- 1 Supporting information
- 23 Supplementary methods
- 4
- 5 File S1

6 I. Calculation of SNPs and construction of consensus sequence

7 a) Quality control and trimming of Illumina raw data

- 8 Correction and trimming of the raw Illumina HiSeq reads with a size of 100 nt obtained from the ~300
- 9 bp PE library sequencing of Pc3 were performed with Trimmomatic v0.30 (Bolger *et al.*, 2014) using
- 10 the following parameters.
- 11 java jar trimmomatic-0.30. jar PE phred33
- 12 NG-6796_Pc3_lib26819_1663_8_1.fastq NG-6796_Pc3_lib26819_1663_8_2.fastq
- 13 NG-6796_Pc3_lib26819_1663_8_1_trimmed_paired.fastq
- 14 NG-6796_Pc3_lib26819_1663_8_1_trimmed_unpaired.fastq
- 15 NG-6796_Pc3_lib26819_1663_8_2_trimmed_paired.fastq
- 16 NG-6796_Pc3_lib26819_1663_8_2_trimmed_unpaired.fastq
- 17 ILLUMINACLIP:Illumina-PE-gDNA.fa:2:30:10
- 18 LEADING:10 TRAILING:10 SLIDINGWINDOW:4:18 MINLEN:50
- 19 The file Illumina-PE_gDNA.fa contains all used Illumina adapters and primers (PCR- and seq-
- 20 Primer). The quality of the processed reads was checked with FastQC.
- 21 ./fastqc ./input/NG-6796_Pc3_lib26819_1663_8_1.fastq
- 22 For the correction and trimming of the raw Illumina HiSeq reads with a size of 50 nt obtained from
- 23 single-end library sequencing of ascospore isolates AS25 and AS25-3 the parameters were adapted to
- 24 library type and read length. An example is given for the reads obtained from AS25-3.
- 25 java -jar trimmomatic-0.30.jar SE -phred33 ./input/NG-
- 26 6879_P2_x_25_AS_3_lib28637_1722_7_1.fastq NG-6879_P2_x_25_AS_3_trimmed.fastq
- 27 ILLUMINACLIP:TruSeq-DNA-SE.fa:2:30:10 LEADING:10 TRAILING:10 SLIDINGWINDOW:4:18
- 28 MINLEN:20

29 b) Mapping of reads on a reference genome sequence

The processed reads obtained from the next-generation sequencing of Pc3, AS25, and AS25-3 were mapped to the P2niaD18 genome sequence (Chaudhuri *et al.*, 2011). Furthermore, processed reads of ascospore isolate AS25 were mapped on the *de novo* assembled contigs of Pc3 (see section II for assembly details) and reads obtained from ascospore isolate AS25-3 were mapped to an afore

- 34 predicted consensus sequence of AS25. Mapping of the 100 nt long reads obtained from Pc3 genome
- 35 sequencing was performed with bowtie2 v2.1.0 (Langmead & Salzberg, 2012) with the following
- parameters. Sorted bam files and index files were created with samtools (Li *et al.*, 2009). The sorted
- bam file was used for SNP calling (see section I d)).
- 38
- 39 bowtie2-build ./input/P2_niaD18.fa P2_niaD18.build
- 40
- 41 bowtie2 -q -p 4 --phred33 -I 50 -X 1000 --fr P2_niaD18.build -1 ./input/NG-
- 42 6796_Pc3_lib26819_1663_8_1_trimmed_paired.fastq -2 ./input/NG-
- 43 6796_Pc3_lib26819_1663_8_2_trimmed_paired.fastq -S Pc3_500PE_vs_P2_niaD18.sam

- 44 samtools view -bS Pc3_500PE_vs_P2_niaD18.sam > Pc3_500PE_vs_P2_niaD18.bam
- 46 samtools sort Pc3_500PE_vs_P2_niaD18.bam Pc3_500PE_vs_P2_niaD18_sorted
- 4748 samtools index Pc3_500PE_vs_P2_niaD18_sorted.bam
- 49

- 50 For the mapping of the 50 nt long reads obtained from the single-end libraries of AS25 and AS25-3
- 51 were mapped with parameters adapted on single-end libraries. An example is given below. The sam
- 52 file was sorted and indexed with samtools like mentioned before.
- 53 bowtie-build2 ./input/P2_niaD18.fa P2_niaD18.build
- 54 bowtie2 -q -p 4 --phred33 P2_niaD18.build ./input/ NG-6879_P2_x_25_AS_3_trimmed.fastq -S
- 55 AS3_vs_ P2_niaD18.sam

