Rational Design of Topographical Helix Mimics as Potent Inhibitors of Protein-Protein Interactions

Brooke Bullock Lao,^{†,^} Kevin Drew,^{‡,^} Danielle A. Guarracino,[†] Thomas F. Brewer,[†] Daniel W. Heindel,[†] Richard Bonneau^{‡,*} and Paramjit S. Arora^{†,*}

⁺Department of Chemistry, and ⁺Departments of Biology and Computer Science, New York University, New York, New York 10003

[^]These authors contributed equally to this work. *e-mail: arora@nyu.edu or bonneau@nyu.edu

Supporting Information

Table of contents

	page
Supporting Schemes, Figures, and Tables	2
Synthesis of oxopiperazine dimers	13
Protein Expression and Purification	14
Protein Binding Assays	18
Compound Characterization	21
Supporting References	34

Scheme S1. Solid-phase synthesis of oxopiperazine dimers.

Figure S1: QM Ramachandran plots of oxopiperazine dimer and oxopiperazine-amino acid. A) Oxopiperazine dimer Ramachandran plot shows a constrained molecule with a single low energy well near ϕ and ψ values of -135° and 75°, respectively. B) Low energy conformation of oxopiperazine dimer model used in QM calculations. C) Oxopiperazine-amino acid Ramachandran plot shows a more flexible molecule than the oxopiperazine dimer with a very broad low energy well. D) Low energy conformation of oxopiperazine-amino acid model with ϕ and ψ values of -75° and 150°, respectively. The comparison between plots in A and C provides additional support for our hypothesis that the oxopiperazine dimer is a conformationally stable scaffold.

Figure S2. Correlation of Rosetta binding energy predictions with experimental K_d for Mdm2 ligands. Data points are taken from Table S2, and correlation coefficient was calculated using Python's scipy.stats.stats.pearsonr function. Rosetta binding energy (x axis) approximates free energy of binding which is proportional to ln(Kd). Explicitly: deltaG = RTln(Kd) where R = ideal gas constant and T = temperature.

Figure S3: Predicted conformation of oxopiperazine 7 (KWFL) in complex with MDM2. Upon manual inspection of the KWFL design, the lysine in the 1^{st} position of the oxopiperazine does not occupy the same pocket as the p53 Phe19. This suggests oxopiperazine 7 is a poor competitor with p53 and provides a clear explanation of the discrepancy between the predicted Rosetta binding energy and the experimental K_d . A) surface and B) ribbon representation.

Figure S4. ¹H-¹⁵N HSQC titration spectra. (a) Spectra of MDM2 (blue), Mdm2:F(3-Cl)WFL 18 (1:0.2, red), and Mdm2:F(3-Cl)WFL 18 (1:0.5, green) are overlaid. Mdm2 assignments are previously described in the literature.^{1,2} (b) Mean chemical shift difference ($\Delta\delta$ NH) plot depicting changes in residues.³

Figure S5. Correlation of Rosetta binding energy predictions with experimental K_d for p300–CH1 ligands. Data points are taken from Table S4, and correlation coefficient was calculated using Python's scipy.stats.stats.pearsonr function. Rosetta binding energy (x axis) approximates free energy of binding which is proportional to ln(Kd). Explicitly: deltaG = RTln(Kd) where R = ideal gas constant and T = temperature.

Figure S6. Determination of oxopiperazine analog binding to (a) His₆-tagged Mdm2 by a fluorescence-polarization assay and (b) p300–CH1 by a tryptophan fluorescence spectroscopy.

Position R ₁	NC C01: beta-cyclopentyl-alanine
Rosetta code: noncanonical amino acid name	NC C02: beta-cyclopentyl-alanine_puck
	NC C11: cyclohexyl-glycine_boat
NC A12: 2.4-dimethyl-phenylalanine	NC C12: cyclohexyl-glycine_chair
NC A31: 2-amino-5-phenyl-pentanoic_acid	NC B21: 4-hydroxy-phenylglycine
NC A34: 2-aminomethyl-phenylalanine	NC B44: 9-anthryl-alanine
NC A43: 2-hydroxy-phenylalanine	NC B67: beta-(1-naphthyl)-alanine
NC A48: 2-methyl-phenylalanine	NC B74: beta-(2-naphthyl)-alanine
NC A68: 3-aminomethyl-phenylalanine	NC C15: diphenylglycine
NC A69: 3-amino-tyrosine	NC C42: phenylglycine
NC A78: 3-hydroxy-phenylalanine	NC C95: 3-chloro-phenylalanine
NC A80: 3-hydroxy-tyrosine	
NC A84: 3-methyl-phenylalanine	
NC A94: 4-aminomethyl-phenylalanine	Position R ₄
NC APA: 4-amino-phenylalanine	Rosetta code: noncanonical amino acid name
NC B12: 4-carboxy-phenylalanine	
NC B27: 4-methyl-phenylalanine	NC A30: 2-amino-4-bromo-4-pentenoic acid
NC B30: 4-phenyl-phenylalanine	NC A91: 4.5-dehydro-leucine
NC B31: 4-tert-butyl-phenylalanine	NC B47: allo-isoleucine
NC B96: beta.beta-diphenyl-alanine	NC C91: fluoro-leucine ent1
NC C43: phenyl-serine	NC C92: fluoro-leucine ent2
NC B67: beta-(1-naphthyl)-alanine	NC C93: hexafluoro-leucine
NC B92: beta-beta-dicyclohexyl-alanine boat boat	NC C61: trifluoro-leucine
NC B93: beta-beta-dicyclohexyl-alanine boat chair	NC C94: trifluoro-leucine ent2
NC B94: beta-beta-dicyclohexyl-alanine chair boat	NC HLU: homoleucine
NC B95: beta-beta-dicyclohexyl-alanine chair chair	NC A20: 2-allyl-glycine
NC B99: beta-cyclohexyl-alanine boat	NC ABA: amino-butyric acid
NC C00: beta-cyclohexyl-alanine chair	NC NLU: norleucine
	NC NVL: norvaline

Table S1: Noncanonical amino acid design library for Rosetta applied to MDM2 target

$HN \xrightarrow{I} O O R_3$ $V \xrightarrow{I} N \xrightarrow{I} O O$ $R_2 \xrightarrow{I} N \xrightarrow{I} X$						
Mimetic	R ₁	R ₂	R ₃	R ₄	R_4 $K_d (\mu M)^a$	Rosetta binding energy
18	Phe(3-Cl)	Trp	Phe	Leu	0.3 ± 0.04	-8.7
13	Phe	Trp	Phe	Nle	2.5 ± 0.5	-8.4
1	Phe	Trp	Ala	Leu	65 ± 8	-7.9
19	Phe(3-Me)	Trp	Phe	Leu	2.6 ± 0.04	-7.9
16	Tyr	Trp	Phe	Leu	0.4 ± 0.05	-7.3
20	Phe(4-Cl)	Trp	Phe	Leu	1.3 ± 0.1	-6.2
5	Phe	Trp	Phe	Leu	2.9 ± 0.1	-5.1
15	Nap	Trp	Phe	Leu	0.9 ± 0.1	-5.0
7	Lys	Trp	Phe	Leu	≥200	-4.5
8	Phe	Ala	Phe	Leu	64 ± 7	-4.5
23	Leu	Nle	Ala	Gln	>50	0.6
25	Hle	Hle	Ala	Gln	>50	2.2
6	Phe	Trp	Phe	Lys	≥200	5.5

Table S2: Rosetta predicted binding energy vs. experimental K_d (μM) for MDM2 target

Table S3: Noncanonical amino acid design library for Rosetta applied to p300 target

