
Superficial layer pyramidal cells communicate heterogeneously between

multiple functional domains of cat primary visual cortex.

Kevan AC Martin, Stephan Roth, Elisha S Rusch

Supplementary Material

A. Example of a typical superficial layer pyramidal neuron.

Supplementary Figure 1 Example of a typical superficial layer pyramidal neuron. (a-c) shows the

side view and (d-f) the top view of the reconstructed axonal tree, boutons and dendrite. (a) The

brain surface and the layer boundaries are depicted with black curves, the ID's of the 6 different

lamina are indicated with the abbreviations L1 - L6. The axonal tree (grey) forms extensive lateral

connections in the supragranular layers and minor bifurcations within layer 5. The dendritic tree

(black) bifurcates locally and forms one apical dendrite towards layer 1 to form a tuft (better visible

in the inset containing the single dendrite). (b) Axonal boutons are denoted by enlarged black dots

forming high and low density regions within layer 2 and 3 and layer 5. These regions of high

bouton densities are captured by the use of a mean-shift cluster-algorithm (applied on the 3D data,

see Methods). (c) This mean-shift cluster-algorithm extracted five discriminated regions of high

bouton densities (termed as clusters). The boutons itself attributed to the five different clusters are

indicated with different colors (black, red, green, blue and yellow in order of their corresponding

increasing cluster rank). Boutons outside clusters are marked in grey. (d) The top view of the axonal

tree (grey) and the dendritic tree (black) are displayed together with the anterior-posterior axis, the

vertical meridian and the neuron's preferred orientation. (e) The boutons (black) are densely packed

in the neurons vicinity and are clotted at distant regions roughly 1 mm away from the soma. These

high-density regions, nicely captured by the cluster-algorithm (f), are interleaved by sparse regions.

Note that very few individual boutons and no superficial bouton clusters (black, red, blue, yellow)

elongate along the neurons preferred orientation. (Neuron ID 11).

B. Six example superficial layer pyramidal neurons

Supplementary Figure 2 Six examples of superficial layer pyramidal neurons in their top and

coronal view. (a-f) Single neurons are displayed in top view (left) and coronal view (right, with

layers indicated). Axons, non-clustered boutons and boutons of deep layer clusters are shown in

grey. Clustered boutons are colored according to their rank (see color code). Scale bar=1mm.

(Neuron IDs: a (17), b (7), c (13), d (26), e (20), f (24)).

C. Topview of the first 16 out of 33 superficial layer pyramidal neurons used in this study.

Supplementary Figure 3 Topview of the superficial layer pyramidal neurons used in this study.

Shown are the first 16 neurons out of the 33 (for conventions see Supplementary Figure 1).

Neurons are sorted by normalized depth of soma. Each neuron was individually rotated that the

space between was used best. Note that the neurons are shown in their entirety (incl. deep layer

processes) whereas the actual study investigates only those parts in the superficial layers. Scale bar

= 1mm. For reference and comparison are the graphs from Figure 3 and Figure 5g shown at the

bottom. Note that the number of dots at the bottom may be less than the actual clusters per neuron

because for the analyses only superficial layer clusters within the mask were considered. The

neuron IDs and their file name are as following: (1) Cat_0907_RH_axon_02.xml, (2)

Cat_0408_LH_axon_02.xml, (3) Cat_1007_RH_axon_02.xml, (4) Cat_0907_RH_axon_01.xml, (5)

Cat_2806_RH_axon_07.xml, (6) Cat_2606_LH_axon_05.xml, (7) Cat_0308_RH_axon_03.xml, (8)

Cat_2806_RH_axon_03.xml, (9) Cat_1207_LH_axon_01.xml, (10) Cat_2806_RH_axon_06.xml,

(11) Cat_1007_RH_axon_01.xml, (12) Cat_0608_RH_axon_02.xml, (13)

Cat_0408_RH_axon_01.xml, (14) Cat_0608_RH_axon_03.xml, (15) Cat_2806_RH_axon_05.xml,

(16) Cat_2806_RH_axon_04.xml.

D. Topview of the last 17 out of 33 superficial layer pyramidal neurons used in this study.

Supplementary Figure 4 Topview of the superficial layer pyramidal neurons used in this study.

Shown are the last 17 neurons out of the 33 (for conventions see Supplementary Figure 1).

Neurons are sorted by normalized depth of soma. Each neuron was individually rotated that the

space between was used best. Note that the neurons are shown in their entirety (incl. deep layer

processes) whereas the actual study investigates only those parts in the superficial layers. Scale bar

= 1mm. For reference and comparison are the graphs from Figure 3 and Figure 5g shown at the

bottom. Note that the number of dots at the bottom may be less than the actual clusters per neuron

because for the analyses only superficial layer clusters within the mask were considered. The

neuron IDs and their file name are as following: (17) Cat_0608_RH_axon_01.xml, (18)

Cat_2806_RH_axon_01.xml, (19) Cat_0408_LH_axon_01.xml, (20) Cat_0608_RH_axon_06.xml,

(21) Cat_1207_RH_axon_03.xml, (22) Cat_2606_LH_axon_03.xml, (23)

Cat_0308_LH_axon_01.xml, (24) Cat_0707_RH_axon_01.xml, (25) Cat_0707_RH_axon_02.xml,

(26) Cat_0507_LH_axon_01.xml, (27) Cat_0608_RH_axon_05.xml, (28)

Cat_0807_RH_axon_02.xml, (29) Cat_0807_RH_axon_01.xml, (30) Cat_0108_RH_axon_01.xml,

(31) Cat_0807_RH_axon_03.xml, (32) Cat_2506_RH_axon_01.xml, (33)

Cat_0507_LH_axon_02.xml.

E. The neurons’ individual sum-vectors.

Supplementary Figure 5 The neurons’ individual sum-vectors. Each neuron’s sum-vectors are

plotted as explained for two neurons in Figure 2m, n. Vectors in red represent the dendritic tree,

vectors in green the local cluster and the blue vectors each one individual distal cluster (for details

see Fig. 2). The 33 plots, i.e. neurons, were sorted by their depth from surface (see bottom). Note

that the vectors for the local cluster (green) and the dendrite (red) point mostly in the same

direction, i.e. similar orientation preferences, unlike the distal clusters (blue). Additionally, a neuron

can have a differently tuned dendrite, local or distal clusters (see length of vectors). The last three

plots are superpositions across all neurons to show that all angles are represented. For reference and

comparison the graphs from Figure 5f and g are shown again at the bottom.

F. The first 16 out of 33 neurons and their orientation map

Supplementary Figure 6 Individual neurons overlaid on their corresponding orientation map.

Neurons are represented only by their soma (white triangle) and their ellipses fitted to superficial

layer bouton clusters (white curves). The first 16 neurons out of 33 are displayed, sorted by their

normalized depth from surface as in Figure 3.