56 d) SNP-calling

- 57 SNP calling was performed with mpileup, which is a part of samtools, for all combinations listed in
- 58 Table 1. The resulting vcf files were used as input for custom-made perl scripts. The varFilter option
- 59 was used to filter ambiguous loci and low coverage regions. The value for varFilter was set twice as
- 60 high as the average coverage, calculated from the mapping. On overview of the settings of varFilter
- 61 used for the different analyses is given in the table below.
- 62 samtools mpileup -uD -f P2_niaD18.fa Pc3_500PE_vs_P2_niaD18_sorted.bam | bcftools view -bvgc -
- 63 > Pc3_500PE_vs_P2_niaD18_samtools.raw.bcf
- 64 bcftools view Pc3_500PE_vs_P2_niaD18_samtools.raw.bcf | vcfutils.pl varFilter -D70 >
- 65 Pc3_500PE_vs_P2_niaD18_samtools.vcf

reads of	mapped on	coverage	varFilter	total SNPs
Pc3	P2niaD18	31.4	-D70	33,956
AS25	P2niaD18	22.2	-D50	31,166
AS25	Pc3_assembly	22.8	-D50	4,448
AS25-3	P2niaD18	27.8	-D60	32,426
AS25-3	AS25_consensus	28.0	-D60	17,694

66

67 e) Construction of consensus sequences

- 68 The consensus sequences were constructed with mpileup and bcftools, both parts of samtools, on the 69 basis of afore produced bam files. An example is given below, including the used settings for mpileup
- 70 and beftools. The consensus sequences of Pc3, AS25, and AS25-3 were calculated based on the
- 71 P2niaD18 reference sequences. The consensus sequences were used for comparative SNP analyses as
- 72 described in section II.
- 73 samtools mpileup -uf P2_niaD18.fa Pc3_500PE_vs_P2_niaD18_sorted.bam | bcftools view -cg |
- 74 vcfutils.pl vcf2fq > Pc3_500PE_vs_P2_niaD18_consensus.fq

75 II. *De novo* assembly of the Pc3 genome sequence

- 76 The corrected reads of Pc3 (see section I) were used for an assembly with Velvet 1.2.10 (Zerbino &
- 77 Birney, 2008). The files containing the paired ends were shuffled and printed into a single file.
- 58 shuffleSequences_fastq.pl NG-6796_Pc3_lib26819_1663_8_1_trimmed_paired.fastq
- 79 NG-6796_Pc3_lib26819_1663_8_2_trimmed_paired.fastq
- 80 NG-6796_Pc3_lib26819_1663_8_shuffled_trimmed_paired.fastq

- 81 Unpaired reads were combined to a single file using the cat command inside the Unix prompt.
- 82 cat NG-6796_Pc3_lib26819_1663_8_1_trimmed_unpaired.fastq
- 83 NG-6796_Pc3_lib26819_1663_8_2_trimmed_unpaired.fastq > Pc3_500PE_trimmed_unpaired.fastq
- 84 To define the best kmer size for Velvet, we tested values between 31 and 75.
- 85 ./velveth output 33,81,4 -short -fastq ./input/Pc3_500PE_trimmed_unpaired.fastq -shortPaired -fastq
- $86 \qquad ./input/NG-6796_Pc3_lib26819_1663_8_shuffled_trimmed_paired.fastq$
- 87 ./velvetg output_39 -exp_cov auto -cov_cutoff auto -min_contig_lgth 1000 -ins_length 300
- 88 Afterwards, we used the longest *de novo* assembled contig for mapping of the Pc3 reads, in order to
- 89 predict the average insert length of the library. The insert length was calculated by analyzing the bam-
- 90 file with FastQC v.0.10.1 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Median
- 91 insert length was calculated with 194 bp and mean insert with 182 bp. The median insert length was
- 92 used to optimize parameters for Velvet.
- 93 ./velvetg output_41 -exp_cov auto -cov_cutoff 3 -min_contig_lgth 1000 -ins_length 192

Usage of k-mer sizes greater than 45 shows a decreased value for N50. A k-mer size of 41 works bestfor the 100 nt paired end reads obtained from Pc3.