Positions R ₁ and R ₂ Rosetta code: noncanonical amino acid name	
NC A04: 1-amino-cyclopentane-carboxylic_acid_puck1	NC B96: beta.beta-diphenyl-alanine
NC A03: 1-annio-cyclopentalie-carboxylic_acid_puck2 NC A12: 2.4-dimethyl-phenylalanine	NC B97: beta-cyclohexyl-alanine_boat
NC A20: 2-allyl-glycine	NC C00: beta-cyclohexyl-alanine_chair
NC A24: 2-amino-2-phenylbutyric_acid	NC C01: beta-cyclopentyl-alanine
NC A30: 2-amino-4-bromo-4-pentenoic_acid	NC C02: beta-cyclopentyl-alanine_puck
NC A31: 2-amino-5-phenyl-pentanoic_acid	NC C03: beta-fluoro-alanine
NC A33: 2-amino-heptanoic_acid	NC C05: beta-iodo-alanine
NC A34: 2-aminomethyl-phenylalanine	NC C11: cyclohexyl-glycine_boat
NC A44: 2-indanyl-glycine_puck1	NC C12: cyclohexyl-glycine_chair

NC A45: 2-indanyl-glycine puck2	NC C15: diphenylglycine
NC A48: 2-methyl-phenylalanine	NC C16: dipropyl-glycine
NC A84: 3-methyl-phenylalanine	NC C20: ethionine
NC A91: 4.5-dehydro-leucine	NC C91: fluoro-leucine ent1
NC B04: 4-amino-tetrahydrothiopyran-4-	NC C92: fluoro-leucine_ent2
carboxylic acid boat1	NC C93: hexafluoro-leucine
NC B05: 4-amino-tetrahydrothiopyran-4-	NC HLU: homoleucine
carboxylic_acid_boat2	NC C26: homocysteine
NC B06: 4-amino-tetrahydrothiopyran-4-	NC C27: homophenylalanine
carboxylic_acid_chair1	NC MAL: MAL
NC B07: 4-amino-tetrahydrothiopyran-4-	NC C12: MPA
carboxylic_acid_chair2	NC C36: n-in-methyl-tryptophan
NC C90: 4-fluoro-tryptophan	NC NLU: norleucine
NC B27: 4-methyl-phenylalanine	NC NVL: norvaline
NC B28: 4-methyl-tryptophan	NC C41: penicillamine
NC B30: 4-phenyl-phenylalanine	NC C42: phenylglycine
NC B31: 4-tert-butyl-phenylalanine	NC C53: tert-butyl-alanine
NC C80: 5-bromo-tryptophan	NC C54: tert-butyl-cysteine
NC C81: 5-chloro-tryptophan	NC C55: tert-butyl-glycine
NC B35: 5-fluoro-tryptophan	NC C60: trifluoro-alanine
NC B38: 5-methyl-tryptophan	NC C61: trifluoro-leucine
NC C83: 6-bromo-tryptophan	NC C94: trifluoro-leucine_ent2
NC C84: 6-chloro-tryptophan	
NC C85: 6-fluoro-tryptophan	
NC B40: 6-methyl-tryptophan	
NC C86: 7-azatryptophan	
NC C87: 7-bromo-tryptophan	
NC C88: 7-methyl-tryptophan	
NC B44: 9-anthryl-alanine	
NC ABA: aminobutyric acid	
NC B47: allo-isoleucine	
NC B57: alpha-methyl-leucine	
NC B58: alpha-methyl-phenylalanine	
NC B60: alpha-methyl-tryptophan	
NC B62: alpha-methyl-valine	
NC B67: beta-(1-naphthyl)-alanine	
NC B74: beta-(2-naphthyl)-alanine	
NC B92: beta-beta-dicyclohexyl-alanine_boat_boat	
NC B93: beta-beta-dicyclohexyl-alanine_boat_chair	
NC B94: beta-beta-dicyclohexyl-alanine_chair_boat	
NC B95: beta-beta-dicyclohexyl-alanine_chair_chair	

Table S4: Rosetta predicted binding energy vs. experimental K_d (nM) for p300 target

Mimetic	R_1	R_2	R_3	R_4	$K_d \left(\mu M \right)^a$	
23	Leu	Nle	Ala	Gln	0.03 ± 0.01	5.34
25	Hle	Hle	Ala	Gln	0.16 ± 0.06	5.80
30	Leu	Hle	Ala	Gln	ND	6.42
31	Hle	Nle	Ala	Gln	ND	9.63
21	Leu	Leu	Ala	Gln	0.53 ± 0.14	10.1
26	Leu	Leu	Ala	Ala	0.62 ± 0.27	10.2
24	Met	Met	Ala	Gln	0.24 ± 0.04	10.3
28	Hle	Leu	Ala	Gln	ND	10.4
22	Leu	Ala	Ala	Gln	>10	11.4
18	Phe(3-Cl)	Trp	Phe	Leu	>30	11.4
27	Ala	Ala	Ala	Ala	>10	11.7
29	Met	Leu	Ala	Gln	ND	11.9
*ND = not determined						

*ND = not determined

Synthesis of oxopiperazine dimers. Commercial grade solvents and reagents were used without further purification. Fmoc amino acids and peptide synthesis reagents were purchased from Novabiochem. Molecular biology grade salts and buffers were obtained from Sigma. An Fmoc amino acid linked to Knorr Rink Amide resin was extended to a dipeptide using standard Fmoc solid phase peptide synthesis methods in a solid phase reaction vessel.⁴ The resultant dipeptide was deprotected with 20% piperidine/dimethylformamide (DMF) and resin was washed sequentially with DMF, dichloromethane (DCM), methanol (MeOH), and diethyl ether and dried under vacuum. o-Nitrobenzenesulfonyl chloride (Ns-Cl, 10 eq) and collidine (10 eq) were dissolved in dry DCM and added to the reaction vessel. The mixture was shaken for 2 hours at 23°C to obtain II. The resin was washed with sequentially with DMF, DCM, MeOH, and diethyl ether and dried for 12 hours under vacuum. The resin was transferred to a glass microwave tube (CEM). Triphenylphosphine (PPh₃, 10 eq) was added and the tube was flushed with nitrogen gas for 30 minutes. Tetrahydrofuran (THF), diisopropyl azodicarboxylate (DIAD, 10 eq), and 2-bromoethanol (10 eq) were added and the reaction mixture was subjected to microwave irradiation (200 watts, 250 psi) for 10 minutes at 100°C. Resin was washed sequentially with THF, DMF, and DCM. The resin was transferred to a solid phase vessel and treated with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in THF for 2 hours. Resin was washed with THF, DMF, DCM, and diethyl ether, allowed to dry for 30 minutes, and then treated with DBU and 2-mercaptoethanol in DMF for 2 hours. Compound III was then washed with DMF, DCM, MeOH and diethyl either and dried. The desired pre-activated Fmoc-amino acid was added to the resin and the mixture was shaken at 23°C for 12 hours affording IV. Nosyl protection and the ring formation steps were repeated to obtain oxopiperazine dimers V after cleavage from the resin with 95% trifluoroacetic acid (TFA), 2.5% water, and 2.5% triisopropylsilane (TIPS).

Mdm2 Protein Expression and Purification. Competent BL21 DE3 pLySS E. coli cells were transformed by the heat shocking the bacteria at 42° C for 1 min in media containing a pET-14B vector containing a His6-tagged MDM2₂₅₋₁₁₇ fusion protein. Cells were grown on ampicillin containing agar places (50 mg/mL), and a single culture was used to inoculate a 100 mL overnight culture of LB media containing ampicillin (50 mg/mL). 500 mL of terrific broth (4L flask) was seeded with 25 mL of overnight culture and incubated at 30° C for 1.5 hours before induction of protein expression with 0.4 mM IPTG. The flask was incubated at 30° C for an additional 4.5 hours. The cells were harvest by centrifugation at 6000 g for 20 minutes and the supernatant was discarded. The cells were resuspended in 50 mL binding buffer (0.5 M NaCl, 20 mM Tris-HCl, 5 mM imidazole, pH 7.9), and lysed by sonication in ice (10 x 10 seconds pulses over 2 minutes). The cells were again centrifuged at 15,000 g for 20 minutes, and the resulting supernatant containing the desired MDM2 fusion protein was purified using a His-Bind® column affinity purification kit (Novagen). The resulting protein was dialyzed in 10 mM PBS with 5 mM EDTA and 0.5 mM DTT and characterized by SDS-PAGE analysis.

