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Supplementary Material 

A. Example of a typical superficial layer pyramidal neuron. 

 

 
Supplementary Figure 1 Example of a typical superficial layer pyramidal neuron. (a-c) shows the 

side view and (d-f) the top view of the reconstructed axonal tree, boutons and dendrite. (a) The 

brain surface and the layer boundaries are depicted with black curves, the ID's of the 6 different 

lamina are indicated with the abbreviations L1 - L6. The axonal tree (grey) forms extensive lateral 

connections in the supragranular layers and minor bifurcations within layer 5. The dendritic tree 

(black) bifurcates locally and forms one apical dendrite towards layer 1 to form a tuft (better visible 

in the inset containing the single dendrite). (b) Axonal boutons are denoted by enlarged black dots 

forming high and low density regions within layer 2 and 3 and layer 5. These regions of high 

bouton densities are captured by the use of a mean-shift cluster-algorithm (applied on the 3D data, 

see Methods). (c) This mean-shift cluster-algorithm extracted five discriminated regions of high 

bouton densities (termed as clusters). The boutons itself attributed to the five different clusters are 



indicated with different colors (black, red, green, blue and yellow in order of their corresponding 

increasing cluster rank). Boutons outside clusters are marked in grey. (d) The top view of the axonal 

tree (grey) and the dendritic tree (black) are displayed together with the anterior-posterior axis, the 

vertical meridian and the neuron's preferred orientation. (e) The boutons (black) are densely packed 

in the neurons vicinity and are clotted at distant regions roughly 1 mm away from the soma. These 

high-density regions, nicely captured by the cluster-algorithm (f), are interleaved by sparse regions. 

Note that very few individual boutons and no superficial bouton clusters (black, red, blue, yellow) 

elongate along the neurons preferred orientation. (Neuron ID 11). 

 

 

B. Six example superficial layer pyramidal neurons 

 
Supplementary Figure 2 Six examples of superficial layer pyramidal neurons in their top and 

coronal view. (a-f) Single neurons are displayed in top view (left) and coronal view (right, with 

layers indicated). Axons, non-clustered boutons and boutons of deep layer clusters are shown in 

grey. Clustered boutons are colored according to their rank (see color code). Scale bar=1mm. 

(Neuron IDs: a (17), b (7), c (13), d (26), e (20), f (24)). 

 

 

  



C. Topview of the first 16 out of 33 superficial layer pyramidal neurons used in this study. 

 
Supplementary Figure 3 Topview of the superficial layer pyramidal neurons used in this study. 

Shown are the first 16 neurons out of the 33 (for conventions see Supplementary Figure 1). 



Neurons are sorted by normalized depth of soma. Each neuron was individually rotated that the 

space between was used best. Note that the neurons are shown in their entirety (incl. deep layer 

processes) whereas the actual study investigates only those parts in the superficial layers. Scale bar 

= 1mm. For reference and comparison are the graphs from Figure 3 and Figure 5g shown at the 

bottom. Note that the number of dots at the bottom may be less than the actual clusters per neuron 

because for the analyses only superficial layer clusters within the mask were considered. The 

neuron IDs and their file name are as following: (1) Cat_0907_RH_axon_02.xml, (2) 

Cat_0408_LH_axon_02.xml, (3) Cat_1007_RH_axon_02.xml, (4) Cat_0907_RH_axon_01.xml, (5) 

Cat_2806_RH_axon_07.xml, (6) Cat_2606_LH_axon_05.xml, (7) Cat_0308_RH_axon_03.xml, (8) 

Cat_2806_RH_axon_03.xml, (9) Cat_1207_LH_axon_01.xml, (10) Cat_2806_RH_axon_06.xml, 

(11) Cat_1007_RH_axon_01.xml, (12) Cat_0608_RH_axon_02.xml, (13) 

Cat_0408_RH_axon_01.xml, (14) Cat_0608_RH_axon_03.xml, (15) Cat_2806_RH_axon_05.xml, 

(16) Cat_2806_RH_axon_04.xml. 

  



D. Topview of the last 17 out of 33 superficial layer pyramidal neurons used in this study. 

 
Supplementary Figure 4 Topview of the superficial layer pyramidal neurons used in this study. 

Shown are the last 17 neurons out of the 33 (for conventions see Supplementary Figure 1). 



Neurons are sorted by normalized depth of soma. Each neuron was individually rotated that the 

space between was used best. Note that the neurons are shown in their entirety (incl. deep layer 

processes) whereas the actual study investigates only those parts in the superficial layers. Scale bar 

= 1mm. For reference and comparison are the graphs from Figure 3 and Figure 5g shown at the 

bottom. Note that the number of dots at the bottom may be less than the actual clusters per neuron 

because for the analyses only superficial layer clusters within the mask were considered. The 

neuron IDs and their file name are as following: (17) Cat_0608_RH_axon_01.xml, (18) 

Cat_2806_RH_axon_01.xml, (19) Cat_0408_LH_axon_01.xml, (20) Cat_0608_RH_axon_06.xml, 

(21) Cat_1207_RH_axon_03.xml, (22) Cat_2606_LH_axon_03.xml, (23) 

Cat_0308_LH_axon_01.xml, (24) Cat_0707_RH_axon_01.xml, (25) Cat_0707_RH_axon_02.xml, 

(26) Cat_0507_LH_axon_01.xml, (27) Cat_0608_RH_axon_05.xml, (28) 

Cat_0807_RH_axon_02.xml, (29) Cat_0807_RH_axon_01.xml, (30) Cat_0108_RH_axon_01.xml, 

(31) Cat_0807_RH_axon_03.xml, (32) Cat_2506_RH_axon_01.xml, (33) 

Cat_0507_LH_axon_02.xml. 

 

  



E. The neurons’ individual sum-vectors. 

 
 

Supplementary Figure 5 The neurons’ individual sum-vectors. Each neuron’s sum-vectors are 

plotted as explained for two neurons in Figure 2m, n. Vectors in red represent the dendritic tree, 

vectors in green the local cluster and the blue vectors each one individual distal cluster (for details 

see Fig. 2). The 33 plots, i.e. neurons, were sorted by their depth from surface (see bottom). Note 

that the vectors for the local cluster (green) and the dendrite (red) point mostly in the same 

direction, i.e. similar orientation preferences, unlike the distal clusters (blue). Additionally, a neuron 

can have a differently tuned dendrite, local or distal clusters (see length of vectors). The last three 

plots are superpositions across all neurons to show that all angles are represented. For reference and 

comparison the graphs from Figure 5f and g are shown again at the bottom. 

  



F. The first 16 out of 33 neurons and their orientation map 

 

 
 

Supplementary Figure 6 Individual neurons overlaid on their corresponding orientation map. 