k-mer size	N50 in bp	Nmax in bp	# of contigs	total length in	number of gaps	length of all gaps in	GC- content
				bp		bp	
33	137,880	444,071	1,158	31,851,520	1,289	31,064	49.0%
35	137,684	439,015	1,175	31,973,965	1,250	31,747	49.0%
37	138,626	550,706	1,155	32,068,751	1,241	33,726	49.0%
39	142,105	550,645	1,142	32,160,114	1,233	35,093	49.0%
41	142,118	663,571	1,151	32,239,728	1,202	36,360	49.0%
43	142,132	492,109	1,162	32,333,719	1,177	36,779	49.0%
45	145,008	634,809	1,173	32,409,287	1,145	37,923	48.9%
47	127,258	634,930	1,178	32,477,933	1,155	40,837	48.9%
49	117,202	634,987	1,222	32,553,588	1,161	41,677	48.9%
53	124,135	663,665	1,253	32,718,008	1,255	47,281	48.9%
57	102,205	435,216	1,307	32,832,883	1,348	54,153	48.9%
61	82,036	410,780	1,432	32,957,557	1,564	65,839	48.9%
65	66,267	342,584	1,555	33,045,434	2,131	90,480	48.8%

96 III. Comparison of SNPs using custom-made Perl scripts

97 In order to identify differently inherited genomic regions inside the genome of ascospore isolate 98 AS25-3 we first calculated the SNPs of the parental strains by mapping AS25 on P2niaD18. After this 99 step, we predicted an AS25-3 consensus sequence based on P2niaD18 and compared the SNPs in the

parental strains with the consensus sequence of the progeny by two custom-made Perl scripts, both areavailable upon request.

The first Perl script (SNP_comparison_vcf2vcf0.pl) reads in the vcf output file form mpileup, containing all SNPs in the parental strains AS25 and P2niaD18, and the sequence file containing the consensus sequence of the progeny AS25-3, which was constructed on the genome sequence of P2iaD18. In order to analyze the four consensus chromosomes of AS25-3 separately, we wrote each of the four consensus sequences into four online formatted fasta files. The perl script compares each SNP of the parental strains with the equivalent position of the consensus sequence of the progeny. Regions

- 108 inside the consensus sequence that show a low coverage $(<5\times)$ or an unclear base calling due to an
- 109 inconsistent mapping were marked by mpileup with small letters or "n", instead of capitalized letters. 110 To avoid a comparison with those regions, the text-based comparison differentiated between capitalize
- 111 and non-capitalized letters. In addition, only parental SNPs with a quality score greater than 50 and an
- 112 allele frequency of 1.0, hereafter referred to as high quality SNPs, were used for further analysis. The
- 113 perl script was designed to compare all parental SNPs to their corresponding position inside the AS25-
- 114 3 consensus sequence, using the reference and alternative nucleotide in column four and five of the vcf
- 115 file. After comparison, the script adds two columns at the end of the vcf file, containing the name
- 116 (P2niaD18 or AS25) of the parental strain that matched to the nucleotide of the consensus sequence 117 and the compared nucleotide that was extracted from the AS25-3 consensus sequence. SNPs that did
- 118 not match to one or the other parental strain were marked with a question mark "?", representing an
- 119 ambiguous result. In addition, a question mark tags all SNPs that were located into regions with a low
- 120 sequencing coverage of AS25-3. The extended vcf file, containing the two additional columns with the 121 information of the origin of the SNPs inside the parental strains and the nucleotide determined from
- 122
- the consensus sequence of the progeny was renamed into vcfo. 123 The second Perl script (sliding-window-vcfo stats origin.pl) uses the vcfo file as input in order to 124 perform a sliding window analysis by counting all SNPs inside a predetermined window. The script 125 prints out the number of SNPs assigned to each parental strain and all inconsistent results inside each
- 126 window and performs a statistical survey. In order to determine the best sliding window sizes for our
- 127 analyses, we performed analyses with 500 bp, 1 kb, 5 kb, 10 kb, 20 kb and 50 kb windows. For 10 kb 128 windows, best resolution was obtained. 500 bp windows were used to analyze putative recombination
- 129 sites in detail. Based on the results of the 10 kb sliding window analysis, a score for each windows
- 130 was determined in order to assign the corresponding sequence to one or the other parental strain. The
- 131 score for each window was defined as the difference of SNPs assigned to each parental strain divided 132 by the amount of total SNPs inside the window. Therefore, the value of the score ranges between -1
 - 133 and 1. The resulting score for each window was used as an indication of the origin of the genomic
 - 134 region. All sliding windows that show a score of -1.0 or 1.0 were clearly and unambiguously assigned
- 135 to one or the other parental strain. Sliding windows with scores between -0.5 and 0.5 were considered
- 136 as not reliable to predict the origin of the sequence. Only windows with scores ranging between -1.0
- 137 and -0.5 or 0.5 and 1.0, respectively, were shown in the figures.

