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Supplementary Information 

Figure Legends in Paper 

Figure 1. Simulation of epidemics. Simulated influenza clinical cases (red line) were obtained from the average of 

300 simulations (gray line). Processed real epidemic (blue line) is the actual epidemic timeline, from data collected 

from hospitals in Forsyth Country. (a) 2009-2010 influenza season, (b) 2010-2011 influenza season, and (c) 2011-

2012 influenza season. 

Figure 2. Results of the parameter sensitivity analysis of the model. (a) Single parameter sensitivity analysis, (b) 

multi-parameter sensitivity analysis based on parameters related to deviations, (c) multi-parameter sensitivity analysis based on 

parameters related coefficients. The bars show the percentage changes of total numbers of infected people when varying 

parameters. Each bar represents the mean percentage changes of infected individuals calculated from 300 simulations. The error 

bars represent the 95% confidence interval (CI) of the means. 

Figure 3. System behavior analyses by perturbing two critical variables with specific social network degree. 

(a) Initial infection, (b) weekly exotic infections. 

Figure 4. Simulation of the influenza epidemic curve with different interventions. (a) Vaccination. Seven 

scenarios were simulated for this intervention. In the first four scenarios, the coverage of vaccination is enlarged by 

10%, 20%, 30%, and 40% in all population, respectively. In the last three scenarios, the coverage of vaccination was 

set as 80% in children, adults, and seniors, respectively; and (b) School closure. Three scenarios were simulated in 

which the length of school closure was one week, two weeks, and four weeks. The time of school closure started 



when more than 0.1% of populations go to a hospital due to influenza infection. Baseline means there was no 

intervention and R0=1.26. 

Figure 5. Comparison of interventions in response to three different sizes of epidemic. The baseline is R0=1.26. 

Another two severe epidemics (R0=1.9 and 2.6) were simulated as well. Red lines indicate the case of R0=1.26; 

green lines show intervention results when R0=1.9, and blue lines present the case when R0=2.6. (a) Vaccination. (b) 

School closure. 

 

Supplementary Figures 

 

  

Figure S1. Schematic representation of the social structure describing individuals’ daytime 

activities. (A) A population of individuals is divided into n subpopulations according to the places they 

go in the daytime. Subpopulations in these places are also divided into several groups.  For example, 

children in school are divided into multiple groups according to the classes they stay in, following a 

heterogeneous network. Within each group, individuals are identified according to their dynamic status as 

Susceptible (S), Exposed (E), Infected (I), and Recovered (R). Virus can be transmitted through the 

interaction between an infected individual and susceptible individuals. (B) The social structure and 

individuals’ interaction is defined in a matrix G , in which the component 1ijg   indicates a connection 

exists between individual i and j , otherwise 0ijg  . 

 



 

Figure S2. ABM describes individual interaction and virus transmission.  

 

 

 



 

Figure S3. Comparison of current approaches and our HGM approach. (a) The epidemic predictions 

in six cities using a network modeling method [1]. (b) A simulation of influenza epidemic in a district of a 

city using census information to build social network [2]. (c) The simulation of an epidemic in a county 

using synthetized population to build social network and using agent-based model to describe an 

individual health condition and social behavior [3]. (d) Our approach (red line), network approach (green 

line), and network+ABM approach (magenta line). From these subfigures we can see that these published 

methods can only simulate epidemic with one wave, but fails to simulate multiple waves. Their 

simulations could not reflect the real virus attack rate and present the dynamic change of epidemic. But 

our simulation result can reflect the dynamic change of epidemics accurately. 

