
Generalities and pure diffusion case. The general iMSD approach to STICS was already presented 

elsewhere [1]. Shortly, a temporal stack of images can be used to calculate the image 

spatiotemporal autocorrelation function G(ξ,χ,τ), according to: 
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where I(x,y,t) stands for the fluorescence intensity of the pixel located in the (x,y) position of the 

image at time t, and ξ, χ, τ  represent variable spatial and temporal increments. Following this 

approach [1], the correlation function for a purely diffusing particle has the following form: 
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where: 
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iMSD τ( ) =σ r

2 τ( ) = 4Dτ α +σ 0
2 . (S7b) 

In our approach 2
rσ  is denoted as iMSD since it is conceptually analogous to the mean square 

displacement of single particle tracking analysis. In eq. S7b D is the diffusion coefficient, α takes 

into account the nature of the diffusive process (α =1: isotropic diffusion, α <1 confined diffusion, 

α >1 guided diffusion), g0 is a scaling factor that depends on some intrinsic properties of the 

fluctuations, as well as the average number of particles in the observation volume, and the iMSD 

limit for t →0 parameter σ0 is related to the size of diffusing moiety [1]. Indeed, if σxy  is the spatial 

resolution of the microscope on the focal plane, the diameter d of a diffusing particle can be 

approximated by: 

 d = σ 0
2 −σ xy

2 = iMSD t→ 0( )−σ xy
2 , (S7c) 

Conventionally, eq. S7a-b can be used to fit experimental data in order to recover the diffusion 

parameters. Yet a mathematical transformation of eq. S7a-b affords an alternative (and often 

simpler) way to analyze diffusion data. If we take the time derivative of GD ρ,τ( ) , we obtain: 
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Inspection of eq. S8 indicates that the plot of GD ρ,τ( ) vs. τ at constant ρ is characterized by a 

maximum where the time derivative is null and the following relation holds: 
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With help of S7b, eq. S8 with 2
0

2  σρ > can be written as: 

 ρ2 = 4Dτmax
α   + σ 0

2 , (S10) 

where τmax
α   	
  stands for the time at which the GD(ρ,τ) maximum is observed for a given ρ. Eq.  S10 

shows that we can recover all the relevant diffusion parameters directly from the plot of ρ2 vs.τmax
α   . 

We should note that isotropic diffusion yields a linear dependence of ρ2 from τmax
α   , whereas super 

and sub-diffusion processes are characterized by a non-linear plot. It is also worth to note that the 

plot of ρ2 as a function of τmax
α   coincides formally with iMSD of the diffusive component as 

described in [1]. 

 

Pure binding case. The same theoretical background adopted to recover the diffusion iMSD affords 

also the correlation function for a pure binding process between two species not involving any 

diffusional motion ( ( )τρ,BG ): 
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where τB is the characteristic time of binding. It is worth noting that in equation S8 the time 

dependence is given solely by the decaying exponential containing τB, as the diffusion motion is 

assumed to be absent. Yet, eq. S7c can still be applied to recover the dimension of the spatial region 

where binding takes place. We should note that in this case σ02 represents fully the calculated iMSD 

of the system, i.e.: 

 d = σ 0
2 −σ xy

2 = iMSD−σ xy
2 , (S12) 

 

Mixed binding and diffusion. For an heterogeneous biological context where diffusion and binding 

are intertwined, a closed analytical form of G(ρ,τ) is not available. The system can be nonetheless 

approximated by a sum of individual components, such as: 

 G ρ,τ( ) = AiGi
i
∑ ρ,τ( )  (S13) 
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Where Gi(ρ,τ) represent the correlation function, and iA  is the corresponding amplitude, of the ith 

component. Many factors contribute to determine the absolute amplitude of the single components 

and their full identification has not been accomplished yet for an arbitrary mixture of different kinds 

of motion. It is also worth noting that relation between the correlation amplitude and the molecular 

abundance strictly depends on the kind of dynamics in play. For instance, in the case of a free 

diffusing component, the correlation amplitude is inversely proportional to the number of 

molecules. Conversely, in the case of binding the “contrast” of the fluctuation increases as the 

affinity/binding-time increases, due to the increase of the concentration ratio between the binding 

site and the background. At the same time, the correlation amplitude decreases as the number of 

active binding points increases. Along this reasoning, the interpretation of Ai as absolute or relative 

abundance of a given component should be carefully avoided. Yet, Ai changes in different 

experimental conditions may provide some clues on how the concentration of i component is 

modulated biochemically. 

In some cases fitting of the global correlation function to a sum of components can be a demanding 

issue. Yet we should note that for ρ2»σ0
2 any binding contribution to G(ρ,τ) becomes negligible as 

compared to the diffusing components. In fact, each ( )τρ,BG  describes a Gaussian distribution (eq. 

S6) whose waist does not increase with time as it does for any GD ρ,τ( )  (eq. S7a). Furthermore, 

with the exception of large molecular complexes, the size d of any particle under observation is 

always much smaller than σxy, and we can therefore assume σ0≈σxy. From these considerations, we 

can consider G(ρ,τ) as composed only by diffusing components for ρ2»σxy
2, thereby simplifying 

considerably the initial problem.  

 

FRET-iMSD. The FRET signal due to a molecular complex depends directly on the reversible 

formation/dissociation of the complex itself. This in turn reflects into a temporal decay of the 

probability to find the particles associated to the lifetime (𝜏𝑩) of FRET complex. So, in the case of 

iMSD evaluated in FRET modality (i.e. iMSD calculated on the FRET signal and pertaining solely 

to the complex) we can define a complete correlation function that accounts for both diffusion and 

binding time of the complex as: 
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