138 Supplementary Tables

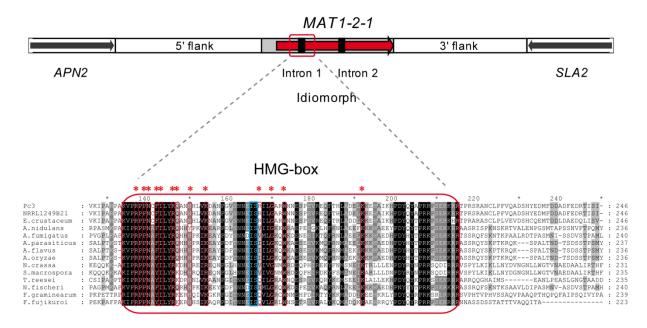
Plasmid	Characteristics	Reference or source
рКОМАТ	5' flanking region of <i>MAT1-2-1</i> , <i>trpC</i> promoter of	Böhm <i>et al.</i> , 2013
	A. nidulans, ble resistance gene of S. hindustanus,	
	3' flanking region of MAT1-2-1	
pT3T7-gpd	gpd promoter of A. nidulans	Böhm <i>et al.</i> , 2013
pDrive-ptrA	ptrA resistance gene of A. oryzae	Böhm <i>et al.</i> , 2013
pPgpd-MAT-2-ptrA	gpd promoter of A. nidulans, MAT1-2-1 gene of	This study
	P. chrysogenum, ptrA resistance gene of A. oryzae	
pKOku70	5' flanking region of <i>Pcku70</i> , <i>trpC</i> promoter of <i>A</i> .	Hoff et al., 2010b
	nidulans, nat1 resistance gene of, 3' flanking	
	region of <i>Pcku70</i>	
pKOku70MAT2	5' flanking region of MAT1-2-1 and MAT1-2-1	This study
	gene, <i>trpC</i> promoter of A. <i>nidulans</i> , <i>nat1</i>	
	resistance gene of, 3' flanking region of Pcku70	
pKompMAT2	5' flanking region of MAT1-2-1 and MAT1-2-1	This study
	gene, <i>trpC</i> promoter of A. <i>nidulans</i> , <i>nat1</i>	
	resistance gene of, 3' flanking region of MAT1-2-1	

139 **Table S1**. List of plasmids used in this study

Strain	Characteristics and genotype	Mating type	Reference or source
Pc3	Wild type	MAT1-2-1	Böhm <i>et al.</i> , (2013)
(syn. IB 08/921)			
NRRL 1951	Wild type	MAT1-1-1	Gailey et al., (1946)
Q176	Derivative of NRRL 1951	MAT1-1-1	Gailey et al., (1946)
Wisconsin 54-1255	Derivative of Q176	MAT1-1-1	Gailey et al., (1946)
P2niaD18	niaD	MAT1-1-1	Hoff <i>et al.</i> , (2008)
AS 25	progeny from Q176 x Pc3	MAT1-2-1	Böhm et al., (2013)
AS25-3	progeny from AS25 x P2niaD18	MAT1-1-1	This study
ΔMAT1-2-1 T10	MAT1-2-1 <i>Δ</i> ::ble		This study
ΔMAT1-2-1 T1	MAT1-2-1 <i>A</i> ::ble; Pcku70A::nat1		This study
ΔMAT1-2-1 T4	MAT1-2-1 <i>A</i> ::ble; Pcku70A::nat1		This study
AMAT1-2-1::MAT1-	MAT1-2-1 <i>A</i> ::ble; MAT1-2-1; nat1	MAT1-2-1	This study
2-1 T24			
AMAT1-2-1::MAT1-	MAT1-2-1 <i>A</i> ::ble; MAT1-2-1; nat1	MAT1-2-1	This study
2-1 T26			
Pc3::MAT1-2-1 T20	Pgpd::MAT1-2-1; ptrA	MAT1-2-1	This study
Pc3::MAT1-2-1 T23	Pgpd::MAT1-2-1; ptrA	MAT1-2-1	This study
Pc3::MAT1-2-1 T26	Pgpd::MAT1-2-1; ptrA	MAT1-2-1	This study
P2::MAT1-2-1 T1	Pgpd::MAT1-2-1; ptrA; niaD	MAT1-1-1	This study
		MAT1-2-1	
P2::MAT1-2-1 T2	Pgpd::MAT1-2-1; ptrA; niaD	MAT1-1-1	This study
		MAT1-2-1	
P2::MAT1-2-1 T5	Pgpd::MAT1-2-1; ptrA; niaD	MAT1-1-1	This study
		MAT1-2-1	
XL1-Blue K12	recA1, endA1, gyrA96, thi1,		Bullock <i>et al.</i> , (1987)
	hsdR17, supE44, relA1, lac-, [F'		
	proAB, laclqZ∆M15, Tn10(tetr)]		