G. The last 17 out of 33 neurons and their orientation map

Supplementary Figure 7 Individual neurons overlaid on their corresponding orientation map.

Neurons are represented only by their soma (white triangle) and their ellipses fitted to superficial

layer bouton clusters (white curves). The last 17 neurons out of 33 are displayed, sorted by their

normalized depth from surface as in Figure 3.

H. The neurons in their topview represented only by fitted ellipses to superficial layer bouton

clusters.

Supplementary Figure 8 The neurons in their topview represented only by fitted ellipses to

superficial layer bouton clusters. All 33 neurons are sorted as in Figure 3 and individually rotated

to align with the vertical meridian (gold arrow). The soma (black triangle), the ellipses color-coded

according to the cluster’s rank (bottom right) and straight lines connecting each ellipse center with

the soma (grey lines) are displayed for each neuron. If available, the preferred orientation is plotted

at the location of the soma matching the neuron’s preferred orientation (bold dark grey bar).

I. Mean polar plots across 25 neurons with mapped Receptive Fields (RFs).

Supplementary Figure 9 Mean polar plots across 25 neurons with mapped RFs. Neurons were

individually aligned to either the vertical meridian or the neuron’s preferred orientation. (a)

Example pyramidal neuron (ID: 26) shown in top view, rotated that the neuron's preferred

orientation (blue bar) lies vertically. Pink bar indicates angle of vertical meridian representation.

Boutons colour-coded black, red, green, blue, yellow in order of increasing cluster rank, grey

boutons lie outside clusters. Beneath is a polar plot generated by counting total number of clustered

boutons in 5 degree radial sectors (scale bar denotes 100 boutons in radial sectors). (b) The

dendritic tree (blue) was aligned to the neurons preferred orientation and superimposed on a polar

plot in which the total dendritic length was calculated within each 5 degree sector. (c-f) Pooled

polar plots across all neurons. Each individual neuron was either aligned to the preferred orientation

(blue curves) or the vertical meridian (pink curves). (c) Mean polar plots of all clustered boutons for

all neurons. (d) Mean polar plot of all distal clustered boutons. (e) Mean polar plots of boutons in

local clusters. (f) Mean polar plots of all dendrites. No plot was significantly different from a

circular distribution, i.e. no preference in any direction (Wilcoxon Sign Rank: c: p=0.59 / d: p=0.96

/ e: p=0.75 / f: p=0.87). (Neuron ID: 26, cat_0507_LH_neuron_01. Simple RF, ocular dominance

n.a., size 1.8x0.3°, location -2.6° / -5° from areal centralis, preferred orientation 150° ± 38°,

direction preference 60°, 70 MΩ).

J. Step-by-step explanatory figure of the bootstrap procedure for a second neuron

Supplementary Figure 10 Bootstrap of distal ellipses for a different neuron than the one shown in

Figure 8. The figure is subdivided into four parts (‘actual neuron’, ‘randomized’, ‘actual versus

randomized’ and ‘totally across all neurons’). The upper half, a-f, depicts the distances of the

ellipses, the lower half, g-l, the SI values. (a) Displayed are the orientation map, the location of the

soma (white dot) and the centers of the distal ellipses (pluses) (for details see Fig. 1). The neurons’

preferred orientation (gold bar) and the vertical meridian (brown bar) are marked at the bottom

right. (b) Orientation map and the location of 1,000 bootstrapped distal ellipses out of the 20,000

that were generated. The size, distance from soma, shape and orientation of each individual

bootstrapped ellipse was randomized based on the statistics of all distal ellipses totally across all

neurons (see Methods). (c) Displayed are the centers (pluses) of the three distal ellipses in relation

to the soma (black dot). (d) Of all 20,000 bootstrapped ellipses those having an ellipse-center

outside the orientation map or falling within the local ellipse were ignored. Of all the remaining

ellipse centers (N=16,722) the radial distance to the soma was calculated. Instead of showing every

single center, the median (pink contour), the 5% and the 95% percentile (black contours) were

calculated and only those displayed (bin width = 10 degrees). The orientation map outside the

percentiles was faded in white. Thus randomized ellipses are expected to occur on this displayed

region of the orientation map. The dendritic tree was color-coded by its underlying pixels of the

orientation map. (e) The three centers of the actual ellipses from c are shown as black dots. They are

close to the median of all the bootstrapped ellipses (pink contour) signifying that a large number of

the bootstrapped ellipses are located on top of the actual ellipses (compare crosses in b and a). (f)

Superposition of all distal ellipses’ centers (blue circles) totally across all neurons aligned to the

neurons preferred orientation. The median distance (pink) and the 5 / 95% percentiles (black)

determined the distribution of the radial dislocations from soma of the bootstrapped distal ellipses.

(g) Pixels of the orientation map only within the fitted ellipses, the rest is faded in grey. The ellipses

SI value is shown in white numbers (see Fig. 2 for details). (h) Pixels of the orientation map only

within the area of 6 bootstrapped ellipses out of the 1,000 in b. The rest of the map is faded in grey.

The dendrite was color-coded by its underlying orientation map response values. For each

individual bootstrapped ellipse its SI value was calculated (white numbers). (i) The ellipses of g are

displayed at their correct circular location and as the radial distance their SI was taken. (j) The SI

value was calculated for each bootstrapped ellipse and plotted in a radial manner originating at the

soma. Instead of showing every bootstrapped ellipse's SI value, only the median (bold green), the

5% and the 95% percentile (light green) were calculated and displayed as circular plots (bin width

of 10 degrees). The six bootstrap examples of h are shown as black dots. (k) The three actual distal

ellipses from i are shown as black dots superimposed on the bootstrapped median (bold green) and

percentiles (light green). If the actual ellipse had an SI value outside the statistically significant

boundaries of the 5 and 95% percentiles they were termed as statistically significant (white cross

through a black dot). One out of three actual clusters was statistically significant, highlighting that

the actual ellipse was significantly outside the expected distribution of SI values in their particular

sectors, even though many of the bootstrapped ellipses were actually located on top of the actual

ellipses (see e, all three black dots are near the median). The other two ellipses were very close to

the significant boundary. The percentiles for the significant test were determined based on all the

bootstrapped ellipses within one sector (16,722/(36 sectors of 10 degree width)=464.5). (l)

Superposition of all distal ellipses’ centers (blue circles) totally across all neurons individually

aligned to the neurons preferred orientation (unlike in Figure 8e where the neurons were aligned to

the vertical meridian). Each dot has two coordinates: a circular and a radial one. The circular

coordinates maintained the circular location in respect to the neuron’s corresponding preferred

orientation. The radial coordinates represent each clusters unique SI value as a radial distance from

the center (black cross). A blue dot close to the grey circle (=1) signifies a high SI value. Each

ellipse that was determined as statistically significant is marked with a purple cross (12 out of 51).

