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The coherent interaction of electromagnetic waves on thin functional linear materials can be described by Jones
transmission and scattering matrices t and s. Here we consider signal Ein and control Eineiα input beams with a phase
difference α that are incident on opposite sides of a thin linear material as described in the main manuscript. The
signal output Es,out is formed by the superposition of the transmitted signal beam tEin and the scattered (reflected)
control beam sEineiα. Similarly, the control output Ec,out is the superposition of the scattered signal and transmitted
control input beams. Therefore,

Es,out =
−→
t Ein +←−s Eineiα,

Ec,out = −→s Ein +
←−
t Eineiα, (1)

where right and left arrows mark Jones matrices for the directions of the incident signal an control beams, respectively.
In case of planar metamaterials, transmission simply corresponds to the superposition of incident and scattered fields,
i.e. t = 1 + s, with 1 being the unity matrix.

A. Coherent control of manifestations of optical anisotropy

Optical anisotropy has been studied for a planar metamaterial (t = 1 + s). Planar anisotropic metamaterials are
described by the same ordinary and extraordinary scattering coefficients sx and sy for both directions of illumination
and therefore equation (1) simplifies to

Es,out
j =

[
(1 + sj) + sje

iαj
]
Ein

j ,

Ec,out
j =

[
sj + (1 + sj)e

iαj
]
Ein

j . (2)

where j = x, y. From here, it is clear that the corresponding input and output beams must be identical for α = 180◦,
when eiα = −1, implying complete transparency at the magnetic node, as observed in our experiments and simulations.
It also follows that the output intensities will have a sinusoidal phase dependence, which can be written in the general
form Iout = A cos2

(
α−α0

2

)
+ C and has been seen experimentally and numerically.

B. Coherent control of manifestations of optical activity

Optical activity is most easily characterized in terms of its circular polarization eigenstates. Simple constructive
or destructive interference occurs for incident control and signal polarizations that have the same projection onto the
metamaterial plane. As the handedness of polarization states is measured looking into the beam, this implies that
coherent control is achieved with signal and control beams of opposite handedness. Thus equation (1) becomes

Es,out
± =

−→
t ±E

s,in
± +←−s ∓E

c,in
∓ ,

Ec,out
∓ = −→s ±E

s,in
± +

←−
t ∓E

c,in
∓ , (3)

with Ec,in
∓ = Es,in

± eiα± , where indices “+” and “-” stand for right-handed and left-handed circular polarizations.
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The polarization states of the input and output beams are defined by their azimuth Φ and ellipticity angle η

Φ = −1

2
[arg(E+)− arg(E−)], (4)

η =
1

2
arcsin

(
|E+|2 − |E−|2

|E+|2 + |E−|2

)
. (5)

C. Intrinsic 3D chirality

In the simplest case, an intrinsically 3D-chiral metamaterial is characterized by a polarization-independent scattering
coefficient s0 and transmission coefficients t+ and t−, which are identical for opposite directions of illumination.
Simulations show that this holds for the pair of twisted crosses discussed in the main manuscript, while it becomes
an approximation at resonances in our experimental case, where resonant reflectivity is slightly different for opposite
sides of the sample. Based on the above, equation (3) simplifies to

Es,out
± =

(
t± + s0e

iα±
)
Es,in

± ,

Ec,out
± =

(
t±e

iα∓ + s0
)
Es,in

∓ . (6)

For linear polarization, we can always choose coordinates so that Es,in
+ = Es,in

− and α+ = α−. In this case it is
apparent from equations (4) and (5) that the control output at phase α is equivalent to the signal output at phase
−α with the same azimuth rotation and ellipticity. The same conclusion has been drawn from symmetry arguments
in the main manuscript.

D. Extrinsic 3D chirality

Extrinsic 3D chirality has been studied for planar metamaterials (t = 1+ s). In the limit of a vanishing anisotropic
response the extrinsically 3D-chiral metamaterials have circular polarization eigenstates and are characterized by
scattering coefficients s+ and s− for the incident signal beam. As extrinsic chirality is reversed for the direction of
the control beam, ←−s+ = s− and ←−s− = s+, so that equation (3) simplifies to

Es,out
± =

[
(1 + s±) + s±e

iα±
]
Es,in

± ,

Ec,out
∓ =

[
(1 + s±)e

iα± + s±
]
Es,in

± . (7)

It follows from equations (4) and (5) that the control output at phase α corresponds to the signal output at phase
−α with reversed azimuth rotation and ellipticity. The same conclusion has been drawn in the main manuscript
based on symmetry arguments for planar metamaterials in general. Considering Ec,in

∓ = Es,in
± eiα± , the corresponding

input and output beams must be identical for α± = 180◦, when eiα± = −1, implying complete transparency at the
magnetic node as observed in our experiments and simulations. It also follows that the output intensities will have
a sinusoidal phase dependence, which can be written in the general form Iout = A cos2

(
α−α0

2

)
+ C and has been

observed experimentally and numerically.