Neurons are represented only by their soma (white triangle) and their ellipses fitted to superficial 

layer bouton clusters (white curves). The first 16 neurons out of 33 are displayed, sorted by their 

normalized depth from surface as in Figure 3. 

  



G. The last 17 out of 33 neurons and their orientation map 

 

 
Supplementary Figure 7 Individual neurons overlaid on their corresponding orientation map. 

Neurons are represented only by their soma (white triangle) and their ellipses fitted to superficial 

layer bouton clusters (white curves). The last 17 neurons out of 33 are displayed, sorted by their 

normalized depth from surface as in Figure 3. 

 



H. The neurons in their topview represented only by fitted ellipses to superficial layer bouton 

clusters. 

 
 

Supplementary Figure 8 The neurons in their topview represented only by fitted ellipses to 

superficial layer bouton clusters. All 33 neurons are sorted as in Figure 3 and individually rotated 

to align with the vertical meridian (gold arrow). The soma (black triangle), the ellipses color-coded 

according to the cluster’s rank (bottom right) and straight lines connecting each ellipse center with 



the soma (grey lines) are displayed for each neuron. If available, the preferred orientation is plotted 

at the location of the soma matching the neuron’s preferred orientation (bold dark grey bar). 

 

 

I. Mean polar plots across 25 neurons with mapped Receptive Fields (RFs). 

 

 
 

Supplementary Figure 9 Mean polar plots across 25 neurons with mapped RFs. Neurons were 

individually aligned to either the vertical meridian or the neuron’s preferred orientation. (a) 

Example pyramidal neuron (ID: 26) shown in top view, rotated that the neuron's preferred 

orientation (blue bar) lies vertically. Pink bar indicates angle of vertical meridian representation. 

Boutons colour-coded black, red, green, blue, yellow in order of increasing cluster rank, grey 

boutons lie outside clusters. Beneath is a polar plot generated by counting total number of clustered 

boutons in 5 degree radial sectors (scale bar denotes 100 boutons in radial sectors). (b) The 

dendritic tree (blue) was aligned to the neurons preferred orientation and superimposed on a polar 



plot in which the total dendritic length was calculated within each 5 degree sector. (c-f) Pooled 

polar plots across all neurons. Each individual neuron was either aligned to the preferred orientation 

(blue curves) or the vertical meridian (pink curves). (c) Mean polar plots of all clustered boutons for 

all neurons. (d) Mean polar plot of all distal clustered boutons. (e) Mean polar plots of boutons in 

local clusters. (f) Mean polar plots of all dendrites. No plot was significantly different from a 

circular distribution, i.e. no preference in any direction (Wilcoxon Sign Rank: c: p=0.59 / d: p=0.96 

/ e: p=0.75 / f: p=0.87). (Neuron ID: 26, cat_0507_LH_neuron_01. Simple RF, ocular dominance 

n.a., size 1.8x0.3°, location -2.6° / -5° from areal centralis, preferred orientation 150° ± 38°, 

direction preference 60°, 70 MΩ). 

 

 

J. Step-by-step explanatory figure of the bootstrap procedure for a second neuron 

 

 
 

Supplementary Figure 10 Bootstrap of distal ellipses for a different neuron than the one shown in 

Figure 8. The figure is subdivided into four parts (‘actual neuron’, ‘randomized’, ‘actual versus 

randomized’ and ‘totally across all neurons’). The upper half, a-f, depicts the distances of the 

ellipses, the lower half, g-l, the SI values. (a) Displayed are the orientation map, the location of the 

soma (white dot) and the centers of the distal ellipses (pluses) (for details see Fig. 1). The neurons’ 

preferred orientation (gold bar) and the vertical meridian (brown bar) are marked at the bottom 

right. (b) Orientation map and the location of 1,000 bootstrapped distal ellipses out of the 20,000 

that were generated. The size, distance from soma, shape and orientation of each individual 

bootstrapped ellipse was randomized based on the statistics of all distal ellipses totally across all 



neurons (see Methods). (c) Displayed are the centers (pluses) of the three distal ellipses in relation 

to the soma (black dot). (d) Of all 20,000 bootstrapped ellipses those having an ellipse-center 

outside the orientation map or falling within the local ellipse were ignored. Of all the remaining 

ellipse centers (N=16,722) the radial distance to the soma was calculated. Instead of showing every 

single center, the median (pink contour), the 5% and the 95% percentile (black contours) were 

calculated and only those displayed (bin width = 10 degrees). The orientation map outside the 

percentiles was faded in white. Thus randomized ellipses are expected to occur on this displayed 

region of the orientation map. The dendritic tree was color-coded by its underlying pixels of the 

orientation map. (e) The three centers of the actual ellipses from c are shown as black dots. They are 

close to the median of all the bootstrapped ellipses (pink contour) signifying that a large number of 

the bootstrapped ellipses are located on top of the actual ellipses (compare crosses in b and a). (f) 

Superposition of all distal ellipses’ centers (blue circles) totally across all neurons aligned to the 

neurons preferred orientation. The median distance (pink) and the 5 / 95% percentiles (black) 

determined the distribution of the radial dislocations from soma of the bootstrapped distal ellipses. 

(g) Pixels of the orientation map only within the fitted ellipses, the rest is faded in grey. The ellipses 

SI value is shown in white numbers (see Fig. 2 for details). (h) Pixels of the orientation map only 

within the area of 6 bootstrapped ellipses out of the 1,000 in b. The rest of the map is faded in grey. 

The dendrite was color-coded by its underlying orientation map response values. For each 

individual bootstrapped ellipse its SI value was calculated (white numbers). (i) The ellipses of g are 

displayed at their correct circular location and as the radial distance their SI was taken. (j) The SI 

value was calculated for each bootstrapped ellipse and plotted in a radial manner originating at the 

soma. Instead of showing every bootstrapped ellipse's SI value, only the median (bold green), the 

5% and the 95% percentile (light green) were calculated and displayed as circular plots (bin width 

of 10 degrees). The six bootstrap examples of h are shown as black dots. (k) The three actual distal 

ellipses from i are shown as black dots superimposed on the bootstrapped median (bold green) and 

percentiles (light green). If the actual ellipse had an SI value outside the statistically significant 

boundaries of the 5 and 95% percentiles they were termed as statistically significant (white cross 

through a black dot). One out of three actual clusters was statistically significant, highlighting that 

the actual ellipse was significantly outside the expected distribution of SI values in their particular 

sectors, even though many of the bootstrapped ellipses were actually located on top of the actual 

ellipses (see e, all three black dots are near the median). The other two ellipses were very close to 

the significant boundary. The percentiles for the significant test were determined based on all the 

bootstrapped ellipses within one sector (16,722/(36 sectors of 10 degree width)=464.5). (l) 

Superposition of all distal ellipses’ centers (blue circles) totally across all neurons individually 

aligned to the neurons preferred orientation (unlike in Figure 8e where the neurons were aligned to 

the vertical meridian). Each dot has two coordinates: a circular and a radial one. The circular 

coordinates maintained the circular location in respect to the neuron’s corresponding preferred 

orientation. The radial coordinates represent each clusters unique SI value as a radial distance from 

the center (black cross). A blue dot close to the grey circle (=1) signifies a high SI value. Each 

ellipse that was determined as statistically significant is marked with a purple cross (12 out of 51). 

