
SUPPLEMENTARY INFORMATION 
 

Participant Samples 

The schizophrenia (SCZ) GWAS summary statistics results were obtained from the Psychiatric 

Genomics Consortium (PGC) Schizophrenia Work Group1, which consisted of 9,394 cases with 

schizophrenia or schizoaffective disorder and 12 462 controls (52% screened) from a total of 17 

samples from 11 countries. Semi-structured interviews were used by trained interviewers to collect 

clinical information, and operational criteria were used to establish the diagnosis. The quality of the 

phenotypic data was verified by a systematic review of data collection methods and procedures at 

each site, and only studies that fulfilled these criteria were included. Controls were selected from 

the same geographical and ethnic populations as cases. For further details on sample characteristics 

and quality control procedures applied, please see Ripke et al1. 

The bipolar disorder (BD) GWAS summary statistics results were obtained from the PGC 

Bipolar Disorder Working Group 2, which consisted of n=16 731 participants, including 7481 cases 

and 9 250 controls, from 11 studies from 7 countries. Standardized semi-structured interviews were 

used by trained interviewers to collect clinical information about lifetime history of psychiatric 

illness and operational criteria applied to make lifetime diagnosis according to recognized 

classifications. All cases have experienced pathologically relevant episodes of elevated mood 

(mania or hypomania) and meet operational criteria for a BD diagnosis.  The sample consisted of 

BD I (84%), BD II (11%), schizoaffective disorder bipolar type (4%), and BD NOS (1%). Controls 

were selected from the same geographical and ethnic populations as cases. For further details on 

sample characteristics and quality control procedures applied, please see Sklar et al2. 

 The multiple sclerosis (MS) GWAS summary statistics results were obtained from the 

International Multiple Sclerosis Genetics Consortium (IMSGC)3, n=27 148, consisting of 10 299 

cases and 16 849 controls from 15 countries. The diagnosis was obtained using established and 

well-validated criteria that combine clinical and para-clinical laboratory-based information4. For 



further details on sample characteristics and quality control procedures applied, please see Sawcer 

et al3.  

There were 2 974 controls in the SCZ UK case control sample5 and the BD UK case control 

sample2 from the Wellcome Trust Case Control Consortium that were also included in the MS 

GWAS. These constitute 24% of the total number of controls (n=12 462) in the SCZ PGC sample1 

and 32% of the total number of controls (n=9 250) in the BD PGC sample2. Approximately 50% of 

the controls in the BD GWAS were also included in the SCZ GWAS. The relevant institutional 

review boards or ethics committees approved the research protocol of the individual GWASs used 

in the current analysis and all participants gave written informed consent.  

 

 

Conditional Q-Q plots  

Q-Q plots compare a nominal probability distribution against an empirical distribution.  In the 

presence of all null relationships, nominal p-values form a straight line on a Q-Q plot when plotted 

against the empirical distribution. For each phenotype, for all SNPs and for each categorical subset 

(strata), -log
10 

nominal p-values were plotted against -log
10 

empirical p-values (conditional Q-Q plots). 

Leftward deflections of the observed distribution from the projected null line reflect increased tail 

probabilities in the distribution of test statistics (z-scores) and consequently an over-abundance of low 

p-values compared to that expected by chance, also named ‘enrichment’.  

 

Conditional True Discovery Rate (TDR)  

The ‘enrichment’ seen in the conditional Q-Q plots can be directly interpreted in terms of true 

discovery rate (TDR = 1 - FDR)6.  More specifically, for a given p-value cutoff, the FDR is defined 

as 

FDR(p) = π0F0(p) / F(p),  [1]    



where π0 is the proportion of null SNPs, F0 is the null cumulative distribution function (cdf), and F is 

the cdf of all SNPs, both null and non-null7. Under the null hypothesis, F0 is the cdf of the uniform 

distribution on the unit interval [0,1], so that Eq. [1] reduces to 

FDR(p) = π0 p / F(p),   [2]    

The cdf F can be estimated by the empirical cdf q = Νp / Ν, where Νp is the number of SNPs with p-

values less than or equal to p, and N is the total number of SNPs. Replacing F by q in Eq. [2], we 

get   

Estimated FDR(p) = π0 p / q,  [3]    

which is biased upwards as an estimate of the FDR32. Replacing π0 in Equation [3] with unity gives 

an estimated FDR that is further biased upward;  

q* = p/q  [4] 

If π0 is close to one, as is likely true for most GWASs, the increase in bias from Eq. [3] is minimal. 