Expression of ¹⁵N-Mdm2. The pET-14B vector containing a His6-tagged MDM2₂₅₋₁₁₇ fusion protein was transformed into BL21(DE3) competent *E.coli* (Novagen) in M9 minimal media with ¹⁵NH₄Cl as the main nitrogen source. Protein production was induced with 0.4 mM IPTG at O.D.600 and incubated for 16 hours at 15 °C. Bacteria were harvested and resuspended in the lysis buffer with 20 mM Phosphate buffer (Research Products International, Corp.), 100 μ M DTT (Fisher), 1 mM EDTA (Sigma), 0.5% TritonX 100 (Sigma), 1 mg/mL Pepstatin A

(Research Products International, Corp.), 10 mg/mL Leupeptin A (Research Products International, Corp.), 500 µM PMSF (sigma), and 0.5% glycerol at pH 8.0. Pellets were lysed by sonication and centrifuged at 4 °C 20,000 rpm for 20 min. Fusion protein was collected from the bacterial supernatant and the resulting supernatant containing the desired MDM2 fusion protein was purified using a His-Bind® column affinity purification kit (Novagen). The resulting protein was dialyzed in 10 mM PBS with 5 mM EDTA and 0.5 mM DTT and characterized by SDS-PAGE analysis.

p300-CH1 Plasmids. The DNA sequence of human p300 CH1 domain (amino acid residues 323-423) was subcloned into a pUC57 plasmid by Genscript, Inc. After transformation of JM109 bacteria (Promega) with the plasmid, it was amplified and purified. Then the gene of interest was subcloned between *Bam*HI and *Eco*RI restriction sites of pGEX-4T-2 expression vector (Amersham).

p300–CH1 Protein Expression and Purification. The pGEX-4T-2-p300 fusion vector was transformed into BL21(DE3) competent *E.coli* (Novagen) in M9 minimal media with ¹⁵NH₄Cl as the primary nitrogen source. Protein production was induced with 1 mM IPTG at OD₆₀₀ of 1 for 16 hours at 15 °C. Production of the desired p300-CH1-GST fusion product was verified by SDS-PAGE. Bacteria were harvested and resuspended in the lysis buffer with 20 mM Phosphate buffer (Research Products International, Corp.), 100 μM DTT (Fisher), 100 μM ZnSO₄ (Sigma), 0.5% TritonX 100 (Sigma), 1 mg/mL Pepstatin A (Research Products International, Corp.), 500 μM PMSF (Sigma), and 0.5% glycerol at pH 8.0. Pellets were lysed by sonication and centrifuged at 4 °C and 20,000 rpm for

20 min. Fusion protein was collected from the bacterial supernatant and purified by affinity chromatography using glutathione Sepharose 4B beads (Amersham) prepared according to the manufacturer's directions. GST-tag was cleaved by thrombin and protein was eluted from resin. Collected fractions were assayed by SDS-PAGE gel; pooled fractions were treated with protease inhibitor cocktail (Sigma) and against a buffer containing 10 mM Tris, 50 mM NaCl, 2mM DTT (Fisher), 3 equivalents ZnSO₄ at pH 8.0 to ensure proper folding (*vide supra*).

¹H-¹⁵N HSQC NMR Spectroscopy. Protein samples were prepared as described above. Uniformly ¹⁵N-labeled N-terminal His₆-tagged Mdm2₂₅₋₁₁₇ was concentrated to 50 μ M in NMR buffer (10 mM PBS pH 7.4, 5 mM EDTA, 0.5 mM DTT) using 3 kDa MWCO Amicon Ultra centrifugal filter (Millipore) and supplemented with 5% D₂O. For HSQC titration experiments, data was collected on a 600 MHz Bruker four-channel NMR system at 25 °C and analyzed with the TopSpin software (Bruker).

For the HSQC titration experiments, 0.2 and 0.5 molar equivalents of compound **18** (F(3-Cl)WFL) in DMSO were added to ¹⁵N-labelled Mdm2, and the data was collected as described above. Mean chemical shift difference ($\Delta \delta_{NH}$) observed for ¹H and ¹⁵N nuclei of various resonances were calculated as described,³ where α is the range of H ppm shifts divided by the range of NH ppm shifts ($\alpha = 1/9$).

$$d = \sqrt{\frac{1}{2} [\delta_H^2 + (\alpha \cdot \delta_N^2)]}$$
(1)

Fluorescence Polarization Assay. The relative affinity of peptides for ¹⁵N-labeled N-terminal His₆-tagged MDM2₂₅₋₁₁₇ was determined using fluorescence polarization binding assay with fluoresceine-tagged p53. The polarization experiments were performed with a DTX 880 Multimode Detector (Beckman) at 25° C, with excitation and emission wavelengths of 485 and 525 nm, respectively. Addition of an increasing concentration (0 nm to 3.5 μ M) of MDM2 protein to a 15 nM solution of fluorescein labeled p53 peptide in 10 mM PBS pH 7.4, 5 mM EDTA, 0.5 mM DTT, and 0.1% pluronic F-68 (Sigma) in 96 well plates afforded the IC₅₀ value, which was fit into equation (**2**) to calculate the dissociation constant (*K*_D) for the Mdm2/p53 complex.⁵ The binding affinity (*K*_D) reported for each peptide is the average of three individual experiments, and were determined by fitting the experimental data to a sigmoidal dose-response nonlinear regression model on GraphPad Prism 5.0.

$$K_{\rm D} = (R_{\rm T} \times (1 - F_{\rm SB}) + L_{\rm ST} \times F_{\rm SB}^{-2})/F_{\rm SB} - L_{\rm ST}$$
(2)

where,

 R_T = Total concentration of Mdm2

 L_{ST} = Total concentration of fluorescent peptide

 F_{SB} = Fraction of bound fluorescent peptide

Figure S7: Direct binding of Flu-p53 to Mdm2.

The K_D of Flu-p53 was determined to be 169 ± 7 nM. For competitive inhibition experiments, a solution of 250 nM Mdm2 and 15 nM Flu-p53 in buffer (10 mM PBS pH 7.4, 5 mM EDTA, 0.5 mM DTT, and 0.1% pluronic F-68) was incubated at 25 °C in a 96 well plate. After 30 minutes appropriate concentrations of the oxopiperazine were added to the Mdm2/Flu-p53 solution and the resulting mixtures were incubated at 25° C for 30 minutes before measuring the degree of dissociation of Flu-p53 by polarization. The EC₅₀ was fit into equation (**2**) to calculate the K_{D2} value of the oxopiperazine. The inhibition curves are shown in the main manuscript.

$$K_{\rm D2} = K_{\rm D} * F_{\rm SB} * ((L_{\rm T} / (L_{\rm ST} * F_{\rm SB2} - (K_{\rm D} + L_{\rm ST} + R_{\rm T}) * F_{\rm SB} + R_{\rm T})) - 1/(1 - F_{\rm SB}))$$
(3)

where:

 $K_{\rm D} = K_{\rm D}$ of fluorescent probe Flu-p53

- R_{T} = Total concentration of Mdm2 protein
- L_{st} = total concentration of p53 fluorescent peptide

 F_{SB} = Fraction of bound oxopiperazine (at EC₅₀)

 L_{T} = total concentration of oxopiperazine (EC₅₀)

Tryptophan Fluorescence Binding Assay. Spectra were recorded on a QuantaMaster 40 spectrofluorometer (Photon Technology International) in a 10 mm quartz fluorometer cell at 25°C with 4 nm excitation and 4 nm emission slit widths from 200 to 400 nm at intervals of 1 nm/s. Samples were excited at 295 nm and fluorescence emission was measured from 200-400 nm and recorded at 335 nm. Peptides stock solutions were prepared in DMSO. Aliquots containing 1 μ L DMSO stocks were added to 400 μ L of 1 μ M p300-CH1 in 50 mM Tris and 100 mM NaCl (pH 8.0). After each addition, the sample was allowed to equilibrate for 5 minutes before UV analysis. Background absorbance and sample dilution effects were

corrected by titrating DMSO into p300-CH1 in an analogous manner. Final fluorescence is reported as the absolute value of $[(F_1-F_0)/F_1]*100$, where F_1 is the final fluorescence upon titration, and F_0 is the fluorescence of the blank DMSO titration. EC₅₀ values for each peptide were determined by fitting the experimental data to a sigmoidal dose-response nonlinear regression model in GraphPad Prism 5.0, and the dissociation constants, K_D , were obtained from equation (2).