To display all bootstrapped distal ellipses and their corresponding SI value totally across all 25 

neurons, they were all superimposed and then the median (green bold) and the 5 / 95% percentiles 

(light green) generated and displayed. Obviously, the significant-test was on each individual 

neuron’s percentiles performed and not on the here shown medians across all neurons. Note that the 

blue dots do not align along the preferred orientation, nor do the medians or the 5% and the 95% 

percentiles. Thus, distal ellipses can be encountered at all angles having high or low SI values. This 

holds on for the actual distal ellipses as well as for the bootstrapped distal ellipses. 

 

  



K. Alignment of the 3D reconstructed brain tissue and in-vivo brain images.   

 

Supplementary Figure 11 Alignment of the 3D reconstructed brain tissue and in-vivo brain 

images. (a) Side view of the 3D reconstructed brain surface (green contour lines), the reference 

penetration tracks (blue) and their entry points into the brain tissue (red crosses). The penetrations 

were done vertically in reference to the stereotaxic coordinate (blue arrow). The camera was placed 

orthogonally (black arrow) to the brain region to obtain an evenly focused blood vessel-pattern as in 

b. (b) 3D contour lines, reference penetrations and their entry points. Next to it is the blood vessel-

pattern and the locations of the reference penetrations (yellow circles) marked during the in-vivo 

imaging before the brain was processed. (c) The 3D reconstructions were overlaid with the linearly 

transformed in-vivo image. Scale bar = 2mm. 

  



 

L. Key physiological parameters for all 33 neurons 
 

ID neuron name Pref. 

Orient. 

(deg) 

Range 

(+/-) 

(deg) 

Direction 

(deg) 

Distance 

between 

the soma to 

the next 

pinwheel 

(um) 

Orientation 

of the angle 

map at the 

location of 

the soma 

(deg) 

Orientation of 

the angle map at 

the location of 

the center of the 

local cluster 

(deg) 

1 Cat_0907_RH_axon_02.xml NaN NaN NaN 220 164 155 

2 Cat_0408_LH_axon_02.xml 13 21 283 268 12 17 

3 Cat_1007_RH_axon_02.xml 95 14 185 217 113 121 

4 Cat_0907_RH_axon_01.xml 160 20 NaN 256 166 166 

5 Cat_2806_RH_axon_07.xml 87 16 NaN 371 173 172 

6 Cat_2606_LH_axon_05.xml NaN NaN NaN 283 1 9 

7 Cat_0308_RH_axon_03.xml 54 13 NaN 361 54 54 

8 Cat_2806_RH_axon_03.xml NaN NaN NaN 161 48 38 

9 Cat_1207_LH_axon_01.xml 166 24 256 208 141 138 

10 Cat_2806_RH_axon_06.xml 138 21 228 27 160 161 

11 Cat_1007_RH_axon_01.xml 150 9 240 336 133 128 

12 Cat_0608_RH_axon_02.xml 63A 47 153 454 21 22 

13 Cat_0408_RH_axon_01.xml 31 NaN 301 782 11 8 

14 Cat_0608_RH_axon_03.xml 63A 47 153 406 22 28 

15 Cat_2806_RH_axon_05.xml 114 6 204 28 155 112 

16 Cat_2806_RH_axon_04.xml NaN NaN NaN 202 174 174 

17 Cat_0608_RH_axon_01.xml 63A 47 153 434 19 28 

18 Cat_2806_RH_axon_01.xml NaN NaN NaN 141 49 33 

19 Cat_0408_LH_axon_01.xml 17 15 287 387 16 19 

20 Cat_0608_RH_axon_06.xml 144 20 234 688 173 178 

21 Cat_1207_RH_axon_03.xml 72 11 342 183 54 34 

22 Cat_2606_LH_axon_03.xml NaN NaN NaN 181 151 160 

23 Cat_0308_LH_axon_01.xml 143 8 233 870 15 177 

24 Cat_0707_RH_axon_01.xml 138 17 228 390 145 143 

25 Cat_0707_RH_axon_02.xml 60 NaN NaN 340 74 63 

26 Cat_0507_LH_axon_01.xml 150 38 60 190 2 179 

27 Cat_0608_RH_axon_05.xml NaN NaN NaN 397 5 38 

28 Cat_0807_RH_axon_02.xml 174B 40 264 339 14 4 

29 Cat_0807_RH_axon_01.xml 174B 40 264 332 14 12 

30 Cat_0108_RH_axon_01.xml NaN NaN NaN 44 141 148 

31 Cat_0807_RH_axon_03.xml 120 30 30 194 63 106 

32 Cat_2506_RH_axon_01.xml 36 NaN NaN  121 62 4 

33 Cat_0507_LH_axon_02.xml 158 32 68 173 163 164 

 

Supplementary table 1: Key physiological parameters for all 33 neurons. The neuron ID is 

given together with the name of the neuron, its key physiological parameters, the distance between 

the soma to the next pinwheel (um), the orientation of the angle map at the location of the soma and 

the orientation of the angle map at the location of the center of the local cluster. For some neurons 

we were not able to acquire all physiological parameters (NaN). The neurons marked with the letter 

A and B compose a triple and a pair respectively, which made the allocation of the physiology to 

one neuron not possible. At position A, the pipette tip got damaged after filling the cell and resulted 

in staining of more than one cell. At position B, while penetrating the target cell, the applied current 

pulse caused damage to a second cell and thus two cells got filled simultaneously. 

 

  



 

M. Functional specificity of long-range horizontal connections 

Publication Species Area Functional modality Preference (%) 

Malach et al. (1993) Macaque monkey V1 Ocular dominance 65 

Malach et al. (1993) Macaque monkey V1 Orientation 66 

Malach et al. (1994) Squirrel monkey V2 Orientation 50.3 

Yoshioka et al. (1996) Macaque monkey V1 Cytochrome Oxidase - blob 68 

Yoshioka et al. (1996) Macaque monkey V1 Cytochrome Oxidase -interblob 73 

Yoshioka et al. (1996) Macaque monkey V1 Ocular dominance 63 

Kisvarday et al. (1997) Cat A17 Orientation 53 

Bosking et al. (1997) Tree shrew V1 Orientation 57.6 

Schmidt et al. (1997a) Cat A17 Orientation 58 

Schmidt et al. (1997b) Cat A18 Ocular dominance 56 

Supplementary table 2: The functional specificity of long-range horizontal connections 

matches on average 61% the functional specificity of the origin of the projection. These 

investigations used exclusively bulk-injections, hence labeling dozens to hundreds of neurons in an 

antero- and retrograde fashion and labeling a mixture of both excitatory and inhibitory neurons. 