To display all bootstrapped distal ellipses and their corresponding SI value totally across all 25

neurons, they were all superimposed and then the median (green bold) and the 5 / 95% percentiles

(light green) generated and displayed. Obviously, the significant-test was on each individual

neuron’s percentiles performed and not on the here shown medians across all neurons. Note that the

blue dots do not align along the preferred orientation, nor do the medians or the 5% and the 95%

percentiles. Thus, distal ellipses can be encountered at all angles having high or low SI values. This

holds on for the actual distal ellipses as well as for the bootstrapped distal ellipses.

K. Alignment of the 3D reconstructed brain tissue and in-vivo brain images.

Supplementary Figure 11 Alignment of the 3D reconstructed brain tissue and in-vivo brain

images. (a) Side view of the 3D reconstructed brain surface (green contour lines), the reference

penetration tracks (blue) and their entry points into the brain tissue (red crosses). The penetrations

were done vertically in reference to the stereotaxic coordinate (blue arrow). The camera was placed

orthogonally (black arrow) to the brain region to obtain an evenly focused blood vessel-pattern as in

b. (b) 3D contour lines, reference penetrations and their entry points. Next to it is the blood vessel-

pattern and the locations of the reference penetrations (yellow circles) marked during the in-vivo

imaging before the brain was processed. (c) The 3D reconstructions were overlaid with the linearly

transformed in-vivo image. Scale bar = 2mm.

L. Key physiological parameters for all 33 neurons

ID neuron name Pref.

Orient.

(deg)

Range

(+/-)

(deg)

Direction

(deg)

Distance

between

the soma to

the next

pinwheel

(um)

Orientation

of the angle

map at the

location of

the soma

(deg)

Orientation of

the angle map at

the location of

the center of the

local cluster

(deg)

1 Cat_0907_RH_axon_02.xml NaN NaN NaN 220 164 155

2 Cat_0408_LH_axon_02.xml 13 21 283 268 12 17

3 Cat_1007_RH_axon_02.xml 95 14 185 217 113 121

4 Cat_0907_RH_axon_01.xml 160 20 NaN 256 166 166

5 Cat_2806_RH_axon_07.xml 87 16 NaN 371 173 172

6 Cat_2606_LH_axon_05.xml NaN NaN NaN 283 1 9

7 Cat_0308_RH_axon_03.xml 54 13 NaN 361 54 54

8 Cat_2806_RH_axon_03.xml NaN NaN NaN 161 48 38

9 Cat_1207_LH_axon_01.xml 166 24 256 208 141 138

10 Cat_2806_RH_axon_06.xml 138 21 228 27 160 161

11 Cat_1007_RH_axon_01.xml 150 9 240 336 133 128

12 Cat_0608_RH_axon_02.xml 63A 47 153 454 21 22

13 Cat_0408_RH_axon_01.xml 31 NaN 301 782 11 8

14 Cat_0608_RH_axon_03.xml 63A 47 153 406 22 28

15 Cat_2806_RH_axon_05.xml 114 6 204 28 155 112

16 Cat_2806_RH_axon_04.xml NaN NaN NaN 202 174 174

17 Cat_0608_RH_axon_01.xml 63A 47 153 434 19 28

18 Cat_2806_RH_axon_01.xml NaN NaN NaN 141 49 33

19 Cat_0408_LH_axon_01.xml 17 15 287 387 16 19

20 Cat_0608_RH_axon_06.xml 144 20 234 688 173 178

21 Cat_1207_RH_axon_03.xml 72 11 342 183 54 34

22 Cat_2606_LH_axon_03.xml NaN NaN NaN 181 151 160

23 Cat_0308_LH_axon_01.xml 143 8 233 870 15 177

24 Cat_0707_RH_axon_01.xml 138 17 228 390 145 143

25 Cat_0707_RH_axon_02.xml 60 NaN NaN 340 74 63

26 Cat_0507_LH_axon_01.xml 150 38 60 190 2 179

27 Cat_0608_RH_axon_05.xml NaN NaN NaN 397 5 38

28 Cat_0807_RH_axon_02.xml 174B 40 264 339 14 4

29 Cat_0807_RH_axon_01.xml 174B 40 264 332 14 12

30 Cat_0108_RH_axon_01.xml NaN NaN NaN 44 141 148

31 Cat_0807_RH_axon_03.xml 120 30 30 194 63 106

32 Cat_2506_RH_axon_01.xml 36 NaN NaN 121 62 4

33 Cat_0507_LH_axon_02.xml 158 32 68 173 163 164

Supplementary table 1: Key physiological parameters for all 33 neurons. The neuron ID is

given together with the name of the neuron, its key physiological parameters, the distance between

the soma to the next pinwheel (um), the orientation of the angle map at the location of the soma and

the orientation of the angle map at the location of the center of the local cluster. For some neurons

we were not able to acquire all physiological parameters (NaN). The neurons marked with the letter

A and B compose a triple and a pair respectively, which made the allocation of the physiology to

one neuron not possible. At position A, the pipette tip got damaged after filling the cell and resulted

in staining of more than one cell. At position B, while penetrating the target cell, the applied current

pulse caused damage to a second cell and thus two cells got filled simultaneously.

M. Functional specificity of long-range horizontal connections

Publication Species Area Functional modality Preference (%)

Malach et al. (1993) Macaque monkey V1 Ocular dominance 65

Malach et al. (1993) Macaque monkey V1 Orientation 66

Malach et al. (1994) Squirrel monkey V2 Orientation 50.3

Yoshioka et al. (1996) Macaque monkey V1 Cytochrome Oxidase - blob 68

Yoshioka et al. (1996) Macaque monkey V1 Cytochrome Oxidase -interblob 73

Yoshioka et al. (1996) Macaque monkey V1 Ocular dominance 63

Kisvarday et al. (1997) Cat A17 Orientation 53

Bosking et al. (1997) Tree shrew V1 Orientation 57.6

Schmidt et al. (1997a) Cat A17 Orientation 58

Schmidt et al. (1997b) Cat A18 Ocular dominance 56

Supplementary table 2: The functional specificity of long-range horizontal connections

matches on average 61% the functional specificity of the origin of the projection. These

investigations used exclusively bulk-injections, hence labeling dozens to hundreds of neurons in an

antero- and retrograde fashion and labeling a mixture of both excitatory and inhibitory neurons.

Supplementary Methods: Description of the NEREDA framework

Introduction

Nereda is an open source framework to analyze neuronal reconstruction data. The software is a

Java/Matlab hybrid that uses the speed of Java and the flexibility of Matlab code. The architecture

makes it accessible from both sides, i.e. from within Java and from within Matlab script code, even

though the Java approach with its strong IDEs, e.g. Eclipse, is the recommended way to use it.

Jobs can be started by using NeredaCLI (Nereda does not include a rich GUI client). The user has to

create project specific packages and analysis classes. The target group are scientists with at least basic

knowledge of Java, who want to use a flexible, robust and maintainable architecture to analyse and

visualize their data.