Compound Characterization

Figure S6: Analytical HPLC traces of oxopiperazines and monomer-peptides. HPLC conditions: Compounds 1-3, 5,13-20 : 5% to 95% acetonitrile in water (0.1% formic acid) in 10 minutes. UV trace at 280 nm.

Compounds 4, 7, 9-12: 5% to 95% acetonitrile in water (0.1% trifluoroacetic acid) in 30 minutes. UV trace at 280 nm.

Compounds 6: 5% to 95% acetonitrile in water (0.1% trifluoroacetic acid) in 10 minutes. UV trace at 280 nm.

Compounds 8:5% to 95% acetonitrile in water (0.1% formic acid) in 10 minutes. UV trace at 220 nm.

Compound 21: 5% to 95% acetonitrile in water (0.1% formic acid) in 30 minutes. UV trace at 220 nm.

Compound **22**: 5% to 95% acetonitrile in water (0.1% trifluoroacetic acid) in 10 minutes; 95% to 100% from 10-15 minutes. UV trace at 230 nm.

Compound 23-25: 5% to 95% acetonitrile in water (0.1% trifluoroacetic acid) in 10 minutes. UV trace at 220 nm.

Experimentals

Oligooxopiperazine 1- FWAL-OH

¹H-NMR (600 MHz, d₆-DMSO) δ 10.93 (s, 0.3H), 10.89 (s, 0.7H), 9.35 (br, 1.0H), 8.23 (br, 1.0H), 7.64 (d, *J* = 7.86, 0.8H), 7.60 (d, *J* = 7.92, 0.2H), 7.37-7.14 (m, 5.0H), 7.13-6.97 (m, 3.0H), 5.72 (dd, *J* = 8.58, 6.48, 0.8H), 5.59 (app. t, *J* = 7.62, 0.2H), 4.97 (dd, *J* = 11.46, 7.02, 0.8H), 4.95-4.92 (m, 0.2H), 4.63 (q, *J* = 6.86, 1.0H), 4.15 (br, 1.0H), 3.80 (dt, *J* = 13.60, 3.60, 1.0H), 3.59 (br, 1.0H), 3.51-3.44 (m, 1.0H), 3.27-3.15 (m, 3.0H), 3.14-3.07 (m, 1.0H), 3.05-2.95 (m, 1.0H), 2.58-2.53 (m, 4.0H), 1.80-1.68 (m, 1.0H), 1.66-1.52 (m, 1.0H), 1.42-1.32 (m, 1.0H), 1.29 (d, *J* = 7.02, 2.0H), 1.01 (d, *J*= 6.55, 0.6H), 0.92 (d, *J* = 6.55, 0.4H), 0.89 (d, *J* = 6.55, 2.1H), 0.87 (d, *J* = 6.55, 0.9H), 0.83 (d, *J* = 6.55, 2.1H), 0.81 (d, *J* = 6.55, 0.9H). HRMS (ESI) C₃₃H₄₁N₅O₅ [M+H]⁺ calc'd= 588.3108; found = 588.3311

Oligooxopiperazine 2- FWKL-OH

¹H-NMR (400 MHz, MeOD) (data for the major rotamer) δ 7.70 (d, J = 8.90, 1.0H), 7.60 (d, J = 7.8, 0.5H), 7.50 (d, J = 7.4, 0.5H), 7.40-7.20 (m, 4.0H), 7.20-6.90 (m, 4.0H), 5.80-5.67 (m, 2.0H), 5.12-5.00 (m, 2.0H), 4.49-4.40 (m, 1.6H), 4.34 (app d, J = 11.90, 1.4H), 4.24-4.08 (m, 2.5H), 3.82-3.51 (m, 5.5H), 2.98-2.75 (m, 5.0H), 2.71-2.58 (m, 2.0H), 2.26 (t, J = 7.90, 1.7H), 1.80-1.56 (m, 4.3H), 1.50-1.31 (m, 2.8H), 1.29-1.17 (m, 2.3H), 1.15 (s, 0.6H), 0.88 (d, J = 6.70, 3.0H), 0.82 (d, J = 6.10, 3.0H). HR-MS (ESI) C₃₆H₄₈N₆O₅ [M+H]⁺ calc'd= 645.3686; found= 645.4044

Oligooxopiperazine 3- FWLL

¹H-NMR (600 MHz, d₆-DMSO) δ 10.89 (br s, 1.0H), 9.34 (br d, 1.0H), 7.62 (d, *J* = 7.84, 1.4H), 7.60 (d, *J* = 7.84, 0.6H), 7.34 (d *J* = 7.84, 2.0H), 7.30 (br s, 1.0H), 7.22-7.11 (m, 2.0H), 7.11-7.06 (m, 1.0H), 7.01 (q, *J* = 7.53, 1.5H), 6.53 (s, 0.5H), 5.73 (t, *J* = 7.40, 0.6H), 5.60-5.51 (m, 0.6H), 4.96 (dd, *J* = 11.85, 7.50, 0.4H), 4.90 (dd, *J* = 11.74, 7.08, 0.6H), 4.77 (t, *J* = 6.69, 0.6H), 4.52 (br, 0.4H), 3.84 (br, 1.0H), 3.56 (br, 1.5H), 3.23-3.17 (m, 3.5H), 3.09 (br, 1.0H), 3.02 (br, 1.0H), 2.87 (br, 1.0H), 1.78-1.69 (m, 1.5H), 1.66- 1.61 (m, 0.5H), 1.60-1.50 (m, 4.0H), 1.36-1.25 (m, 1.0H), 1.23 (s, 0.5H), 1.12 (br, 0.5H), 0.92-0.86 (m, 9.0H), 0.80 (d, *J* = 6.48, 1.0H) 0.78 (d, *J* = 6.48, 1.0H), 0.64 (d, *J* = 6.48, 1.0H), 0.56 (br, 0.7H). HRMS (ESI) C₃₆H₄₇N₅O₅ [M+H]⁺ calc'd= 630.3577; found= 630.4002

Oligooxopiperazine 4- FWFL-OH

¹H-NMR (400 MHz, MeOD) δ 7.51 (d, *J*= 7.88, 0.4H), 7.40 (d, *J*= 7.88, 0.6H), 7.34-7.20 (m, 5.0H), 7.16-6.97 (m, 8.4H), 6.79 (s, 0.6H), 5.85 (app. t, *J*= 7.90, 0.4H), 5.23 (t, *J*= 7.56, 0.6H), 5.20 (dd, *J*= 11.20, 6.08, 0.6H), 4.97 (t, *J*= 5.67, 0.4H), 4.93-4.87 (m, 1.0H), 4.42 (br, 0.6H), 4.21 (dd, *J*= 9.36, 4.84, 0.4H), 4.09 (dd, *J*= 9.88, 5.88, 0.6H), 3.78 (dt, *J*= 13.49, 3.63, 0.4H), 3.67-3.55 (m, 1.0H), 3.46 (app. t, *J*= 5.05, 1.3H), 3.44-3.39 (m, 0.5H), 3.35-3.30 (m, 0.5H), 3.29 (app. t, *J* = 3.72, 0.7H), 3.20-3.04 (m, 4.0H), 3.00-2.93 (m, 1.5H), 2.85 (dd, *J*= 14.9, 9.38, 0.4H), 2.69-2.62 (m, 1.0H), 2.50 (dd, *J*= 14.89, 9.79, 0.6H), 2.46-2.38 (m, 0.5H), 1.80-1.64 (m, 1.5H), 1.60-1.36 (m, 2.0H), 1.28-1.07 (m, 1.5H), 0.91 (d, *J*= 6.96, 2.0H), 0.89 (d, *J*= 6.76, 2.0H), 0.84 (d, *J*= 6.40, 1.0H), 0.80 (d, *J*= 6.64, 1.0H). LRMS C₃₉H₄₅N₅O₅ [M+H]⁺ calc'd= 664.3; found= 664.2