 

 



 

Supplementary Methods: Description of the NEREDA framework 

 

Introduction 

Nereda is an open source framework to analyze neuronal reconstruction data. The software is a 

Java/Matlab hybrid that uses the speed of Java and the flexibility of Matlab code. The architecture 

makes it accessible from both sides, i.e. from within Java and from within Matlab script code, even 

though the Java approach with its strong IDEs, e.g. Eclipse, is the recommended way to use it. 

Jobs can be started by using NeredaCLI (Nereda does not include a rich GUI client). The user has to 

create project specific packages and analysis classes. The target group are scientists with at least basic 

knowledge of Java, who want to use a flexible, robust and maintainable architecture to analyse and 

visualize their data. 

Matlab analysis code can be wrapped into Java classes to be used in Nereda. Additional data, e.g. cell 

types and physiology, may be added and used in the analysis as well. The core classes provide means 

to save analysis results as Matlab data files, and to visualize data in Matlab figures. They can be used 

in publications or for further analysis steps.  

You may wonder why Nereda has to be compiled for each platform separately, although it's based on 

Java technology. This is due to the Matlab Compiler Runtime (MCR), where Nereda's and your m-

scripts are executed. MCR unfortunately is NOT platform independent. Nereda's m-scripts and Java 

source code however are. You should be able to compile it on your platform without any changes.  

The simplest way to use Nereda, is to download the VirtualBox appliance with preconfigured Eclipse 

IDE and program project specific source codes for desired analysis. Enough RAM on your host 

system, at least 6GB recommended.  

Start VirtualBox, and select Import Appliance... from the File menu, and select the ovf file you just 

downloaded. Adjust the import settings (RAM...) in the intital dialog of VirtualBox, and import the 

image. The import can take some time. Start Eclipse from the Desktop.  
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Philosophy of the framework 

The framework was designed to work in a very dynamic environment with changing and sometimes 

conflicting requirements, i.e. quantitative brain research. For not losing the robustness and 

maintainability of the software package after a short time, the framework is designed along specialized 

guidelines. First the data acquisition in 3D reconstruction modules and the data analysis and 

visualization in Nereda are completely separated. Nereda never changes the original data or structures 

gathered in the reconstruction software. This allows collaboration on stable data sets, and a 

revalidation of the original data at any point in the analysis process (Figure A.1). Second Nereda 

keeps a rigid separation of data on one side and the data processing logic on the other side. All the 

processing logic is encapsulated in visitor classes which implement a simple interface and exist 

independent of the hierarchical data structure. The framework can easily be extended in a robust 

manner by adding additional visitors without compromising existing code or having to take care about 

the underlying data pool. Third, the consequent interface based programming in the whole framework 

provides an easy and well-defined mechanism to extend the packages, either on the analysis or more 

fundamental on the data object representations, which opens the framework for other data pools beside 

of Neurolucida™. Fourth, Nereda can be accessed in a very flexible platform independent way from 

Windows-, Linux- or MacOS environments, from within both Java- and Matlab programming 

environments. By using the Java programming language the framework is not only platform 

independent and fully object oriented, but it also outperforms the speed of pure Matlab 

implementations by orders of magnitude.  

 

Figure A.1: Nereda workflow: Several researchers or groups of researchers develop their own ideas how to analyze chunks 

of reconstruction data (data provided as .XML). Each group implements their analysis as series of new Nereda plugins or uses 

the plugins of other groups or built-in ones. Several of these components can be merged to super-plugins. The framework 

guarantees the interoperability of the components.   

 

The mentioned implementation principles allow keeping the robustness of the framework even if the 

requirements change rapidly or when several programmers or scientists extend the packages by their 

own components. The result is a flexible and compact software framework to analyze and visualize 

neuronal reconstruction data, which keeps its robustness and maintainability over time. 
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Architecture 

 

 

Figure A.2: The Nereda architecture: Nereda resides in the middle between neural reconstruction packages, i.e. 

Neurolucida™, the data processing language Matlab and 3D rendering software packages like Blender. Nereda is a software 

framework written in Java that encapsulates the complexity of data structures and internal processing logics. The framework 

provides simple interfaces to plug-in custom analysis code. Several namespaces contain built-in components for data 

collection, statistics, and visualization. Interfaces to Matlab (Java-based interfaces) and render software packages (STL, 

Surface Triangulation Language) provide full flexibility for future requirements. 

 

Nereda positions itself in the middle between the data analysis environment Matlab and 3D 

reconstruction software packages, e.g. Neurolucida and 3D rendering software solutions (Figure A.2). 

The framework imports neuronal 3D reconstructions via XML data structures to build up a Java based 

object hierarchy. Each instance in the hierarchic tree represents a member of object-oriented class 

architecture that implements well defined interfaces (ini.nl-namespace, ini.nl.inf-namespace). Any of 

the hierarchy elements, e.g. cell soma, axonal/dendritic segment and varicosity, deserves as an entry 

point for worker classes (visitors) that fulfill various tasks, e.g. data collection, statistical analysis and 

plotting (ini.nl.visitors-namespace). The object tree itself guarantees that the worker instance starting 

from the entry point visits and executes its code for all of the tree sub-elements. This leads to an 

optimal separation between code logics and tree internal data organization, i.e. optimal robustness with 

the most flexibility. Predefined libraries for data analysis and visualization provide easy access to 

statistics and ad-hoc plots (ini.nl.analysis.data- and ini.nl.analysis.visualization-namespaces). In 

addition the interface based approach allows easy extension of the framework parts, while maintaining 

its robustness. The analysis components of Nereda have complete access to Matlab data processing 

procedures. In turn most of the Nereda components are accessible from both Java and Matlab to 

provide the best freedom of choice for Nereda programmers. For high quality visualizations Nereda 

provides functions to export fractions or complete neurons and brain surfaces into the Surface 

Triangulation Language (STL) used in stereo lithographic CAD- and rendering packages like 

AutoCAD™ or Blender. In addition Nereda allows the saving of complete object trees into the Matlab 

proprietary .mat-format for easy exchange between users or computers. 
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Brain domain model  

The core of the framework is represented by the ini.nl-namespace classes. Anatomical real-world 

entities, e.g. Neuron, Axon, Dendrite etc., are modeled by classes from this namespace. Nereda 

represents the reconstructed data as a hierarchical object tree rooted in the Brain entity (Figure A.3). 