 



 

Figure S4. Comparison of our HGM approach with two common approaches: network based 

modeling and network combined with an ABM (network+ABM) in the prediction of epidemics in 

three influenza seasons. (a) 2009-2010 influenza season; (b) 2010-2011 influenza season; and (c) 2011-

2012 influenza season. In each subfigure, blue line stands for real clinical data, red line is the predicted 

epidemic curve using our HGM, green line is the prediction using network based modeling, and magenta 

line is the prediction using network + ABM. The difference between our HGM and other two methods are 

(1) we designed an ABM to describe the dynamic process of an epidemic by incorporating factors such as 

individuals cognition, climate, degree of social network, and daily infection rate into our model. The 

ABM can create a daily feedback of human behavior to the epidemic. Therefore our method can reflect 

the dynamic change of an epidemic. (2) Our model was trained and validated by real clinical data, so it is 

more accurate and robust than common methods. 



 
Figure S5. Measure the function of individual's caution against the disease. (a) 2009-2010 influenza 

season; (b) 2010-2011 influenza season; and (c) 2011-2012 influenza season. To show our HGM 

approach can fit the epidemics better than the method without using the function of an individual's 

caution against the disease, we set the function of an individual's caution against the disease as constant 

(does not change with daily virus attack rate, climate, and other factors) in our HGM model. We called it 

HGM no func. In each subfigure, green line is the prediction result using HGM no func and red line is the 

prediction result using HGM. It showed that HGM no func cannot represent the dynamic change of 

individuals cognition and caution against the epidemic and failed to models the epidemics with multi-

waves, because there is no cognitive and protective behavior preventing the increasing of infections. 

 

 



Supplementary Tables 

 

Table S1. Parameters used in the network in three influenza seasons 

 2009-2010 2010-2011 2011-2012 

Contact Probability inp  outp  inp  outp  inp  outp  

Child care center 0.3910 0.0103 0.4010 0.0105 0.4320 0.0108 

School 0.1350 0.0305 0.1200 0.0318 0.1410 0.0412 

Workplace 0.0637 0.0406 0.0687 0.0421 0.0641 0.0506 

Public area on workday 0.0520 0.0520 0.0553 0.0553 0.0524 0.0524 

Public area on weekend 0.0729 0.0729 0.0746 0.0746 0.0836 0.0836 

 

Table S2. Parameters used in the network in three influenza seasons 

 Proposed value  

Symbol 2009-2010 2010-2011 2011-2012 

bp  0.5  0.5  0.5 

  0.283 0.283 0.283

  0.94 0.94 0.94

rc  6.525  6.329  6.286 

tc  1.3006  1.3004  1.2980 

dCc  6.0083 6.0051  6.0150 

dHc  6.1602 6.1409  6.1693 

dWc  6.8051 6.4333  6.7387 

ac  1.0465  1.1208  1.0728 

rb  -0.1289 -0.1255  -0.1210 

tb  0.5142 0.5440  0.5634 

db  -0.1015 -0.1025  -0.1021 

1  [-0.01~ 0.01] [-0.01 ~ 0.01]  [-0.01 ~ 0.01] 

2  [-0.01 ~ 0.01] [-0.01 ~ 0.01]  [-0.01 ~ 0.01] 

 

 



Table S3 Average connections per person and illness attack rate in five key places and in four age 

groups in 2010-2011 influenza season 

 Average connections per person Illness attack rate 

Places 2009-2010 2010-2011 2011-2012 2009-2010 2010-2011 2011-2012 

Child care center 10.18 11.26 12.19 69.65% 79.39% 79.97% 

School 16.49 16.11 17.23 15.83% 14.98% 17.42% 

Workplace 4.26 5.01 5.96 8.88% 9.98% 9.36% 

Public area on workday 4.94 5.62 6.30 6.61% 8.83% 9.72% 

Public area on weekend 7.76 8.01 8.46 7.67% 11.54% 10.73% 

Children (0-4) - - - 59.92% 59.58% 63.55% 

Children (5-17) - - - 15.86% 14.97% 17.43% 

Adults (18-64) - - - 8.83% 9.47% 9.11% 

Seniors (65+) - - - 11.28% 11.26% 12.33% 
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