Matlab analysis code can be wrapped into Java classes to be used in Nereda. Additional data, e.g. cell

types and physiology, may be added and used in the analysis as well. The core classes provide means

to save analysis results as Matlab data files, and to visualize data in Matlab figures. They can be used

in publications or for further analysis steps.

You may wonder why Nereda has to be compiled for each platform separately, although it's based on

Java technology. This is due to the Matlab Compiler Runtime (MCR), where Nereda's and your m-

scripts are executed. MCR unfortunately is NOT platform independent. Nereda's m-scripts and Java

source code however are. You should be able to compile it on your platform without any changes.

The simplest way to use Nereda, is to download the VirtualBox appliance with preconfigured Eclipse

IDE and program project specific source codes for desired analysis. Enough RAM on your host

system, at least 6GB recommended.

Start VirtualBox, and select Import Appliance... from the File menu, and select the ovf file you just

downloaded. Adjust the import settings (RAM...) in the intital dialog of VirtualBox, and import the

image. The import can take some time. Start Eclipse from the Desktop.

The lateral connections of superficial layer pyramidal cells communicate heterogeneously between functional domains of cat primary

visual cortex. / Supplementary Material: Description of the NEREDA framework

2 | P a g e

Philosophy of the framework

The framework was designed to work in a very dynamic environment with changing and sometimes

conflicting requirements, i.e. quantitative brain research. For not losing the robustness and

maintainability of the software package after a short time, the framework is designed along specialized

guidelines. First the data acquisition in 3D reconstruction modules and the data analysis and

visualization in Nereda are completely separated. Nereda never changes the original data or structures

gathered in the reconstruction software. This allows collaboration on stable data sets, and a

revalidation of the original data at any point in the analysis process (Figure A.1). Second Nereda

keeps a rigid separation of data on one side and the data processing logic on the other side. All the

processing logic is encapsulated in visitor classes which implement a simple interface and exist

independent of the hierarchical data structure. The framework can easily be extended in a robust

manner by adding additional visitors without compromising existing code or having to take care about

the underlying data pool. Third, the consequent interface based programming in the whole framework

provides an easy and well-defined mechanism to extend the packages, either on the analysis or more

fundamental on the data object representations, which opens the framework for other data pools beside

of Neurolucida™. Fourth, Nereda can be accessed in a very flexible platform independent way from

Windows-, Linux- or MacOS environments, from within both Java- and Matlab programming

environments. By using the Java programming language the framework is not only platform

independent and fully object oriented, but it also outperforms the speed of pure Matlab

implementations by orders of magnitude.

Figure A.1: Nereda workflow: Several researchers or groups of researchers develop their own ideas how to analyze chunks

of reconstruction data (data provided as .XML). Each group implements their analysis as series of new Nereda plugins or uses

the plugins of other groups or built-in ones. Several of these components can be merged to super-plugins. The framework

guarantees the interoperability of the components.

The mentioned implementation principles allow keeping the robustness of the framework even if the

requirements change rapidly or when several programmers or scientists extend the packages by their

own components. The result is a flexible and compact software framework to analyze and visualize

neuronal reconstruction data, which keeps its robustness and maintainability over time.

The lateral connections of superficial layer pyramidal cells communicate heterogeneously between functional domains of cat primary

visual cortex. / Supplementary Material: Description of the NEREDA framework

3 | P a g e

Architecture

Figure A.2: The Nereda architecture: Nereda resides in the middle between neural reconstruction packages, i.e.

Neurolucida™, the data processing language Matlab and 3D rendering software packages like Blender. Nereda is a software

framework written in Java that encapsulates the complexity of data structures and internal processing logics. The framework

provides simple interfaces to plug-in custom analysis code. Several namespaces contain built-in components for data

collection, statistics, and visualization. Interfaces to Matlab (Java-based interfaces) and render software packages (STL,

Surface Triangulation Language) provide full flexibility for future requirements.

Nereda positions itself in the middle between the data analysis environment Matlab and 3D

reconstruction software packages, e.g. Neurolucida and 3D rendering software solutions (Figure A.2).

The framework imports neuronal 3D reconstructions via XML data structures to build up a Java based

object hierarchy. Each instance in the hierarchic tree represents a member of object-oriented class

architecture that implements well defined interfaces (ini.nl-namespace, ini.nl.inf-namespace). Any of

the hierarchy elements, e.g. cell soma, axonal/dendritic segment and varicosity, deserves as an entry

point for worker classes (visitors) that fulfill various tasks, e.g. data collection, statistical analysis and

plotting (ini.nl.visitors-namespace). The object tree itself guarantees that the worker instance starting

from the entry point visits and executes its code for all of the tree sub-elements. This leads to an

optimal separation between code logics and tree internal data organization, i.e. optimal robustness with

the most flexibility. Predefined libraries for data analysis and visualization provide easy access to

statistics and ad-hoc plots (ini.nl.analysis.data- and ini.nl.analysis.visualization-namespaces). In

addition the interface based approach allows easy extension of the framework parts, while maintaining

its robustness. The analysis components of Nereda have complete access to Matlab data processing

procedures. In turn most of the Nereda components are accessible from both Java and Matlab to

provide the best freedom of choice for Nereda programmers. For high quality visualizations Nereda

provides functions to export fractions or complete neurons and brain surfaces into the Surface

Triangulation Language (STL) used in stereo lithographic CAD- and rendering packages like

AutoCAD™ or Blender. In addition Nereda allows the saving of complete object trees into the Matlab

proprietary .mat-format for easy exchange between users or computers.

The lateral connections of superficial layer pyramidal cells communicate heterogeneously between functional domains of cat primary

visual cortex. / Supplementary Material: Description of the NEREDA framework

4 | P a g e

Brain domain model

The core of the framework is represented by the ini.nl-namespace classes. Anatomical real-world

entities, e.g. Neuron, Axon, Dendrite etc., are modeled by classes from this namespace. Nereda

represents the reconstructed data as a hierarchical object tree rooted in the Brain entity (Figure A.3).

A brain contains a series of section outlines which define its spatial borders. In addition the brain

object can hold neurons and a number of reference penetrations that deserve as landmarks. To relate

the anatomical data to optical imaging a collection of optical maps can be attached to the brain. Each

component in the hierarchy that has a specific location or spatial extent is defined as a series of points

in x/y/z-space with an optional diameter d.

Figure A.3: Simplified Nereda brain domain model: The reconstructed brain structures, i.e. brain surface and neuronal

compartments, are modeled with a series of related objects. To keep the application of the framework flexible all relations

between objects are modeled as aggregations, rather than associations (each component can exist isolated from its parent

object). Four main components, i.e. Neuron, OpticalMap and ReferencePenetration all rooted in the Brain object build the

backbone of the hierarchy. Together with their subcomponents they form a complete, sequentially accessible object tree,

which represents the reconstructed Neurolucida™ data.