A brain contains a series of section outlines which define its spatial borders. In addition the brain 

object can hold neurons and a number of reference penetrations that deserve as landmarks. To relate 

the anatomical data to optical imaging a collection of optical maps can be attached to the brain. Each 

component in the hierarchy that has a specific location or spatial extent is defined as a series of points 

in x/y/z-space with an optional diameter d. 

 

Figure A.3: Simplified Nereda brain domain model: The reconstructed brain structures, i.e. brain surface and neuronal 

compartments, are modeled with a series of related objects. To keep the application of the framework flexible all relations 

between objects are modeled as aggregations, rather than associations (each component can exist isolated from its parent 

object). Four main components, i.e. Neuron, OpticalMap and ReferencePenetration all rooted in the Brain object build the 

backbone of the hierarchy. Together with their subcomponents they form a complete, sequentially accessible object tree, 

which represents the reconstructed Neurolucida™ data.  

 

Traversing the object tree 

Nereda uses data collected in Neurolucida™ to construct a hierarchical object structure. The building 

blocks of the object tree are located in the ini.nl-namespace. Once the tree structure is initialized it can 

be traversed either sequentially or via random-access (Figure A.4). Sequential access is provided by 

typed collections. Since each tree element, beside of the root has exactly one parent object, each tree 

element and associated data is accessible via a unique path. However, to keep the framework as 

flexible as possible the relationships between the classes are all modeled as aggregation, rather than 

compositions, i.e. each element can exist without a parent object. Random access is provided at each 

tree node via a search-for-element-id mechanism provided via the getElementById(String id)-method. 

More sophisticated filters can easily be added via custom visitor classes.  

A third method to traverse the tree, i.e. visitor-based traversing is described in the next section. 

Visitors also sequentially access the tree. The explicit logics how to perform the walk in the complex 

heterogeneous tree structure is however hidden from the programmer, and replaced by a simple but 

powerful interface. 
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Dendrite
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Point
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Figure A.4: Schematic, simplified tree structure that represents a brain with one neuron: The figure shows a simplified 

Nereda tree structure to illustrate access modes in Nereda. Boxes represent elements/nodes of the tree, large circles boutons 

on axonal tree segments, and small boutons interfaces exposed by the elements. Nereda provides two access modes, i.e. 

sequential and random. In sequential mode one walks element-by-element through the tree to access the target element. In 

random access internal Nereda search functionality allows direct access to the target from any parent element in the tree.  

Collecting/processing data  

The most easy and flexible way to collect or process data in Nereda data structures is to use visitors. 

The visitor pattern 

Nereda encapsulates internal data structure logics and hides it from the user. The programmer does not 

have to know the exact structure of the internal object tree, or how to traverse this arbor to collect or 

process data. In the visitor pattern one distinguishes between the visitor (the component that walks 

through the tree) and the visited object. In Nereda, any tree element can be a visited object, i.e. each 

element in the tree has to implement the VisitedInf-interface which allows injecting a visitor. The 

visitor on the other hand implements the VisitorInf-interface, which defines two methods, i.e. execVisit 

and execAfterVisit, that are called from the visited element when the visitor arrives at the instance at 

his way down through the tree and on his way back, when it arrives a second time at the same element.  

The visitor component automatically visits the sub-elements of the entry point to execute its code 

(Figure A.5). This strategy which hides internal tree logics from the programmer is optimized to deal 

with varying heterogeneous hierarchical structures, e.g. neurons in brains. The visit-procedure comes 

in two flavors, i.e. a shallow one where only the direct sub-elements of the entry point are considered 

(visit), and a deep visit variant where all the elements of the sub-tree rooted at the entry point are 

traversed (visitDeep). The interface-based separation of internal data structure and data processing 

code makes the framework robust and flexible at the same time.  
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Figure A.5: Visitor pattern in a deep variant: A customized data processing component (Visitor) is injected into a 

heterogeneous hierarchical tree. The component automatically travels through the sub-tree and visits each of its elements to 

execute its customized code. Any element in the tree can deserve as an entry point for the visitor. 
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Nereda Concepts 

This chapter gives an overview on a number of important aspects of Nereda, and illuminates how the 

framework was built. There are often much more elegant solutions to a problem if one keeps in mind 

the object oriented architecture.  

Projects  

 

 
Figure A.6: Nereda project interfaces and their realizations 

 
Depending on the context a series of project types are provided. In all cases the project holds a list of 

brains, whereas each brain represents the root of an object tree, containing neurons, analysis objects, 

view makers, etc. The brains are created by brain factories based on reconstruction content, optical 

imaging maps and additional data resources.  

Amongst the object types the simplest one, intended to be used for ad-hoc projects, is SimpleProject. 

This type has a minimal set of configuration overhead, and all project components, e.g. brain, neuron, 

analysis, have to be instantiated manually, e.g. by virtue of a brain factory.  

The next type BrainFeatureProject in contrast to the simple implementation provides means to use 

Nereda brain features. Brain features provide a consistent mechanism to extend reconstructed content, 

with additional data, e.g. in which hemisphere we are, layer surfaces, layer membership of items, cell 

type information and so on. The brain features have to created and attached to the project in your code.  

A JobProject is the type of project used by the NeredaJobRunner. It has configuration objects attached 

to itself, which register external data handlers (EDH) and cache data handlers (CDH). In addition this 

project type has a list of analysis managers and brain view maker managers, which deal with analysis 

execution and saving the results, and with creating brain visualizations that go beyond the standard 

file:///K:/Paper_01/NeredaDump/Nereda/delila/mediawiki-1.16.0/index.php/File_NeredaProjectTypes.html
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plotting routines. All components are configurable in XML-based settings files. By virtue of 

NeredaJobRunner a job can be run as a configurable standalone application.  

Brains  

 
Figure A.7: Simplified view on Nereda brain interfaces 

 

A brain object is the root of an object tree that was created based on reconstruction data (most often by 

virtue of a brain factory). A brain class at least implements BrainInf, and contains lists of contours that 

provide information about brain compartment boundaries, i.e. brain surface and layers, plus reference 

penetrations or blood vessels that may exist. In addition each brain can contain neurons (NeuronInf), 

each of which contains a list of axons and dendrites. Lists where chosen to be able to hold an 

incomplete representation of an axon or dendrite, given as independent sub-trees. Each of the axonal- 

or dendritic segments contains a list of sub-branches (zero if it represents an end-segment, two if we 

are in the middle of a tree). An axonal segment contains a list of varicosities, i.e. potential synapses, 

defined by their coordinates and thickness. Technically the segments are given as line series defined 

by a set of ordered points with thickness information. Any object in the tree that is defined by a set of 

points, whether a line series or not, implements GfxElementInf, which in turn is derived from 

ObjectInf, i.e. the base interface of any object in the hierarchy. Each object in addition implements 

VisitedInf and can therefore be target of a visitor that traverses the tree. In addition each object can act 

as an analysis target.  