The quantity 1 – p/q, is therefore biased downward, and hence a conservative estimate of the TDR. 

Referring to the Q-Q plots, we see that q* is equivalent to the nominal p-value divided by the 

empirical quantile, as defined earlier.  We can thus read the FDR estimate directly off the Q-Q plot 

as 

-log10(q*) = log10(q) – log10(p),  [5] 

i.e. the horizontal shift of the curves in the Q-Q plots from the expected line x = y, with a larger 

shift corresponding to a smaller FDR.  This is illustrated in Fig. 1a. For each range of p-values in 

the pleiotropic trait (indicated by differently colored curves), we calculated the TDR as a function 

of the p-value in SCZ and reported it in Figure 1b (Fig. 2 for BD).  

 

Further analyses performed 

Significance of conditional enrichment 

After pruning the SNPs by removing SNPs in linkage disequilibrium (r2 ≥ 0.2), we computed 95% 

confidence intervals for the conditional Q-Q plots. From these confidence intervals we calculated 



standard errors and used two sample t-tests to estimate the difference (degree of departure) of the 

empirical distribution of SNPs in SCZ or BD (phenotype 1) that are above a given association 

threshold (–log10(p) ≥ 1, –log10(p) ≥ 2, –log10(p) ≥ 3, –log10(p) ≥ 4; red lines) in MS (phenotype 2) 

compared to the -log10(p) ≥ 0 in phenotype 1 category (blue line). The same procedure was used for 

the “censored data” of MS conditional on SCZ. Supplementary Figure 1 and 2 indicate the most 

significant difference, as assessed using a two samples t-test, between the red (–log10(p) > 1, 2, 3 or 

4) and blue (-log10(p) > 0) lines along with p-values. This is reflected in the biggest difference 

between the 95% confidence intervals.  

 

Conditional analysis of HLA alleles 

We tested if the associated HLA signals were independent of each other by conditional analysis 

between them. Samples with imputed HLA allele genotypes were combined before the analysis. 

The logistic regression method implemented in PLINK8 was employed to test each significant HLA 

allele for associations with SCZ, including another significant HLA allele,  the first 5 principal 

components and sample indicator variable as covariates. Supplementary Table 3 shows that it is 

more probable that the observed associations were driven by a single haplotype-block, consisting of 

the 5 individual HLA alleles.  

 

The effect of HLA region on enrichment 

Due to the complexity of HLA region and low call rate of the conditional analysis performed only 

on imputed HLA alleles, we cannot exclude the possibility that the other HLA region genes may 

also be associated with SCZ, or, the whole region may be the driver for the observed enrichment.  

We reapplied the enrichment method to same dataset with SNPs either located within the HLA 

region or in LD (r2 > 0.2) with such SNPs (in total 9379 SNPs).  These results indicate that the 

enrichment of SCZ conditional on MS is largely the consequence of the HLA region 



(Supplementary Fig. 6a) whereas, the enrichment pattern of BD is unaffected by the absence of the 

HLA region. This further confirms the important role of HLA region in SCZ pathology.  

To further evaluate the role of the HLA region in SCZ and BD, we removed only SNPs 

located within the 5 HLA genes, which were shown to associate with SCZ by above conditional 

analysis, and other SNPs that in LD (r2 > 0.2) with such SNPs (in total 3480 SNPs). In this setting, 

genetic enrichment in both SCZ and BD was unaffected (Supplementary Fig. 6b) (we should 

include BD as well here just for completeness and also to show contrast with SCZ). This 

corroborates the result of the conditional analysis of HLA allele that the SNPs revealed by our 

pleiotropic enrichment methods are independent of the known alleles comprising the HLA region.  
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