Oligooxopiperazine 5- FWFL-NH₂

¹H-NMR (400 MHz, d₆-DMSO) δ 10.89 (app. d, J = 1.74, 0.6H), 10.88 (s, 0.4H), 9.26 (br d, 2.0H), 7.57 (d, J = 7.76, 0.7H), 7.45 (d, J = 4.95, 0.7H), 7.42 (d, J = 4.06, 1.0H) 7.38-7.25 (m, 4.0H), 7.24-7.18 (m, 3.2H), 7.13-7.07 (m, 2.0H), 7.05-6.94 (m, 2.0H), 6.94-6.88 (m, 1.0H), 5.68 (dd, J = 8.72, 6.36, 0.6H), 5.32 (t, J = 7.44, 0.4H), 4.99 (dd, J = 10.17, 5.85, 4.32, 1.0H), 4.93 (t, J = 6.30, 0.6H), 4.78-4.72 (m, 0.4H), 4.20 (br, 0.5H), 4.17 (br, 0.5H), 3.75 (br, 0.5H), 3.71 (br, 0.5H), 3.26-3.04 (m, 7.0), 3.00-2.88 (m, 3.0H), 2.85 (br, 0.3H), 2.84 (br, 0.2H), 2.81-2.73 (m, 1.8H), 1.67-1.58 (m, 1.0H), 1.56-1.47 (m, 2.0H), 1.32 (br, 1.0H), 1.24 (br, 0.5H), 1.16 (br, 1.5H), 0.95-0.86 (m, 4.0H), 0.84 (d, J = 6.55, 2.0H). HRMS (ESI) C₃₉H₄₆N₆O₄ [M+H]⁺ calc'd= 663.3581; found= 663.3917

Oligoxopiperazine 6- FWFK-NH₂

¹H-NMR (600 MHz, d₆-DMSO) δ 10.88 (br, 1.0H), 8.46 (br, 0.7H), 9.30 (br d, 2.0H), 7.65 (br, 2.0H), 7.55 (d, *J*= 8.10, 0.3H), 7.52 (br, 0.3H), 7.49 (br, 0.3H), 7.40 (br, 1.0H), 7.39-7.25 (m, 4.0H), 7.24-7.06 (m, 6.0H), 7.04-6.98 (m, 1.0H), 6.92 (br, 0.7H), 6.76 (br, 0.3H), 6.53 (br, 2.0H), 5.88 (br, 0.4H), 5.69 (dd, *J*= 9.00, 6.42, 0.6H), 5.30 (br, 0.5H), 4.99 (br, 1.0H), 4.94-4.85 (m, 1.0H), 4.76 (br, 0.5H), 4.25 (br, 2.0H), 3.21-3.05 (m, 4.0H), 3.04-2.88 (m, 3.0H), 2.82-2.72 (m, 3.0H), 2.09 (s, 0.2H), 1.88-1.74 (m, 1.0H), 1.69-1.60 (m, 1.0H), 1.59-1.43 (m, 3.0H), 1.28-1.0 (m, 3.0H). HRMS (ESI) C₃₉H₄₇N₇O₄ [M+H]⁺ cal'd= 678.3846; found= 678.3861

Oligooxopiperazine 7- KWFL-NH₂

¹H-NMR (400 MHz, CDCl₃) δ 9.78 (br, 1.0H), 7.99 (br, 2.0H), 7.75 (br, 1.0H), 7.42 (t, *J* = 6.63, 2.0H), 7.38-7.27 (m, 3.0H), 7.20 (d, *J* = 7.40, 1.5H), 7.08 (t, *J* = 7.17, 1.0H), 7.04-6.97 (m,

1.5H), 6.76 (s, 1.0H), 5.18-5.08 (m, 1.0H), 4.94-4.82 (m, 2.0H), 4.82-4.74 (m, 1.0H), 3.55-3.44 (m, 1.5H), 3.43-3.14 (m, 5.0H), 2.97 (t, J= 12.06, 1.0H), 2.87 (br, 1.0H), 2.69 (br, 1.5H), 2.19-2.14 (m, 1.0H), 1.74-1.62 (m, 3.0H), 1.50 (br, 2.0H), 1.34-1.22 (m, 4.0H), 0.99 (d, J= 5.55, 6.0H), 0.92-0.77 (m, 4.0H), 0.72 (br, 1.5H), 0.56 (br, 0.5H). HRMS (ESI) C₃₆H₄₉N₇O₄ [M+H]⁺ calc'd= 644.3746; found= 644.4091

Oligooxopiperazine 8- FAFL-NH₂

¹H-NMR (600 MHz, d₆-DMSO) δ 9.40 (br, 2.0H), 7.46 (s, 0.5H), 7.40-7.27 (m, 5.0H), 7.26-7.19 (m, 2.5H), 7.14-7.11 (m, 1.0H), 7.10-7.04 (m, 1.0H), 6.56 (br, 1.0H), 5.36 (dd, *J* = 13.89, 6.99, 0.6H), 5.06 (q, *J* = 5.32, 0.6H), 5.02 (q, *J* = 5.55, 0.4H), 4.92 (t, *J* = 5.40, 0.6H), 4.79-4.74 (m, 0.4H), 4.73 (t, *J* = 6.74, 0.4H), 4.37 (br, 0.5H), 4.25 (br, 0.3H), 4.10 (br, 0.5H), 3.72 (dt, *J* = 13.75, 3.63, 0.7H), 3.52 (br, 1.0H), 3.47-3.42 (m, 1.0H), 3.41-3.36 (m, 1.5H), 3.30-3.23 (m, 1.5H), 3.20-3.13 (m, 2.4H), 3.06-2.97 (m, 2.6H), 2.87-2.82 (m, 1.0H), 1.72-1.65 (m, 1.0H), 1.60-1.49 (m, 2.3H), 1.42 (br, 0.7H), 1.23 (d, *J* = 6.9, 2.0H), 1.18 (br, 1.0H), 0.94-0.89 (m, 3.0H), 0.86 (d, *J* = 6.55, 2.0H), 0.66 (d, *J* = 6.55, 1.0H). HRMS (APCI) C₃₁H₄₁N₅O₄ [M+H]⁺ calc'd= 548.3159; found= 548.3493

Monomer peptide 9- FWSL-OH

¹H-NMR (400 MHz, d₆-MeOD) δ 8.08 (q, *J*= 7.74, 0.6H), 7.58 (d, *J*= 7.84, 1.0H), 7.30 (d, *J*= 8.08, 1.0H), 7.26-7.17 (m, 3.0H), 7.12-7.03 (m, 3.4H), 7.01-6.96 (m, 1.0H), 5.36 (dd, *J*= 10.5, 5.98, 1.0H), 4.48-4.36 (m, 2.0H), 4.12 (dd, *J*= 9.75, 5.28, 1.0H), 3.81 (d, *J*= 4.92, 0.3H), 3.79 (d, *J*= 4.92, 0.7H), 3.77 (d, *J*= 6.30, 0.3H), 3.74 (d, *J*= 6.30, 0.7H), 3.52 (dd, *J*= 7.20, 3.80, 2.0H) 3.44-3.28 (m, 3.0H), 3.14 (dt, 13.04, 3.68, 1.0H), 3.05-2.96 (m, 1.0H), 2.68 (dd, *J*= 11.96, 9.64, 1.0H), 1.73-1.63 (m, 1.0H), 1.62-1.57 (m, 2.0H), 0.90 (d, *J*= 6.50, 3.0H), 0.87 (d, *J*= 6.50, 3.0H). LRMS C₃₁H₃₉N₅O₆ [M+H]⁺ calc'd= 578.3; found= 578.2