Beside of the base brain interface BrainInf, BrainExtInf exists which declares accessors for optical 

imaging maps (single condition orientation maps) and blood pattern images. The interfaces were 

file:///K:/Paper_01/NeredaDump/Nereda/delila/mediawiki-1.16.0/index.php/File_NeredaBrain.html


The lateral connections of superficial layer pyramidal cells communicate heterogeneously between functional domains of cat primary 

visual cortex. / Supplementary Material: Description of the NEREDA framework 

9 | P a g e  
 
 

separated since the most common input to Nereda, i.e. Neurolucida reconstruction data, does not 

include non-anatomical data. The images/maps provide functions to register neuronal reconstructions 

and image data in 3-D space.  

The picture shows only a simplified view of the hierarchy. To get a detailed view of all interfaces and 

classes the reader should refer to the javadoc of Nereda or to the source code.  

Brain Factories  

Nereda constructs brains by virtue of input data format specific brain factories that implement 

BrainFactoryInf. Each project has a brain factory attached. In JobProjects the factory is set in the 

project configuration file. The resources (input files with reconstructions, maps, ...) are given as file 

locations. The factory decides based on the file type, the file properties and the content how to load the 

resources. The supported resources depend on the factory implementation. Currently the Neurolucida 

factory covers the types: Neurons, contours (brain surface, layers, reference penetrations, ...), single 

condition maps, map masks and blood pattern images. Each of the types need to be available as a 

separate file.  

Brain Component Factories  

A brain component factory implements BrainComponentsFactoryInf and provides methods to 

construct all required brain components, e.g. axonal segments, dendritic segments, boutons, etc. The 

component factory is input format independent, and is normally used by the format dependent brain 

factory to create object stubs which are filled up with data. The separation between brain- and brain 

component factory makes it possible to change the properties of a given object class for all input types 

with just a single factory class. Consider the following example: You want that all your neurons show 

their axonal/dendritic end segments in red, irrespective of the source of the reconstruction data 

(Neurolucida). To do this you just have to inherit from the given BrainComponentsFactory class and 

overwrite the createAppendixSegment method. Under assumption that the brain factory implementers 

followed the rule to create all brain components by virtue of the brain components factory, you are 

done now, all end segments in all neurons will be shown on red, irrespective in which application they 

were reconstructed. You use the new components factory by using the 

setBrainComponentsFactory(BrainComponentsFactoryInf brainComponentsFactory) method of the 

brain factory.  

The code for the new BrainComponentsFactoryForRedEndSegments would look something like that:  

private class BrainComponentsFactoryForRedEndSegmentsextends BrainComponentsFactory 

implements BrainComponentsFactoryInf { 

  public BrainComponentsFactoryForRedEndSegments() { 

  } 

  @Override 

  public AppendixSegmentInf createAppendixSegment(String id, String name) { 

    AppendixSegmentInf as = super.createAppendixSegment(id, name); 

    if(as.getSegments().size==0){ 

      as.getPlotProperties().put("Color", new double[]{1.0, 0.0, 0.0}); 

    } 

    return as; 

  } 

} 

Brain Features  

Brain features represent a single quality of information that in the sum make up a reconstructed brain. 

The most often used brain feature is BrainFeatureReconstructionContent, which by virtue of a brain 

factory and a list of resources creates and returns the brain object tree. The information in the tree can 

be extended by additional features, e.g. cell type information, preferred orientation, cell body location, 
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pinwheel locations on angle maps, etc. Brain features can depend on other features. 

BrainFeatureCellType for example depends on BrainFeatureReconstructionContent, since there is no 

target for a cell type if there are no cells in the brain. Nereda resolves these dependencies 

automatically in a recursive way and constructs an ordered feature list, which is processed to create the 

brain. However, for this to work a user of the framework has to register a complete list of features on 

the project (see BranFeatureProject). It is recommended to have a central method, that returns a 

complete list of all available features. In JobProjects the list can be configured in the project 

configuration file.  

Beside of dependencies on other brain features, a feature can also depend on external data, e.g. a file 

that carries a lookup table that assigns a cell type to each reconstructed neuron. External data is 

handled by external data handlers (EDH).  

External Data Handlers (EDH)  

External handlers allow for access of external information to make it available to the Nereda 

framework. Currently these are often only comma separated value (csv) files which contain additional 

information collected during an experiment that is important for the analysis of the reconstructed 

neurons. An example for a csv file, which assigns a presentation angle to a single condition map is 

given below.  

# Neuron physiology lookup table for the Nereda framework. 

# Use the following numbers for each neuron. 

# <Resource File Name> is the name of the brain xml file 

# <singleMaps>, the filename of the single map (has to correspond to entries in 

<Resource File Name>) 

 

# Cat_0608_RH 

src/resources/neurolucida/cat_0608/SingleMap_1.bmp, 0.0 

src/resources/neurolucida/cat_0608/SingleMap_2.bmp, 22.5 

src/resources/neurolucida/cat_0608/SingleMap_3.bmp, 45.0 

src/resources/neurolucida/cat_0608/SingleMap_4.bmp, 67.5 

src/resources/neurolucida/cat_0608/SingleMap_5.bmp, 90.0 

src/resources/neurolucida/cat_0608/SingleMap_6.bmp, 112.5 

src/resources/neurolucida/cat_0608/SingleMap_7.bmp, 135.0 

src/resources/neurolucida/cat_0608/SingleMap_8.bmp, 157.5 

 

The data source and the type of data that is retrieved depends completely on the external data handler. 

Some handlers are also capable to create external data. Whether or not a given handler supports data 

creation is accessible over the canCreateData() flag. External data handlers can depend on brain 

features, and analog to the brain features the handlers have to be registered on a project. Nereda 

automatically includes the handler features dependencies in the calculation of an ordered feature set. 

Cache Data Handlers  

Produce cache data which can be deployed together with the Nereda jar file to speed up execution time 

and reduce memory requirements.  

Project Configuration File  

Configurable Nereda projects, e.g. JobProjects are associated to a project configuration file that sets 

the environment variables. A simple project configuration file could look like this:  

<?xml version="1.0" encoding="utf-8"?> 

<nereda> 

 <project> 

   <externalDataHandlers> 

     <description>Global external data handlers</description> 

   </externalDataHandlers> 
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   <brainFeatures> 

     <description>Brain feature registry with all features used in this 

project</description> 

     <feature name="BrainFeatureReconstructionContent" 

className="ini.nereda.feature.BrainFeatureReconstructionContent"></feature> 

   </brainFeatures> 

   <params> 

     <param name="externalDataPath" description="Root folder of the external data (csv-

files, ...)." value="./persistence" /> 

     <param name="cacheDataPath" description="Root folder of the cache data (zip-files, 

...)." value="./cache"></param> 

     <param name="tempDataPath" description="Root folder of the temp data (tmp-file, 

...)." value="./tmp" /> 

     <param name="brainFactoryClassName" description="Brain factory to use" 

value="ini.nereda.factory.BrainFactoryNeurolucida" /> 

     <param name="brainComponentsFactoryClassName" description="Brain components 

factory to use" value="ini.nereda.factory.BrainComponentsFactory" /> 

   </params> 

   <cacheDataHandlers> 

      <description>Cache data handlers</description> 

   </cacheDataHandlers> 

 </project> 

</nereda> 

The project node has the sections externalDataHandlers, brainFeatures and cacheDataHandlers. 

