Sumoylation of CCAAT/enhancer-binding protein a is implicated in

hematopoietic stem/progenitor cell development through regulating runx1 in zebrafish

Hao Yuan¹, Tao Zhang¹, Xiaohui Liu¹, Min Deng², Wenqing Zhang³, Zilong Wen⁴, Saijuan Chen¹, Zhu Chen¹, Hugues de The^{1, 5}, Jun Zhou^{1, *} and Jun Zhu^{1, 5, *}

Supplementary Figure Legends

Figure S1. HSPCs are reduced in SUMO-deficient embryos. (A) WISH assay of *runx1* at 30 hpf. Boxed regions indicate the AGM. Blue arrows identify *runx1*-positive cells in the AGM. (B) Fluorescent images of the Tg (*cmyb*-EGFP) line at 72 hpf. Boxed regions indicate the CHT. White arrows identify *cmyb*-positive cells in the CHT. (C) Quantification of *cmyb*-EGFP positive cells in the CHT region of Tg (*cmyb*-EGFP) line at 72 hpf. Data shown are the mean \pm SD, n \geq 3, *P<0.01 by student's *t*-test. (D) WISH assay of *cmyb* in the *p53* mutant embryos at 72 hpf.

Figure S2. Apoptosis of HSPC is not affected in SUMO-deficient embryos. (A-I) Double immunostaining of *cmyb*-EGFP (A-C) and TUNEL (D-F) in the CHT of Tg (*cmyb*-EGFP) line at 72 hpf. The bottom panel shows merged inages (G-I). (J) Quantification of TUNEL and *cmyb*-EGFP double positive cells in the CHT of Tg (*cmyb*-EGFP) line at 72 hpf. Data shown are the mean \pm SD, n \geq 5, P values stand for student's *t*-test.

Figure S3. WISH and Luciferase activity assays. (A) WISH assay of runx1 at 36 hpf.

Overexpression of *SUMO-cebpa* could rescue the HSPC defects of SUMOs morphant. Blue arrows identify *runx1*-positive cells in the AGM. (B) Luciferase activity assays were performed in 293T cells using various C/ebpa constructs indicated. The Renilla plasmid was used as an internal control. Note that SUMO-C/ebpa \triangle BR lost the repressive effect on the transcriptional activity of WT C/ebpa. (C) WISH assay of *cmyb* at 72 hpf. Overexpression of *SUMO-cebpa*, *POZ-cebpa* or *SUMO-cebpa* \triangle BR alone had no obvious effect on HSPC development.

Figure S4. Targeted disruption of *cebpa* gene with TALENs in zebrafish. (A) Partial structure and sequence of the *cebpa* gene, showing the target sites (underlined) of the left and right TALENs. The *Sal* I site used for detecting mutations is highlighted in red. (B) Sequencing results of *cebpa* mutation induced by TALENs in F1 fish line. The TALENs binding sites are underlined. Deletions are indicated by dashes. (C) Sudan black staining of embryos from incross of heterozygous *cebpa* mutants at 72 hpf. Red arrows indicated Sudan black positive cells in the CHT. (D) Genotyping of the corresponding embryos in (C) by genomic PCR amplification and *Sal* I digestion.

Figure S2.

Figure S3.

Figure S4.

 WT
 TCGAGGGAAATCCAAGAAACACGTCGACAAGAACAGCACCGAGTACA

 mutant
 TCGAGGGAAATCCAAGAAACACGTCGA--AGAACAGCACCGAGTACA

C yeq uegos 72hpt cebpa+/+ cebpa+/- cebpa+/- cebpa-/cebpa-/-

Table S1. Primer sequences

Primer name	Primer sequence
mouse Runx1 en	hancer Forward GAGGATCCGGGGTGGGAGGTGTAAGTTC
	Reverse GAGTCGACCAGGTGTCAGCAACCCAT
runx1	Forward ccggaattcatggactacaaggacgacgatgacaaagtttttctttgggacgccaa
	Reverse CCGCTCGAGGCTGTCAGTATGGCCTCCAG
C/ebpa riangle BR	Forward ggagcgcaacaacatagccgtgaatgtggagacgcaacaaaaag
	Reverse CTTTTTGTTGCGTCTCCACATTCACGGCTATGTTGTTGCGCTCC
SUMO2-C/ebpa	imes BR Forward ggagcgcaacaacaacatagccgtgaatgtggagacgcaacaaaaag
	Reverse CTTTTTGTTGCGTCTCCACATTCACGGCTATGTTGTTGCGCTCC
cebpa	Forward Atggagcaagcaaacctctacgagg
	Reverse TTAAGCGCAGTTGCCCATGGCTTTG
bactin	Forward GATCTTCACTCCCCTTGTTCA
	Reverse ggcagcgatttcctcatc