Monomer peptide **10**- FWDL-OH

¹H-NMR (400 MHz, d₆-MeOD) δ 8.07 (d, *J*= 8.04, 0.3H), 7.64 (d, *J*= 7.84, 0.7H), 7.38 (d, *J*= 8.04, 1.0H), 7.34-7.25 (m, 3.0H), 7.22-7.11 (m, 4.0H), 7.06 (t, *J*= 7.40, 1.0H), 5.30 (dd, *J*= 9.26, 6.62, 1.0H), 4.49-4.41 (m, 1.0H), 4.14 (dd, *J*= 9.56, 5.36, 1.0H), 3.65-3.54 (m, 1.0H), 3.53-3.36 (m, 4.0H), 3.21 (dt, *J*= 6.24, 3.36, 1.0H), 3.05-2.96 (m, 1.0H), 2.95 (d, *J*= 4.69, 0.4H), 2.91 (d, *J*= 4.6, 0.6H), 2.84-2.74 (m, 2.0H), 1.82-1.73 (m, 1.0H), 1.72-1.63 (m, 2.0H), 0.98 (d, *J*= 6.44, 3.0H), 0.94 (d, *J*= 6.44, 3.0H). LRMS C₃₂H₃₉N₅O₇ [M+H]⁺ calc'd= 606.3; found= 606.2

Monomer peptide 11- FWLL-OH

¹H-NMR (400 MHz, d₆-MeOD) δ 8.30 (d, J = 7.56, 0.6H), 8.22 (d, J = 7.88, 0.5H), 7.68 (d, J = 7.88, 0.9H), 7.39 (d, J = 8.08, 1.0H), 7.33-7.26 (m, 2.7H), 7.19-7.14 (m, 3.3H), 7.07 (t, J = 7.30, 1.0H), 5.50 (dd, J = 10.11, 5.37, 1.0H), 4.52-4.43 (m, 2.0H), 4.21 (dd, J = 9.54, 5.20, 1.0H), 3.76 (br, 1.0H), 3.63-3.55 (m, 1.0H), 3.49-3.36 (m, 3.0H), 3.22 (dt, J = 12.96, 3.80, 1.0H), 3.19-3.11 (m, 1.0H), 2.78 (dd, J = 14.92, 9.56, 1.0H), 1.82-1.71 (m, 1.0H), 1.70-1.59 (m, 5.0H), 1.02-0.91 (m, 12.0H). LRMS C₃₄H₄₅N₅O₅ [M+H]⁺ calc'd= 604.3; found= 604.2

Monomer peptide **12**- FW-F-L-OH

¹H-NMR (400 MHz, d₆-MeOD) δ 8.30 (d, *J*= 8.0, 0.4H), 8.13 (d, *J*= 7.92, 0.6H), 7.64 (d, *J*= 7.88, 1.0H), 7.40 (d, *J*= 8.12, 1.0H), 7.35-7.13 (m, 11.0H), 7.08 (t, *J*= 7.42, 1.0H), 5.41 (dd, *J*= 10.08, 6.00, 1.0H), 4.80-4.74 (m, 1.0H), 4.52-4.45 (m, 1.0H), 4.08 (dd, *J*= 9.48, 5.24, 1.0H), 3.56-3.44 (m, 2.0H), 3.43-3.40 (m, 1.0H), 3.39-3.36 (m, 1.0H), 3.29 (d, *J*= 4.84, 1.0H), 3.26 (d, *J*= 4.36, 1.0H), 3.18 (dt, 13.04, 3.56, 1.0H), 2.97-2.87 (m, 2.0H), 2.76 (dd, *J*= 14.86, 9.54, 1.0H),

1.81-1.72 (m, 1.0H), 1.72-1.65 (m, 2.0H), 0.99 (d, J = 6.35, 3.0H), 0.96 (d, J = 6.35, 3.0H). LRMS C₃₇H₄₃N₅O₅ [M+H]⁺ calc'd= 638.3; found= 638.2

Oligooxopiperazine 13- FWF(Nle)-NH₂

¹H-NMR (600 MHz, d₆-DMSO) δ 10.82 (s, 0.6H), 10.76 (s, 0.4H), 7.56 (d, J = 7.58, 0.5H), 7.41 (d, J = 8.80, 1.0H), 7.32 (t, J = 8.20, 1.0H), 7.29-7.01 (m, 10.0H), 7.08-6.97 (m, 3.0H), 6.53 (br, 1.0H), 5.69 (dd, J = 8.55, 6.37, 0.6H), 5.19 (br, 0.4H), 4.98 (br, 0.6H), 4.88 (dd, J = 10.62, 5.46, 0.4H), 4.72 (dd, J = 8.10, 4.14, 0.4H), 4.26 (br, 0.4H), 3.97 (t, J = 6.69, 0.2H), 3.82 (br, 0.6H), 3.29-3.25 (m, 1.0H), 3.22 (d, J = 3.96, 0.3H), 3.20-3.16 (m, 2.0H), 3.14 (t, J = 3.06, 0.4H), 3.10 (br, 0.3H), 3.09-3.05 (m, 1.7H), 3.02 (br, 0.5H), 2.98 (dt, J = 12.90, 3.57, 1.7H), 2.87 (br, 2.0H) 1.80-1.70 (m, 1.4H), 1.63-1.57 (m, 0.6H), 1.56-1.47 (m, 1.0H), 1.32-1.25 (m, 3.0H), 1.23 (s, 2.0H), 1.16-1.10 (m, 1.0H) 1.08-1.02 (m, 0.8H), 1.0-0.93 (m, 0.6H), 0.88 (app q, J = 7.38, 3.0H). HRMS (ESI) C₃₉H₄₆N₆O₄ [M+H]⁺ calc'd= 663.3581; found= 663.3908

Oligooxopiperazine 14- FWYL-NH₂

¹H-NMR (600 MHz, d₆-DMSO) δ 10.92 (d, *J*= 1.62, 0.4H), 10.90 (d, *J*= 1.85, 0.6H), 9.27 (br, 3.0H), 7.58 (d, *J*= 7.94, 0.6H), 7.47 (d, *J*= 7.48, 0.4H), 7.44 (s, 0.4H), 7.41 (s, 0.6H), 7.33-7.23 (m, 4.0H), 7.23-7.16 (m, 2.0), 7.10-6.99 (m, 3.0H), 6.88 (d, *J*= 8.42, 1.0H), 6.63-6.60 (m, 2.0H), 6.56 (d, *J* = 8.46, 1.0H), 5.67 (dd, *J*= 8.96, 6.03, 0.6H), 5.41 (app. t, *J*= 7.77, 0.4H), 5.02-4.97 (m, 1.0H), 4.85 (t, *J*=5.47, 0.6H), 4.70 (t, *J*= 6.03, 0.4H), 4.30 (br, 0.6H), 4.15 (dt, *J*= 13.27, 3.79, 0.4H), 4.09 (br, 0.4H), 3.70 (dt, *J*= 13.27, 3.70, 0.6H), 3.63-3.57 (m, 1.0H), 3.33 (br, 1.0H), 3.25-3.07 (m, 6.0H), 3.04-2.85 (m, 3.0H), 2.76-2.67 (m, 1.5H), 2.58 (dd, *J* = 13.85, 5.12, 0.5H), 1.62-1.55 (m, 0.4H), 1.55-1.45 (m, 1.6H), 1.33-1.25 (m, 0.5H), 1.24-1.10 (m, 0.5H), 0.88 (d, *J*= 6.55, 2.0H), 0.87 (d, *J*= 6.55, 2.0H), 0.84 (d, *J*= 6.55, 2.0H). HRMS (ESI) C₃₉H₄₆N₆O₅ [M+H]⁺ calc'd= 679.3530; found= 679.3810