These sections represent registries for features and handlers that might be used by analysis classes or 

other components. In this simple project we only use a single brain feature, the other sections are 

empty. Beside of that we have to set the mandatory parameters in the param section. For a more 

complex project file consider. 

Job Configuration File  

Beside of a project configuration a JobProject is also associated to a job configuration file, that 

contains all necessary information to run a job. The exact content depends on the job you run. A 

simple example could look the following:  

<?xml version="1.0" encoding="utf-8"?> 

<nereda> 

 <jobs> 

   <description>Nereda job configurations.  </description> 

   <job id="Tutorial3" name="Tutorial3" description="Tutorial3 description" 

type="Analysis" outputUrl=".\output\result\analysis" 

logUrl=".\output\log\example.example" logLevel="7" targetType="DataOrPathFile"> 

     <analysisManagers> 

       <analysisManager name="AnalysisManagerSegmentCounter" 

className="ini.nereda.tutorial.analysis.AnalysisManagerSegmentCounter"> 

         <subAnalyses> 

           <subAnalysis name="AnalysisSegmentCounter" active="true"></subAnalysis> 

         </subAnalyses> 

         <targets> 

           <target className="ini.nereda.NeuronInf" /> 

         </targets> 

         <plotters defaultPlottersActive="true"> 

         </plotters> 

         <custom> 

           <params> 

           </params> 

         </custom> 

       </analysisManager> 

     </analysisManagers> 

     <viewManagers> 

       <viewManager name="BrainViewManagerDendrogram" 

className="ini.nereda.viewManager.BrainViewManagerDendrogram"> 

         <targets> 

           <target className="ini.nereda.NeuronInf" /> 

         </targets> 

         <custom> 

         </custom> 

       </viewManager> 

     </viewManagers> 
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     <externalDataCreation> 

     </externalDataCreation> 

   </job> 

 </jobs> 

</nereda> 

 

The jobs section contains a job node for each Nereda job. Within the job you have the sections: 

analysisManagers, viewManagers and externalDataCreation. In the analysisManagers you have an 

analysis manager node, which informs Nereda what analysis manager to load, to what target(s) it 

should be attached to, and what plotters should be run after the analysis is finished. Beside of that 

analysis manager specific parameters can be set in the params section. The same principle applies to 

the viewManagers saection which informs the Nereda job project what view should be generated, on 

what targets. 

This specific job configuration would create an AnalysisManagerSegmentCounter instance, which 

attaches an AnalysisSegmentCounter object to each neuron, starts it, and saves the results to a Matlab 

mat-file. Subsequently the default plotters of the analysis objectare run, which visualize the data. In 

addition this job creates a BrainViewManagerDendrogram object, which creates a 

BrainViewDendrogram object, attaches it to each neuron, and shows the axonal and dendritic trees as 

a dendrogram. Again the results are saved automatically. 

The externalDataCreation section is empty in this example. It could contain configuration nodes for 

external data handlers that are capable to create external data, e.g. pinwheel coordinates on angle 

maps.The config node for this would look the following: <handler name= 

"ExternalDataHandlerPinwheelCoords" className = "ini.nereda.project. externalData. 

ExternalDataHandlerPinwheelCoords "></handler> . If Nereda starts this job, it would before executing 

all other analysis or viewers, start the external data creation, which lets you select the pinwheels on the 

angle map. Make sure that the project file contains all required brain features and external data 

handlers in its registries, otherwise exceptions will be thrown.  

Visitors  

The visitor pattern is the fundamental technique how Nereda collects and processes data in the object 

tree. The pattern separates function implementation and function target into distinct classes, i.e. the 

visitor and the visited object (target). In this way additional functionality can be added to the 

framework, without actually having to change the interface of the target class, which is a particular 

advantage in situations where the requirements are highly dynamic, e.g. in research.  

The visitor which implements VisitorInf can be seen as a little mobile code package that traverses 

automatically a given subtree and stops when it has returned to its intitial position. The framework 

guarantees that each tree object withing the scope is visited twice. The first time when the visitor 

travels down towards the leafs and the second time when it is returning, back to its initial position. 

Each Nereda object implements the VisitedInf interface, and is therefore a potential target for a visitor.  

VisitedInf has three methods:  

 void visit(VisitorInf visitor) throws Exception;  

 void visitDeep(VisitorInf visitor) throws Exception;  

 void visitDeepShallow(VisitorInf visitor) throws Exception;  

They define the scope of the visitor. visit will instruct the visitor to only visit the initial target object, 

while ignoring the deeper levels of the subtree. visitDeep tells the visitor to visit each object of the 

subtree that is rooted in the intial object (the one the visitDeep method is called on). visitDeepShallow 

is a convenience method for an intermediate behavior, where the visitor visits the intial object and its 

direct children.  
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The VisitorInf interface contains mainly only two methods, execVisit(ObjectInf visitedObj) and 

execAfterVisit(ObjectInf visitedObj) which are executed when the visitor encounters the visited object 

the first time (execVisit) and on its way home (execAfterVisit). The two methods allow for flexible 

and elegant implementation of a large number of requirements.  

A simple implementation for a visitor that collects the axonal segments length could look like this:  

package ini.nereda.visitor; 

import ini.nereda.AxonalSegment; 

import ini.nereda.AxonalSegmentInf; 

import ini.nereda.ObjectInf; 

import java.util.Vector; 

public class AxonalSegmentLengths extends AbstractVisitor { 

 private Vector<Double> segmentlengths = new Vector<Double>(); 

 @Override 

 public void execVisit(ObjectInf visitedObj) throws Exception{ 

  if(visitedObj instanceof AxonalSegment) 

  { 

   aquireinfo(visitedObj.getAsAxonalSegment()); 

  }  

 } 

  private void aquireinfo(AxonalSegmentInf seg){ 

  segmentlengths.add(seg.getLength()); 

 } 

  @Override 

 public Vector<Double> terminate() {   

  return segmentlengths; 

 } 

 } 

Analysis  

An analysis class contains methods to perform data processing and saving the results as Matlab 

(MAT) files. The class has to implement the interface AnalysisInf of the ini.nereda.data.analysis 

package. 

At runtime the analysis target is determined which is by default the object the analysis is attached to. 