Traversing the object tree

Nereda uses data collected in Neurolucida™ to construct a hierarchical object structure. The building

blocks of the object tree are located in the ini.nl-namespace. Once the tree structure is initialized it can

be traversed either sequentially or via random-access (Figure A.4). Sequential access is provided by

typed collections. Since each tree element, beside of the root has exactly one parent object, each tree

element and associated data is accessible via a unique path. However, to keep the framework as

flexible as possible the relationships between the classes are all modeled as aggregation, rather than

compositions, i.e. each element can exist without a parent object. Random access is provided at each

tree node via a search-for-element-id mechanism provided via the getElementById(String id)-method.

More sophisticated filters can easily be added via custom visitor classes.

A third method to traverse the tree, i.e. visitor-based traversing is described in the next section.

Visitors also sequentially access the tree. The explicit logics how to perform the walk in the complex

heterogeneous tree structure is however hidden from the programmer, and replaced by a simple but

powerful interface.

Neuron

Axon

AppendixSegment

Dendrite

SectionOutline ReferencePenetration OpticalMap

Point

Soma

The lateral connections of superficial layer pyramidal cells communicate heterogeneously between functional domains of cat primary

visual cortex. / Supplementary Material: Description of the NEREDA framework

5 | P a g e

Figure A.4: Schematic, simplified tree structure that represents a brain with one neuron: The figure shows a simplified

Nereda tree structure to illustrate access modes in Nereda. Boxes represent elements/nodes of the tree, large circles boutons

on axonal tree segments, and small boutons interfaces exposed by the elements. Nereda provides two access modes, i.e.

sequential and random. In sequential mode one walks element-by-element through the tree to access the target element. In

random access internal Nereda search functionality allows direct access to the target from any parent element in the tree.

Collecting/processing data

The most easy and flexible way to collect or process data in Nereda data structures is to use visitors.

The visitor pattern

Nereda encapsulates internal data structure logics and hides it from the user. The programmer does not

have to know the exact structure of the internal object tree, or how to traverse this arbor to collect or

process data. In the visitor pattern one distinguishes between the visitor (the component that walks

through the tree) and the visited object. In Nereda, any tree element can be a visited object, i.e. each

element in the tree has to implement the VisitedInf-interface which allows injecting a visitor. The

visitor on the other hand implements the VisitorInf-interface, which defines two methods, i.e. execVisit

and execAfterVisit, that are called from the visited element when the visitor arrives at the instance at

his way down through the tree and on his way back, when it arrives a second time at the same element.

The visitor component automatically visits the sub-elements of the entry point to execute its code

(Figure A.5). This strategy which hides internal tree logics from the programmer is optimized to deal

with varying heterogeneous hierarchical structures, e.g. neurons in brains. The visit-procedure comes

in two flavors, i.e. a shallow one where only the direct sub-elements of the entry point are considered

(visit), and a deep visit variant where all the elements of the sub-tree rooted at the entry point are

traversed (visitDeep). The interface-based separation of internal data structure and data processing

code makes the framework robust and flexible at the same time.

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

Bouton

Axon

Soma

Dendrite

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

Neuron

Brain

id=”target”

The lateral connections of superficial layer pyramidal cells communicate heterogeneously between functional domains of cat primary

visual cortex. / Supplementary Material: Description of the NEREDA framework

6 | P a g e

Figure A.5: Visitor pattern in a deep variant: A customized data processing component (Visitor) is injected into a

heterogeneous hierarchical tree. The component automatically travels through the sub-tree and visits each of its elements to

execute its customized code. Any element in the tree can deserve as an entry point for the visitor.

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

AppendixSegment

Bouton

VisitedInf

Visitor

VisitorInf
ini.nl

The lateral connections of superficial layer pyramidal cells communicate heterogeneously between functional domains of cat primary

visual cortex. / Supplementary Material: Description of the NEREDA framework

7 | P a g e

Nereda Concepts

This chapter gives an overview on a number of important aspects of Nereda, and illuminates how the

framework was built. There are often much more elegant solutions to a problem if one keeps in mind

the object oriented architecture.

Projects

Figure A.6: Nereda project interfaces and their realizations

Depending on the context a series of project types are provided. In all cases the project holds a list of

brains, whereas each brain represents the root of an object tree, containing neurons, analysis objects,

view makers, etc. The brains are created by brain factories based on reconstruction content, optical

imaging maps and additional data resources.

Amongst the object types the simplest one, intended to be used for ad-hoc projects, is SimpleProject.

This type has a minimal set of configuration overhead, and all project components, e.g. brain, neuron,

analysis, have to be instantiated manually, e.g. by virtue of a brain factory.

The next type BrainFeatureProject in contrast to the simple implementation provides means to use

Nereda brain features. Brain features provide a consistent mechanism to extend reconstructed content,

with additional data, e.g. in which hemisphere we are, layer surfaces, layer membership of items, cell

type information and so on. The brain features have to created and attached to the project in your code.

A JobProject is the type of project used by the NeredaJobRunner. It has configuration objects attached

to itself, which register external data handlers (EDH) and cache data handlers (CDH). In addition this

project type has a list of analysis managers and brain view maker managers, which deal with analysis

execution and saving the results, and with creating brain visualizations that go beyond the standard

file:///K:/Paper_01/NeredaDump/Nereda/delila/mediawiki-1.16.0/index.php/File_NeredaProjectTypes.html

The lateral connections of superficial layer pyramidal cells communicate heterogeneously between functional domains of cat primary

visual cortex. / Supplementary Material: Description of the NEREDA framework

8 | P a g e

plotting routines. All components are configurable in XML-based settings files. By virtue of

NeredaJobRunner a job can be run as a configurable standalone application.

Brains

Figure A.7: Simplified view on Nereda brain interfaces

A brain object is the root of an object tree that was created based on reconstruction data (most often by

virtue of a brain factory). A brain class at least implements BrainInf, and contains lists of contours that

provide information about brain compartment boundaries, i.e. brain surface and layers, plus reference

penetrations or blood vessels that may exist. In addition each brain can contain neurons (NeuronInf),

each of which contains a list of axons and dendrites. Lists where chosen to be able to hold an

incomplete representation of an axon or dendrite, given as independent sub-trees. Each of the axonal-

or dendritic segments contains a list of sub-branches (zero if it represents an end-segment, two if we

are in the middle of a tree). An axonal segment contains a list of varicosities, i.e. potential synapses,

defined by their coordinates and thickness. Technically the segments are given as line series defined

by a set of ordered points with thickness information. Any object in the tree that is defined by a set of

points, whether a line series or not, implements GfxElementInf, which in turn is derived from

ObjectInf, i.e. the base interface of any object in the hierarchy. Each object in addition implements

VisitedInf and can therefore be target of a visitor that traverses the tree. In addition each object can act

as an analysis target.