Oligooxopiperazine **15-** (Nap)WFL-NH₂

¹H-NMR (600 MHz, d₆-DMSO) δ 10.92 (br. s, 1.0H), 9.20 (br, 2.0H), 8.03-7.97 (m, 1.3H), 7.90 (br, 0.7H), 7.66-7.53 (m, 2.0H), 7.49-7.38 (m, 2.0H), 7.35 (t, *J*= 7.8, 1.0H), 7.26 (s, 1.0H), 7.15-7.0 (m, 5.0H), 6.99-6.90 (m, 1.5H), 6.52 (s, 0.5H), 5.72 (br, 0.7H), 5.39 (br, 0.3H), 5.01 (dd, J= 11.40, 6.00, 1.0H), 4.96 (br, 0.7H), 4.78 (br, 0.3H), 4.33 (br, 0.5H), 4.17 (br, 0.5H), 3.82 (br, 0.3H), 3.76 (br, 1.0H), 3.64 (br, 0.7H), 3.24-3.04 (m, 7.0H), 3.04-2.96 (m, 2.5H), 2.95-2.87 (m, 1.5H), 2.86-2.74 (m, 2.0H), 1.66-1.59 (m, 0.7H), 1.57-1.47 (m, 2.0H), 1.35 (br, 0.3H), 1.24 (br, 0.5H), 1.18 (br, 0.5H), 0.89 (d, *J* = 6.55, 3.5H), 0.85 (d, *J* = 6.55, 2.5H). HRMS (ESI) C₄₃H₄₈N₆O₄ [M+H]⁺ calc'd= 713.3737; found= 713.4041

Oligooxopiperazine 16- YWFL-NH₂

¹H-NMR (600 MHz, d₆-DMSO) δ 10.88 (br, 0.6H), 10.86 (br, 0.4H), 9.37 (br, 1.0H), 9.17 (br, 1.0H), 8,97 (br, 1.0H), 7.57 (d, *J* = 8.00, 0.6H), 7.46-7.39 (m, 1.4H), 7.33 (t, *J* = 7.74, 1.0H), 7.24-7.20 (m, 2.0H), 7.18 (br, 0.5H), 7.12-7.06 (m, 3.5H), 7.05-6.97 (m, 4.0H), 6.89 (br, 1.0H), 6.71 (d, *J*= 7.92, 1.8H), 6.53 (br, 0.2H), 5.67 (dd, *J*= 8.10, 6.30, 0.6H), 5.31 (br, 0.4H), 4.99 (dd, *J*= 10.38, 5.34, 1.0H), 4.93, (t, *J* = 5.82, 0.6H), 4.74 (br, 0.4H), 4.18 (br, 1.0H), 3.99 (br, 0.4H), 3.73 (br, 0.6H), 3.55 (br, 1.0H), 3.25-3.14 (m, 3.5H), 3.13-3.03 (m, 4.0H), 3.00-2.73 (m, 3.0H), 2.79-2.74 (m, 0.5H), 1.65-1.60 (m, 0.5H), 1.56-1.47 (m, 1.5H), 1.33-1.26 (m, 0.5H), 1.22-1.10 (m, 0.5H), 0.89 (d, *J* = 6.55, 2.0H), 0.87 (app. t, *J* = 3.10, 2.0H), 0.84 (d, *J* = 6.55, 2.0H). HRMS (ESI) C₃₉H₄₅N₅O₆ [M+H]⁺ calc'd= 679.3530; found= 679.3755

Oligooxopiperazine **17-** Y(O-Me)WFL-NH₂

¹H-NMR (600 MHz, d₆-DMSO) δ 10.89 (br, 0.6H), 10.87 (br, 0.4H), 9.20 (br, 2.0H), 7.57 (d, J = 8.00, 0.3H), 7.8-7.39 (m, 1.0H), 7.34 (t, J = 8.13, 0.7H), 7.23-7.17 (m, 2.0H), 7.12-7.06 (m, 4.0H), 7.04-6.98 (m, 1.5H), 6.91 (br, 1.0H), 6.90 (d, J = 1.5H), 6.54 (br, 1.0H), 5.70 (dd, J = 8.79, 6.03, 0.6H), 5.31 (t, J = 6.40, 0.4H), 4.99 (dd, J = 10.74, 5.52, 1.0H), 4.94 (t, J = 5.73, 0.6H), 4.74 (dd, J = 7.47, 5.16, 0.4H), 4.24-4.16 (m, 0.4H), 3.73 (app. d, J = 2.40, 3.0H), 3.54 (br, 0.6H), 3.28-3.03 (m, 9.0H), 3.02-2.84 (m, 3.0H), 2.83-2.75 (m, 1.0H), 2.68 (br, 1.0H), 1.66-1.60 (m, 0.5H), 1.56-1.45 (m, 2.0H), 1.37-1.31 (m, 0.5H), 1.24-1.12 (m, 1.0H) 0.90-0.86 (m, 4.0H), 0.84 (d, J = 6.60, 2.0H). HRMS (ESI) C₄₀H₄₇N₅O₆ [M+H]⁺ calc'd= 693.3686; found= 693.3944

Oligooxopiperazine 18- F(3-Cl)WFL-NH₂

¹H-NMR (600 MHz, d₆-DMSO) δ 10.88 (s, 0.7H), 10.87 (s, 0.3H), 9.40 (br d, 2.0H), 7.57 (d, *J*= 7.90, 0.6H), 7.48-7.40 (m, 1.4H), 7.38-7.29 (m, 3.5H), 7.25-7.17 (m, 2.5H), 7.16-6.98 (m, 5.0H), 6.95-6.86 (m, 0.8H), 6.54 (br, 0.2H), 5.66 (dd, *J* = 8.77, 6.37, 0.6H), 5.30 (t, *J*= 7.32, 0.4H), 5.02-4.97 (m, 1.0H), 4.94 (t, *J* = 5.85, 0.6H), 4.70 (dd, *J* = 7.83, 5.33, 0.4H), 4.29 (br, 0.6H), 4.19 (dt, *J* = 13.17, 3.76, 0.4H), 4.07 (br, 0.4H), 3.70 (dt, *J* = 13.17, 3.76, 0.6H), 3.62-3.49 (m, 2.0H), 3.30-3.22 (m, 1.0H), 3.23-3.02 (m, 6.0H), 3.16-2.86 (m, 3.0H), 2.76-2.72 (m, 1.0H), 1.66-1.59 (m, 0.4H), 1.56-1.45 (m, 1.6H), 1.36-1.28 (m, 0.5H), 1.26-1.11 (m, 1.5H), 0.89-0.86 (m, 4.0H), 0.84 (d, *J* = 6.57, 2.0H). HRMS (ESI) C₃₉H₄₄ClN₅O₅ [M+H]⁺ calc'd= 697.3191; found= 697.3568

Oligooxopiperazine 19- F(3-Me)WFL-NH₂

¹H-NMR (400 MHz, d₆-DMSO) δ 10.88 (br, 0.6H), 10.87 (br, 0.4H), 9.18 (br d, 2.0H), 7.57 (d, *J*= 7.65, 0.7H), 7.47-7.39 (m, 1.3H), 7.37-7.32 (m, 1.0H), 7.25-7.18 (m, 3.0H), 7.15-7.07 (m, 3.5H), 7.06-6.97 (m, 3.5H), 6.93-6.88 (m, 1.0H), 5.67 (dd, *J* = 8.82, 6.07, 0.6H), 5.32 (t, *J* = 7.34, 0.4H) 5.02-4.97 (m, 1.0H), 4.93 (t, *J* = 5.68, 0.6H), 4.77-4.71 (dd, *J* = 7.87, 5.65, 0.4H), 4.28 (br, 0.5H), 4.21-4.15 (m, 0.5H), 4.08 (br, 0.5H), 3.75-3.68 (m, 1.5H), 3.39-3.04 (m, 9.0H), 3.02-2.83 (m, 2.5H), 2.79-2.73 (m, 0.5H), 2.29 (s, 3.0H), 1.69-1.59 (m, 0.5H), 1.56-1.47 (m, 2.0H), 1.39-1.27 (m, 0.5H), 1.27-1.06 (m, 2.0H), 0.90-0.86 (m, 4.0H), 0.84 (d, *J* = 6.54, 2.0H). HRMS (ESI) C₄₀H₄₈N₆O₄ [M+H]⁺ calc'd= 677.3737; found= 677.4042

