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Supplementary Figure 1 

Numerical Simulation Model 

 Geometry: 

 

 

Supplementary Figure 1 Gap closure in a circular domain   with initial tissue position    (in 

gray);    coincides with the localization of the adherent substrate. The actual tissue position is 

     . 

 

Supplementary Note 1 

 Cell/cell interaction: visco-elastic solid 

The tissue is modeled as a Kelvin-Voigt visco-elastic solid material: its stress tensor   is 

given by: 

     ( )          

where   is the viscosity and   is the Young modulus;  ( )     (      ) is the 

symetrized part of the velocity gradient,   is the deformation tensor,   is a pressure, and   



is the identity matrix. Cells are considered as a tridimensional incompressible material ; 

however, in the bidimensional configuration studied here, where the height of cells is 

negligible compared to the size of the monolayer, cells can adjust their height by 

spreading or contracting: as a 2D material, the tissue is compressible, any vertical 

deformation is compensated by the pressure term.  The 2D constitutive equation of the 

monolayer can be written with effective viscosity and Young modulus (still denoted as   

and   for the sake of simplicity): 

      ( )      on    

 Cell/substrate interaction: adhesive forces 

Cell/substrate interactions forces are modeled as external forces    for the tissue, so that 

the momentum balance expresses the balance between cell/cell and cell/substrate 

interactions: 

             on    

where     is the indicator function of the adhesive substrate   . Cells can move on    

either because they are pulled by other cells (     term in the momentum balance) or 

because of the forces acting on the boundary of the tissue (described below). We 

introduce a threshold force    such that cells adhere to the substrate with zero velocity 

when they are pulled with a force that is less than this threshold, and slip with a friction 

force proportional to velocity otherwise. By analogy with visco-plastic models
1
, this 

behavior is modeled as : 

     ( 
   

‖ ‖
    )    if    , 

‖   ‖     otherwise. 

This expression is regularized for easier numerical resolution, in the same spirit as in
2
: 

     (   
     (  ‖ ‖)

‖ ‖
     )     

As the numerical parameter   increases, the regularized force converges towards the 

exact one. 

 Forces on the moving boundary: The closing mechanisms acting on the border    of 

the tissue are modeled as a boundary condition for the stress tensor: 

     (    ( ))   on     

where   is the normal vector on the boundary, directed toward the exterior of the tissue, 

   is the lineic density of forces exerted by the lamellipodia and  ( ) is a function 

depending on the local curvature    that represents the tension exerted by the acto-myosin 

structure. In this work, we will assume that  ( ) is a power law given by: 



      ( )         ( )       

where   and   are positive real parameters describing the tension. The power law is 

written in this complex way since   is real and   may be negative (with the convention 

we adopted, it is negative in case of a circular gap). We remark that this work concerns 

the case      since the interior of the gap is non-adherent, (no traction force due to 

lamellipodia in that area). 

 

 Closure of the model: Eulerian formalism. The evolution of the deformation tensor is 

equal to the strain rate tensor: 

  

  
  ( )  

where 
  

  
      (   )    ( )   ( )   ( ( )    ( )) is an objective 

derivative, and  ( )      (      )  This formalism is equivalent to the classical 

lagrangian formulation in linear elasticity and has the advantage of being compatible with 

a numerical method designed for visco-elastic fluids previously developped in the team. 

 Numerical resolution: We take advantage of the circular geometry to solve the 

equations in polar coordinates, with only one space dependance along the radial 

coordinate   ; the unknowns of the problem are the velocity  (   ) and elastic 

deformation  (   ). Based on a time discretization with time step   , the time derivatives 

are approximated with an Euler scheme: 

    
       

  
 

where   and     denote two successive time steps. From an initial condition at time 

   , we construct a sequence (     )     that is an approximation of the solution 

( (   )    (   ))  At each time step, we have to solve a spatial problem, that we 

subdivide in two parts: 1) compute the velocity from the forces on the boundary and the 

momentum balance equation (solved with a finite element method); 2) move the 

boundary according to this velocity field and transport the deformation tensor. 
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