Beside of the base brain interface BrainInf, BrainExtInf exists which declares accessors for optical

imaging maps (single condition orientation maps) and blood pattern images. The interfaces were

file:///K:/Paper_01/NeredaDump/Nereda/delila/mediawiki-1.16.0/index.php/File_NeredaBrain.html

The lateral connections of superficial layer pyramidal cells communicate heterogeneously between functional domains of cat primary

visual cortex. / Supplementary Material: Description of the NEREDA framework

9 | P a g e

separated since the most common input to Nereda, i.e. Neurolucida reconstruction data, does not

include non-anatomical data. The images/maps provide functions to register neuronal reconstructions

and image data in 3-D space.

The picture shows only a simplified view of the hierarchy. To get a detailed view of all interfaces and

classes the reader should refer to the javadoc of Nereda or to the source code.

Brain Factories

Nereda constructs brains by virtue of input data format specific brain factories that implement

BrainFactoryInf. Each project has a brain factory attached. In JobProjects the factory is set in the

project configuration file. The resources (input files with reconstructions, maps, ...) are given as file

locations. The factory decides based on the file type, the file properties and the content how to load the

resources. The supported resources depend on the factory implementation. Currently the Neurolucida

factory covers the types: Neurons, contours (brain surface, layers, reference penetrations, ...), single

condition maps, map masks and blood pattern images. Each of the types need to be available as a

separate file.

Brain Component Factories

A brain component factory implements BrainComponentsFactoryInf and provides methods to

construct all required brain components, e.g. axonal segments, dendritic segments, boutons, etc. The

component factory is input format independent, and is normally used by the format dependent brain

factory to create object stubs which are filled up with data. The separation between brain- and brain

component factory makes it possible to change the properties of a given object class for all input types

with just a single factory class. Consider the following example: You want that all your neurons show

their axonal/dendritic end segments in red, irrespective of the source of the reconstruction data

(Neurolucida). To do this you just have to inherit from the given BrainComponentsFactory class and

overwrite the createAppendixSegment method. Under assumption that the brain factory implementers

followed the rule to create all brain components by virtue of the brain components factory, you are

done now, all end segments in all neurons will be shown on red, irrespective in which application they

were reconstructed. You use the new components factory by using the

setBrainComponentsFactory(BrainComponentsFactoryInf brainComponentsFactory) method of the

brain factory.

The code for the new BrainComponentsFactoryForRedEndSegments would look something like that:

private class BrainComponentsFactoryForRedEndSegmentsextends BrainComponentsFactory

implements BrainComponentsFactoryInf {

 public BrainComponentsFactoryForRedEndSegments() {

 }

 @Override

 public AppendixSegmentInf createAppendixSegment(String id, String name) {

 AppendixSegmentInf as = super.createAppendixSegment(id, name);

 if(as.getSegments().size==0){

 as.getPlotProperties().put("Color", new double[]{1.0, 0.0, 0.0});

 }

 return as;

 }

}

Brain Features

Brain features represent a single quality of information that in the sum make up a reconstructed brain.

The most often used brain feature is BrainFeatureReconstructionContent, which by virtue of a brain

factory and a list of resources creates and returns the brain object tree. The information in the tree can

be extended by additional features, e.g. cell type information, preferred orientation, cell body location,

The lateral connections of superficial layer pyramidal cells communicate heterogeneously between functional domains of cat primary

visual cortex. / Supplementary Material: Description of the NEREDA framework

10 | P a g e

pinwheel locations on angle maps, etc. Brain features can depend on other features.

BrainFeatureCellType for example depends on BrainFeatureReconstructionContent, since there is no

target for a cell type if there are no cells in the brain. Nereda resolves these dependencies

automatically in a recursive way and constructs an ordered feature list, which is processed to create the

brain. However, for this to work a user of the framework has to register a complete list of features on

the project (see BranFeatureProject). It is recommended to have a central method, that returns a

complete list of all available features. In JobProjects the list can be configured in the project

configuration file.

Beside of dependencies on other brain features, a feature can also depend on external data, e.g. a file

that carries a lookup table that assigns a cell type to each reconstructed neuron. External data is

handled by external data handlers (EDH).

External Data Handlers (EDH)

External handlers allow for access of external information to make it available to the Nereda

framework. Currently these are often only comma separated value (csv) files which contain additional

information collected during an experiment that is important for the analysis of the reconstructed

neurons. An example for a csv file, which assigns a presentation angle to a single condition map is

given below.

Neuron physiology lookup table for the Nereda framework.

Use the following numbers for each neuron.

<Resource File Name> is the name of the brain xml file

<singleMaps>, the filename of the single map (has to correspond to entries in

<Resource File Name>)

Cat_0608_RH

src/resources/neurolucida/cat_0608/SingleMap_1.bmp, 0.0

src/resources/neurolucida/cat_0608/SingleMap_2.bmp, 22.5

src/resources/neurolucida/cat_0608/SingleMap_3.bmp, 45.0

src/resources/neurolucida/cat_0608/SingleMap_4.bmp, 67.5

src/resources/neurolucida/cat_0608/SingleMap_5.bmp, 90.0

src/resources/neurolucida/cat_0608/SingleMap_6.bmp, 112.5

src/resources/neurolucida/cat_0608/SingleMap_7.bmp, 135.0

src/resources/neurolucida/cat_0608/SingleMap_8.bmp, 157.5

The data source and the type of data that is retrieved depends completely on the external data handler.

Some handlers are also capable to create external data. Whether or not a given handler supports data

creation is accessible over the canCreateData() flag. External data handlers can depend on brain

features, and analog to the brain features the handlers have to be registered on a project. Nereda

automatically includes the handler features dependencies in the calculation of an ordered feature set.

Cache Data Handlers

Produce cache data which can be deployed together with the Nereda jar file to speed up execution time

and reduce memory requirements.

Project Configuration File

Configurable Nereda projects, e.g. JobProjects are associated to a project configuration file that sets

the environment variables. A simple project configuration file could look like this:

<?xml version="1.0" encoding="utf-8"?>

<nereda>

 <project>

 <externalDataHandlers>

 <description>Global external data handlers</description>

 </externalDataHandlers>

The lateral connections of superficial layer pyramidal cells communicate heterogeneously between functional domains of cat primary

visual cortex. / Supplementary Material: Description of the NEREDA framework

11 | P a g e

 <brainFeatures>

 <description>Brain feature registry with all features used in this

project</description>

 <feature name="BrainFeatureReconstructionContent"

className="ini.nereda.feature.BrainFeatureReconstructionContent"></feature>

 </brainFeatures>

 <params>

 <param name="externalDataPath" description="Root folder of the external data (csv-

files, ...)." value="./persistence" />

 <param name="cacheDataPath" description="Root folder of the cache data (zip-files,

...)." value="./cache"></param>

 <param name="tempDataPath" description="Root folder of the temp data (tmp-file,

...)." value="./tmp" />

 <param name="brainFactoryClassName" description="Brain factory to use"

value="ini.nereda.factory.BrainFactoryNeurolucida" />

 <param name="brainComponentsFactoryClassName" description="Brain components

factory to use" value="ini.nereda.factory.BrainComponentsFactory" />

 </params>

 <cacheDataHandlers>

 <description>Cache data handlers</description>

 </cacheDataHandlers>

 </project>

</nereda>

The project node has the sections externalDataHandlers, brainFeatures and cacheDataHandlers.