Oligooxopiperazine 20- F(4-Cl)WFL-NH₂

¹H-NMR (600 MHz, d₆-DMSO) δ 10.88 (s, 0.7H), 10.87 (s, 0.3H), 9.38 (br d, 2.0H), 7.57 (d, *J*= 7.84, 0.5H), 7.45 (s, 0.5H), 7.42 (d, *J* = 8.45, 1.0H), 7.34 (t, *J* = 7.63, 2.5H), 7.24-7.20 (m, 3.0H), 7.16-7.06 (m, 4.0H), 7.05-6.98 (m, 1.5H), 6.90 (br, 0.9H), 6.55 (br, 0.1H), 5.66 (dd, *J* = 8.99, 6.25, 0.6H), 5.30 (t, *J*= 7.32, 0.4H), 5.01-4.97 (m, 1.0H), 4.94 (t, *J* = 5.85, 0.6H), 4.70 (dd, *J* = 8.11, 5.10, 0.4H), 4.25 (br, 0.5H), 4.19 (dt, *J* = 13.52, 3.83, 0.4H), 4.04 (br, 0.5H), 3.72 (dt, *J* = 13.52, 3.83, 0.6H), 3.57 (br, 1.0H), 3.28-3.25 (m, 1.0H), 3.23-3.13 (m, 3.5H), 3.10-3.03 (m, 3.0H), 3.01-2.86 (m, 2.5H), 2.85-2.70 (m, 2.0H), 1.66-1.59 (m, 0.5H), 1.57-1.45 (m, 1.8H), 1.37-1.29 (m, 0.5H), 1.24 (br, 0.2H), 1.21-1.10 (m, 1.0H), 0.90-0.86 (m, 4.0H), 0.84 (d, *J* = 6.56, 2.0H). HRMS (APCI) C₃₉H₄₄CIN₅O₅ [M+H]⁺ calc'd= 697.3191; found= 697.3587

Oligooxopiperazine **21**- LLAQ

¹H-NMR (600 MHz, d₆-DMSO, 100 °C) δ 6.87 (br, 3H), 6.61 (br, 3H), 5.36 (t, *J* = 7.47, 1H), 4.90-4.85 (m, 1H), 4.67 (q, *J* = 6.88, 1H), 3.96 (br, 2H), 3.63-3.24 (m, 8H), 1.95-1.82 (m, 3H), 1.72-1.58 (m, 3H), 1.57-1.49 (m, 1H), 1.38 (s, 3H), 1.06-0.75 (m, 12H). HRMS (ESI) C₂₄H₄₂N₆O₅ [M+H]⁺ calc'd= 494.3217; found= 495.3502

Oligooxopiperazine 22- LAAQ

¹H-NMR (400 MHz, d₆-DMSO, 100 °C) δ 6.77 (br, 2H), 6.52 (br, 2H), 5.34 (q, *J* = 6.91, 1H), 4.90-4.84 (m, 1H), 4.67 (q, *J* = 6.91, 1H), 4.01-3.91 (m, 1H), 3.76-3.69 (m, 1H), 3.57-3.27 (m, 7H), 3.24-3.14 (m, 1H), 2.19-2.01 (m, 3H), 2.00-1.80 (m, 3H), 1.64-1.55 (m, 1H), 1.38 (d, *J* = 6.92, 3H), 1.27 (d, *J* = 6.92, 3H), 0.94 (t, *J* = 6.02, 6H). HRMS (ESI) C₂₁H₃₆N₆O₅ [M+H]⁺ calc'd= 453.2747; found= 453.2863

Oligooxopiperazine **23**- L(Nle)AQ

¹H-NMR (600 MHz, d₆-DMSO, 100 °C) δ 6.87 (br, 4H), 5.27 (t, *J* = 7.25, 1H), 4.92-4.83 (m, 1H), 4.67 (q, *J* = 7.07, 1H), 3.96 (br, 1H), 3.88 (br, 1H), 3.59-3.56 (m, 1H), 3.54-3.46 (m, 3H), 3.45-3.39 (m, 2H), 3.36-3.31 (m, 1H), 3.30-3.21 (m, 1H), 2.12-2.01 (m, 2H), 1.99-1.83 (m, 2H), 1.80-1.59 (m, 4H), 1.39-1.20 (m, 8H), 0.95 (d, *J* = 6.29, 3H), 0.94 (d, *J* = 6.19, 3H), 0.89 (t, *J* = 7.31, 3H). HRMS (ESI) C₂₄H₄₂N₆O₅ [M+H]⁺ calc'd= 495.3217; found= 495.3377

Oligooxopiperazine 24- MMAQ

¹H-NMR (600 MHz, d₆-DMSO, 100 °C) δ 9.33 (br, 1H), 6.90 (br, 3H), 5.46 (t, *J* = 6.91, 1H), 4.91-4.84 (m, 1H), 4.70-4.63 (m, 1H), 4.16-3.91 (m, 1H), 3.87-3.75 (m, 1H), 3.59-3.54 (m, 2H), 3.50 (t, *J* = 5.98, 2H), 3.47-3.40 (m, 1H), 3.36-3.22 (m, 3H), 2.70-2.60 (m, 3H), 2.23-2.14 (m, 1H), 2.08 (d, *J* = 2.96, 3H), 2.07-1.87 (m, 5H), 1.74-1.62 (m, 5H), 1.7 (br, 1H), 1.27 (s, 3H). HRMS (ESI) C₂₂H₃₈N₆O₅S₂ [M+H]⁺ calc'd= 530.2345; found= 531.2423.

Oligooxopiperazine 25- (Hle)(Hle)AQ

¹H-NMR (600 MHz, d₆-DMSO, 100 °C) δ 6.83 (br, 4H), 5.26 (t, *J* = 7.06, 1H), 4.92-4.83 (m, 1H), 4.66 (q, *J* = 6.80, 1H), 3.96 (br, 1H), 3.88 (br, 1H), 3.55-3.46 (m, 3H), 3.45-3.36 (m, 3H), 3.35-3.30 (m, 1H), 3.29-3.22 (m, 1H), 3.21 (s, 1H), 1.99-1.83 (m, 2H), 1.83-1.63 (m, 3H), 1.62-1.49 (m, 2H), 1.46-1.20 (m, 7H), 1.19-1.09 (m, 2H), 0.95-0.83 (m, 12H). HRMS (ESI) C₂₄H₄₂N₆O₅ [M+H]⁺ calc'd= 523.3530; found= 523.3642

References:

- (1) Uhrinova, S.; Uhrin, D.; Powers, H.; Watt, K.; Zheleva, D.; Fischer, P.; McInnes, C.; Barlow, P. N. J. Mol. Biol. 2005, 350, 587.
- (2) Stoll, R.; Renner, C.; Muhlhahn, P.; Hansen, S.; Schumacher, R.; Hesse, F.; Kaluza, B.; Engh, R. A.; Voelter, W.; Holak, T. A. J. Biomolec. NMR 2000, 17, 91.
- (3) Williamson, M. P. Prog. Nucl. Magn. Reson. Spectrosc. 2013, 73, 1.
- (4) Coin, I.; Beyermann, M.; Bienert, M. Nat. Protoc. 2007, 2, 3247.
- (5) Roehrl, M. H.; Wang, J. Y.; Wagner, G. Biochemistry 2004, 43, 16056.