

### Supplementary Figure 1. Sebaceous tumour phenotypes developing in K14△NLef1 mice.

(a) H&E stain of tumour sections from early sebaceous lesion.

(b,c) Immunofluorescent stainings of K14 (green) (b) and SCD1 (green) (c) in whole mounts of sebaceous tumours. (d-g) Detection of bulge stem cell marker K15 (green) (d,e) and CD34 (green) (f,g) in aged control (wt) and K14 $\Delta$ NLef1 mice. Counterstain with DAPI (blue) (n=3). Scale bar 200 µm. SA, sebaceous adenoma; B, bulge; IFE, interfollicular epidermis; nSG, *de novo* sebaceous gland, SG, sebaceous gland. (h,i) Detection of EYFP (green), K14 (red) and nuclei (blue) in tumours of K14CreER(G)T2/K14 $\Delta$ NLef1/R26YFP mice 42 days following application of TAM (h) or oil (i).Scale bar 50µm.



## Supplementary Figure 2. Transplantation of sebaceous tumour cells and mutant Lef1 keratinocytes.

(a) Tumour derived from transplanted sebaceous tumour cells  $(1x10^6)$ . (c,b) Skin of nude mice transplanted with sorted Itga6<sup>high</sup>/CD34<sup>+ve</sup> isolated from aged K14 $\Delta$ NLef1 mice. Note, no tumours develop following transplantation, but deformed hair follicle and multiple sebaceous glands are generated reflecting the phenotype of K14 $\Delta$ NLef1 mice (arrows in c). Scale bar 200µm.



# Supplementary Figure 3. Characterisation of skin phenotype of K14 $\Delta$ NLef1 and K15 $\Delta$ NLef1 transgenic mice.

(a-d) Generation of K14ΔNLef1 mice and analysis of transgene expression in skin (n=5 mice) (myc-tag, green) (b) and in sebaceous adenomas (myc-tag, green) (c) (Lef1, green) (d). Immunofluorescent staining for sebocyte marker adipophilin and SCD1 (both in red) demonstrate sebocyte differentiation of tumours (n=3). B, bulge; IFE, interfollicular epidermis; Jz, junctional zone; nSG, new additional sebaceous gland; S, sebaceous tumour lobules; SG, sebaceous gland; UI, upper isthmus. (e-h) Generation of K15ΔNLef1 mice and analysis of transgene expression in skin (n=5 mice) (myc-tag, green) (f) and in sebaceous tumours (myc-tag, green) (g) (Lef1, green) (h). Immunofluorescent staining for sebocyte marker Adipophilin and SCD1 (both in red) demonstrates reduced sebocyte differentiation of tumours (n=4 mice, 12 tumours). Scale bars 50μm.



## Supplementary Figure 4. Tumour classification and transgene expression in K14 $\Delta$ NLef1 and K15 $\Delta$ NLef1 transgenic mice.

(a) Classification of DMBA-induced skin tumours from K15 $\Delta$ NLef1 (n=9 mice, 31 tumours). (b-d) Immnunofluorescent staining for K14 (red) (b-d) and K15 (red) (d) in tumours from K14 $\Delta$ NLef1 (b) and K15 $\Delta$ NLef1 mice (c,d). Note low K14 protein in basal K15 $\Delta$ NLef1 tumour cells (arrow head in c) compared to K14 $\Delta$ NLef1 (arrow head in b) and detection of K15-positive (arrow heads) and K14/K15-double positive cells in sebaceous tumours (arrows in d). (e) Analysis of transgene expression by qRT-PCR in Itga6<sup>high</sup>/CD34<sup>-ve</sup> and Itga6<sup>high</sup>/CD34<sup>+ve</sup> FAC-sorted cells isolated from wild-type, K14 $\Delta$ NLef1 and K15 $\Delta$ NLef1 mice. Samples were normalized to 18S and SD was calculated (n=3). (f,g) FACS analysis of the CD34<sup>+ve</sup> bulge stem cell compartment in K14 $\Delta$ NLef1 (f) and K15 $\Delta$ NLef1 (g) mice (n=3). Scale bars 50µm.



#### Supplementary Figure 5. Analysis of bulge stem cell marker and coloniy forming assay

(a) Expression of bulge stem cell marker CD34, K15 and NFATc1 (left) and JZ/I-marker Plet1, Lrig1 and Lgr6 (right) in tumours isolated from K14 $\Delta$ NLef1 mice analysed by qRT-PCR. Samples were normalized to 18S and wild-type (wt) controls and SD was calculated (n=6 tumours, n=3 mice). I, isthmus; JZ, junctional zone. (b) Colony forming assay with primary tumour cells isolated from K14 $\Delta$ NLef1 mice (n=3).



#### Supplementary Figure 6. Characterisation of epidermal p53 knockout mice (p53<sup>EKO</sup>).

(**a**,**b**) Immunoflourescence staining for p53 (green, arrows) and PI (red) after UV-B irradiation in skin of wild-type (**a**) and  $p53^{EKO}$  (**b**) mice (n=3). Scale bar 50µm. (**c**) qRT-PCR for p53 expression in epidermis from wild-type, K15 $\Delta$ NLef1 and p53<sup>EKO</sup> mice. Samples were normalized to 18S and SD was calculated (n=3).



#### Supplementary Figure 7. p53 protein response in K15△NLef1 mutant mice.

Uncropped western blot for p53, p-p53 and GapDH (loading control) in epidermal lysates from wild-type and K15 $\Delta$ NLef1 epidermis without (-) and 24h following UV treatment (+) (n=3).