These sections represent registries for features and handlers that might be used by analysis classes or

other components. In this simple project we only use a single brain feature, the other sections are

empty. Beside of that we have to set the mandatory parameters in the param section. For a more

complex project file consider.

Job Configuration File

Beside of a project configuration a JobProject is also associated to a job configuration file, that

contains all necessary information to run a job. The exact content depends on the job you run. A

simple example could look the following:

<?xml version="1.0" encoding="utf-8"?>

<nereda>

 <jobs>

 <description>Nereda job configurations. </description>

 <job id="Tutorial3" name="Tutorial3" description="Tutorial3 description"

type="Analysis" outputUrl=".\output\result\analysis"

logUrl=".\output\log\example.example" logLevel="7" targetType="DataOrPathFile">

 <analysisManagers>

 <analysisManager name="AnalysisManagerSegmentCounter"

className="ini.nereda.tutorial.analysis.AnalysisManagerSegmentCounter">

 <subAnalyses>

 <subAnalysis name="AnalysisSegmentCounter" active="true"></subAnalysis>

 </subAnalyses>

 <targets>

 <target className="ini.nereda.NeuronInf" />

 </targets>

 <plotters defaultPlottersActive="true">

 </plotters>

 <custom>

 <params>

 </params>

 </custom>

 </analysisManager>

 </analysisManagers>

 <viewManagers>

 <viewManager name="BrainViewManagerDendrogram"

className="ini.nereda.viewManager.BrainViewManagerDendrogram">

 <targets>

 <target className="ini.nereda.NeuronInf" />

 </targets>

 <custom>

 </custom>

 </viewManager>

 </viewManagers>

The lateral connections of superficial layer pyramidal cells communicate heterogeneously between functional domains of cat primary

visual cortex. / Supplementary Material: Description of the NEREDA framework

12 | P a g e

 <externalDataCreation>

 </externalDataCreation>

 </job>

 </jobs>

</nereda>

The jobs section contains a job node for each Nereda job. Within the job you have the sections:

analysisManagers, viewManagers and externalDataCreation. In the analysisManagers you have an

analysis manager node, which informs Nereda what analysis manager to load, to what target(s) it

should be attached to, and what plotters should be run after the analysis is finished. Beside of that

analysis manager specific parameters can be set in the params section. The same principle applies to

the viewManagers saection which informs the Nereda job project what view should be generated, on

what targets.

This specific job configuration would create an AnalysisManagerSegmentCounter instance, which

attaches an AnalysisSegmentCounter object to each neuron, starts it, and saves the results to a Matlab

mat-file. Subsequently the default plotters of the analysis objectare run, which visualize the data. In

addition this job creates a BrainViewManagerDendrogram object, which creates a

BrainViewDendrogram object, attaches it to each neuron, and shows the axonal and dendritic trees as

a dendrogram. Again the results are saved automatically.

The externalDataCreation section is empty in this example. It could contain configuration nodes for

external data handlers that are capable to create external data, e.g. pinwheel coordinates on angle

maps.The config node for this would look the following: <handler name=

"ExternalDataHandlerPinwheelCoords" className = "ini.nereda.project. externalData.

ExternalDataHandlerPinwheelCoords "></handler> . If Nereda starts this job, it would before executing

all other analysis or viewers, start the external data creation, which lets you select the pinwheels on the

angle map. Make sure that the project file contains all required brain features and external data

handlers in its registries, otherwise exceptions will be thrown.

Visitors

The visitor pattern is the fundamental technique how Nereda collects and processes data in the object

tree. The pattern separates function implementation and function target into distinct classes, i.e. the

visitor and the visited object (target). In this way additional functionality can be added to the

framework, without actually having to change the interface of the target class, which is a particular

advantage in situations where the requirements are highly dynamic, e.g. in research.

The visitor which implements VisitorInf can be seen as a little mobile code package that traverses

automatically a given subtree and stops when it has returned to its intitial position. The framework

guarantees that each tree object withing the scope is visited twice. The first time when the visitor

travels down towards the leafs and the second time when it is returning, back to its initial position.

Each Nereda object implements the VisitedInf interface, and is therefore a potential target for a visitor.

VisitedInf has three methods:

 void visit(VisitorInf visitor) throws Exception;

 void visitDeep(VisitorInf visitor) throws Exception;

 void visitDeepShallow(VisitorInf visitor) throws Exception;

They define the scope of the visitor. visit will instruct the visitor to only visit the initial target object,

while ignoring the deeper levels of the subtree. visitDeep tells the visitor to visit each object of the

subtree that is rooted in the intial object (the one the visitDeep method is called on). visitDeepShallow

is a convenience method for an intermediate behavior, where the visitor visits the intial object and its

direct children.

The lateral connections of superficial layer pyramidal cells communicate heterogeneously between functional domains of cat primary

visual cortex. / Supplementary Material: Description of the NEREDA framework

13 | P a g e

The VisitorInf interface contains mainly only two methods, execVisit(ObjectInf visitedObj) and

execAfterVisit(ObjectInf visitedObj) which are executed when the visitor encounters the visited object

the first time (execVisit) and on its way home (execAfterVisit). The two methods allow for flexible

and elegant implementation of a large number of requirements.

A simple implementation for a visitor that collects the axonal segments length could look like this:

package ini.nereda.visitor;

import ini.nereda.AxonalSegment;

import ini.nereda.AxonalSegmentInf;

import ini.nereda.ObjectInf;

import java.util.Vector;

public class AxonalSegmentLengths extends AbstractVisitor {

 private Vector<Double> segmentlengths = new Vector<Double>();

 @Override

 public void execVisit(ObjectInf visitedObj) throws Exception{

 if(visitedObj instanceof AxonalSegment)

 {

 aquireinfo(visitedObj.getAsAxonalSegment());

 }

 }

 private void aquireinfo(AxonalSegmentInf seg){

 segmentlengths.add(seg.getLength());

 }

 @Override

 public Vector<Double> terminate() {

 return segmentlengths;

 }

 }

Analysis

An analysis class contains methods to perform data processing and saving the results as Matlab

(MAT) files. The class has to implement the interface AnalysisInf of the ini.nereda.data.analysis

package.