A target object can hold any number and any type of analysis objects , as long as they implement 

AnalaysisInf. An analysis object in contrast only supports certain target object types, e.g. some do 

only work if they are attached to a neuron. The analysis provides the valid target types by virtue of the 

getValidTargets() method. If the target is not of a valid type, a runtime exception will be thrown. 

Beside of that the analysis informs the environment about its prerequisites by the 

getRequiredBrainFeatures() method, which returns a set of brain features that have to be loaded 

before the analysis is executed (usually done automatically by the project machinery).  

Depending on the target the same analysis may produce different results, since different subsets of the 

whole object tree are treated. An analysis can provide default plotters that visualize the analysis output 

(Matlab (FIG) figures). The list of plotters is extensible. 

The Nereda core project does only provide a small subset of predefined analysis classes 

(ini.nereda.data.analysis package). The user of the framework is expected to write his/her own 

implementations based on their needs.  

A trivial example that counts segments and computes the total length by virtue of an internal visitor 

class could look like this:  

package ini.nereda.tutorial.analysis; 

 

import ini.nereda.NeuronInf; 

import ini.nereda.ObjectInf; 

import ini.nereda.VisitorInf; 

import ini.nereda.data.analysis.AnalysisAbstract; 
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import ini.nereda.data.analysis.AnalysisInf; 

import ini.nereda.visitor.AbstractVisitor;   

import java.util.Hashtable; 

 

import com.mathworks.toolbox.javabuilder.MWArray; 

import com.mathworks.toolbox.javabuilder.MWStructArray;  

public class AnalysisSegmentCounter extends AnalysisAbstract implements AnalysisInf { 

 public AnalysisSegmentCounter() { 

 } 

 @Override 

 protected void addDefaultPlotters() { 

 } 

 @Override 

 @SuppressWarnings("unchecked") 

 public Class<? extends ObjectInf>[] getValidTargets() { 

  // The valid targets 

  return new Class[] { NeuronInf.class }; 

 } 

 public void setActiveSubAnalysis(String[] subsAsString) { 

  // We only use a default sub-analysis (see execute()) 

 } 

 @Override 

 public MWArray execute() throws Exception { 

   // The sub-analysis name. This name will appear in the final result 

  // structure 

  String subanalysisName = "NeredaTutorial1"; 

  // We create a visitor that does our work (count axonal-/dendritic 

  // segments & calculate the total length( 

  VisitorInf _segmentVisitor = new VisitorSegmentCounter(); 

   // The visitor performs a deep visit on the tree, rooted in _target 

  _target.visitDeep(_segmentVisitor); 

  // The number of appendices and their lengeht are saved in result. 

  double[] result = _segmentVisitor.terminate(); 

   // A result structure is defined with the fields 'totalSegmentNr' and 

  // 'totalSegmentLength' is created. 

  Hashtable<String, Object> mwMap = new Hashtable<String, Object>(); 

  mwMap.put("totalSegmentNr", result[0]); 

   mwMap.put("totalSegmentLength", result[1]); 

  MWStructArray mwResultStruct = MWStructArray.fromMap(mwMap); 

  // The structure is added to the analysis' result map 

MWStructArray mwSubanalysisStruct = new MWStructArray(new int[] { 1, 1 }, 

new String[] { subanalysisName }); 

mwSubanalysisStruct.set(subanalysisName, new int[] { 1, 1 }, 

mwResultStruct); 

   _result.put(_target, mwSubanalysisStruct); 

  return mwResultStruct; 

  } 

 private class VisitorSegmentCounter extends AbstractVisitor implements VisitorInf { 

  private int totalSegmentNr = 0; 

  private double totalSegmentLength = 0; 

  public VisitorSegmentCounter() { 

  } 

  @Override 

  public void execVisit(ObjectInf visitedObj) throws Exception { 

   super.execVisit(visitedObj); 

// If it is an appendix object, increment the counter and update the 

   // total lenght 

   if (visitedObj.getAsAppendixSegment() != null) { 

    totalSegmentNr++; 

totalSegmentLength += 

visitedObj.getAsAppendixSegment().getLength(); 

   } 

  } 

  @Override 

  public double[] terminate() { 

   // Return the two numbers in an array 

   return new double[] { totalSegmentNr, totalSegmentLength }; 

  } 

 } 

} 

Brain Viewer  
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A brain viewer is the sister class of a analysis. They both follow the same principles. But in contrast to 

an analysis a viewer is intended to produce visualizations of the brain or brain components. Hence 

rather than performing analysis steps that end up with a MAT file, it will produce a list of figures. The 

boundary between the two is not sharp however. An analysis with attached plotters can produce 

partially the same output as a viewer.  

Manager classes  

Analysis and brain viewer classes are accompanied by manager classes that control analysis object 

instantiation, setting the targets, execution of the analysis and the automatic saving of the results. The 

manager classes are used in the context of Nereda jobs, where actions have to be performed 

automatically, without user or programmer interaction. Which analysis or view manager is used in a 

given job, is configured in the Job configuration file. At runtime the configured manager is created by 

virtue of Java reflection. The manager subsequently creates the corresponding analysis object or 

viewer and controls its behavior.  

The naming conventions for class names are AnalysisManager<Analysis name> and 

BrainViewManager<View name>.  

A typical analysis manager for an analysis class with one input parameter could look like this:  

package ini.nereda.data.analysis.manager.horizontalconnections; 

 

import ini.nereda.data.analysis.horizontalconnections.AnalysisCBLVsLayer; 

import ini.nereda.data.analysis.manager.AnalysisManagerAbstract; 

import ini.nereda.exception.InvalidDataException; 

import ini.nereda.project.ConfigXPathExpressions; 

import ini.nereda.project.ConfigXmlHelper; 

import java.io.File; 

import java.io.InvalidClassException; 

import javax.xml.xpath.XPathExpressionException; 

import org.w3c.dom.Node; 

public class AnalysisManagerCBLVsLayer extends AnalysisManagerAbstract { 

 public AnalysisManagerCBLVsLayer(File outPath, Node analysisManagerNode) throws 

InvalidClassException, 

   XPathExpressionException, ClassNotFoundException, 

InvalidDataException { 

  super(analysisManagerNode, outPath); 

  String layerIdToNormalizeCBLToKey = 

ConfigXPathExpressions.PARAM_LAYERID_TO_NORM_CBL_TO; 

  String layerIdToNormalizeCBLTo; 

  try { 

   layerIdToNormalizeCBLTo = 

ConfigXmlHelper.getParamValue(analysisManagerNode, layerIdToNormalizeCBLToKey); 

   _analysis = new AnalysisCBLVsLayer(layerIdToNormalizeCBLTo); 

   init(); 

  } catch (XPathExpressionException e) { 

   throw e; 

  } 

 } 

} 

 


