle at 48–60 hpf.
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