At runtime the analysis target is determined which is by default the object the analysis is attached to.

A target object can hold any number and any type of analysis objects , as long as they implement

AnalaysisInf. An analysis object in contrast only supports certain target object types, e.g. some do

only work if they are attached to a neuron. The analysis provides the valid target types by virtue of the

getValidTargets() method. If the target is not of a valid type, a runtime exception will be thrown.

Beside of that the analysis informs the environment about its prerequisites by the

getRequiredBrainFeatures() method, which returns a set of brain features that have to be loaded

before the analysis is executed (usually done automatically by the project machinery).

Depending on the target the same analysis may produce different results, since different subsets of the

whole object tree are treated. An analysis can provide default plotters that visualize the analysis output

(Matlab (FIG) figures). The list of plotters is extensible.

The Nereda core project does only provide a small subset of predefined analysis classes

(ini.nereda.data.analysis package). The user of the framework is expected to write his/her own

implementations based on their needs.

A trivial example that counts segments and computes the total length by virtue of an internal visitor

class could look like this:

package ini.nereda.tutorial.analysis;

import ini.nereda.NeuronInf;

import ini.nereda.ObjectInf;

import ini.nereda.VisitorInf;

import ini.nereda.data.analysis.AnalysisAbstract;

The lateral connections of superficial layer pyramidal cells communicate heterogeneously between functional domains of cat primary

visual cortex. / Supplementary Material: Description of the NEREDA framework

14 | P a g e

import ini.nereda.data.analysis.AnalysisInf;

import ini.nereda.visitor.AbstractVisitor;

import java.util.Hashtable;

import com.mathworks.toolbox.javabuilder.MWArray;

import com.mathworks.toolbox.javabuilder.MWStructArray;

public class AnalysisSegmentCounter extends AnalysisAbstract implements AnalysisInf {

 public AnalysisSegmentCounter() {

 }

 @Override

 protected void addDefaultPlotters() {

 }

 @Override

 @SuppressWarnings("unchecked")

 public Class<? extends ObjectInf>[] getValidTargets() {

 // The valid targets

 return new Class[] { NeuronInf.class };

 }

 public void setActiveSubAnalysis(String[] subsAsString) {

 // We only use a default sub-analysis (see execute())

 }

 @Override

 public MWArray execute() throws Exception {

 // The sub-analysis name. This name will appear in the final result

 // structure

 String subanalysisName = "NeredaTutorial1";

 // We create a visitor that does our work (count axonal-/dendritic

 // segments & calculate the total length(

 VisitorInf _segmentVisitor = new VisitorSegmentCounter();

 // The visitor performs a deep visit on the tree, rooted in _target

 _target.visitDeep(_segmentVisitor);

 // The number of appendices and their lengeht are saved in result.

 double[] result = _segmentVisitor.terminate();

 // A result structure is defined with the fields 'totalSegmentNr' and

 // 'totalSegmentLength' is created.

 Hashtable<String, Object> mwMap = new Hashtable<String, Object>();

 mwMap.put("totalSegmentNr", result[0]);

 mwMap.put("totalSegmentLength", result[1]);

 MWStructArray mwResultStruct = MWStructArray.fromMap(mwMap);

 // The structure is added to the analysis' result map

MWStructArray mwSubanalysisStruct = new MWStructArray(new int[] { 1, 1 },

new String[] { subanalysisName });

mwSubanalysisStruct.set(subanalysisName, new int[] { 1, 1 },

mwResultStruct);

 _result.put(_target, mwSubanalysisStruct);

 return mwResultStruct;

 }

 private class VisitorSegmentCounter extends AbstractVisitor implements VisitorInf {

 private int totalSegmentNr = 0;

 private double totalSegmentLength = 0;

 public VisitorSegmentCounter() {

 }

 @Override

 public void execVisit(ObjectInf visitedObj) throws Exception {

 super.execVisit(visitedObj);

// If it is an appendix object, increment the counter and update the

 // total lenght

 if (visitedObj.getAsAppendixSegment() != null) {

 totalSegmentNr++;

totalSegmentLength +=

visitedObj.getAsAppendixSegment().getLength();

 }

 }

 @Override

 public double[] terminate() {

 // Return the two numbers in an array

 return new double[] { totalSegmentNr, totalSegmentLength };

 }

 }

}

Brain Viewer

The lateral connections of superficial layer pyramidal cells communicate heterogeneously between functional domains of cat primary

visual cortex. / Supplementary Material: Description of the NEREDA framework

15 | P a g e

A brain viewer is the sister class of a analysis. They both follow the same principles. But in contrast to

an analysis a viewer is intended to produce visualizations of the brain or brain components. Hence

rather than performing analysis steps that end up with a MAT file, it will produce a list of figures. The

boundary between the two is not sharp however. An analysis with attached plotters can produce

partially the same output as a viewer.

Manager classes

Analysis and brain viewer classes are accompanied by manager classes that control analysis object

instantiation, setting the targets, execution of the analysis and the automatic saving of the results. The

manager classes are used in the context of Nereda jobs, where actions have to be performed

automatically, without user or programmer interaction. Which analysis or view manager is used in a

given job, is configured in the Job configuration file. At runtime the configured manager is created by

virtue of Java reflection. The manager subsequently creates the corresponding analysis object or

viewer and controls its behavior.

The naming conventions for class names are AnalysisManager<Analysis name> and

BrainViewManager<View name>.

A typical analysis manager for an analysis class with one input parameter could look like this:

package ini.nereda.data.analysis.manager.horizontalconnections;

import ini.nereda.data.analysis.horizontalconnections.AnalysisCBLVsLayer;

import ini.nereda.data.analysis.manager.AnalysisManagerAbstract;

import ini.nereda.exception.InvalidDataException;

import ini.nereda.project.ConfigXPathExpressions;

import ini.nereda.project.ConfigXmlHelper;

import java.io.File;

import java.io.InvalidClassException;

import javax.xml.xpath.XPathExpressionException;

import org.w3c.dom.Node;

public class AnalysisManagerCBLVsLayer extends AnalysisManagerAbstract {

 public AnalysisManagerCBLVsLayer(File outPath, Node analysisManagerNode) throws

InvalidClassException,

 XPathExpressionException, ClassNotFoundException,

InvalidDataException {

 super(analysisManagerNode, outPath);

 String layerIdToNormalizeCBLToKey =

ConfigXPathExpressions.PARAM_LAYERID_TO_NORM_CBL_TO;

 String layerIdToNormalizeCBLTo;

 try {

 layerIdToNormalizeCBLTo =

ConfigXmlHelper.getParamValue(analysisManagerNode, layerIdToNormalizeCBLToKey);

 _analysis = new AnalysisCBLVsLayer(layerIdToNormalizeCBLTo);

 init();

 } catch (XPathExpressionException e) {

 throw e;

 }

 }

}