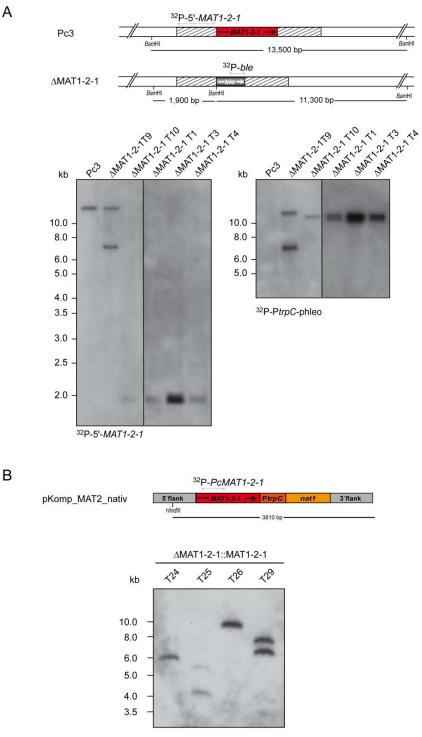
Table S2. List of bacterial and fungal strains used in this study

#	Oligonucleotide	Sequence (5'-3')	Specificity
1	PtrpC_anti1	GGCATTCATTGTTGACCTCCACTAG	<i>trpC</i> promoter
2	Tn5-phleo	GCGCCTGATACAGAACGAATTGC	Ble resistance gene
3	ApaI-MAT2	GGGCCCATGATGGCGAAAACCCTC	MAT1-2-1 gene
4	MluI-MAT2	ACGCGTTTAGAACACGCTGTTCATAG	MAT1-2-1 gene
5	APN1	ACTTTCATCTGGGCCAGCGAGTGG	5' flank MAT1-2 locus
6	SLA2	GCCCGCCAGCGTCTGGGCGAAATG	3' flank MAT1-2 locus
7	MAT1-2-1_f	GCCTTGCCTCAATGGAGTTC	MAT1-2-1 gene
8	PcMAT2_f	CCTTGGTGCACGCTGGAACAAT	MAT1-2-1 gene
9	PcMAT2_r	CCTGATCGTAGAGAATCATCCACTT	MAT1-2-1 gene
10	Pc848_2170_r	CTTGAGTTCATCAGCCAGGTGGGTGA	MAT1-2-1 gene
		ACTG	
11	Pc_HMG_f	CGATGGCGTTCTTGACCTGG	MAT1-2-1 gene
12	Pc_HMG_r	GCCTGAACAAAAGGCAGG	MAT1-2-1 gene
13	PclA_f	TGTGGTATTACCGGGAAGTC	<i>pclA</i> (Pc22g14900) gene
14	PclA_r	ACAATTCGTGCCTCGACTCC	<i>pclA</i> (Pc22g14900) gene
15	Chry1	GAGTTTGACTCGGGTCTTCG	Pc21g16000 gene
16	Chry4	AGCCAATTCCATCTGCTCTG	Pc21g16000 gene
17	PcpenDE_f	CTGCCACCAAAGAGATGATCC	PcpenDE gene
18	PcpenDE_r	CCTGGCGTTGAGCGCAGACCT	PcpenDE gene
19	pcbC_f	CACCCATGGCTTCCACCCCCAAGGCC	PcpcbC gene
		AATG	
20	pcbC_r	GTGCCATGGCTGTCTGGCCGTTCTTG	PcpcbC gene
		TTGATTAGAC	
21	PcFluG_f	CCACCATGCCCATAACCTATTGAA	PcfluG gene
22	PcFluG_r	GCAAATTTCCGATACAAAACCAAC	PcfluG gene
23	flbB_f	GCCAATGGCATGGACCACTC	PcflbB gene
24	flbB_r	TGACCAAGTGCTGTCAAGAG	PcflbB gene
25	nsdD_f	TAGCGTGGCTTCGCCTAATG	PcnsdD gene
26	nsdD_r	TAGAGCACCGAGTAGGGAAG	PcnsdD gene
27	Pc23g00420_f	TAGAGACCACGGTGCCGAAC	Pc2300420 gene
28	Pc23g00420_r	CATTCAAGCGTGCTAGATCC	Pc2300420 gene
29	Pc24g01940_f	GTCAGCACGCCTATAGACAC	Pc24g01940 gene


Table S3. List of oligonucleotides used in this study

	T	1	
30	Pc24g01940_r	CTCAGCAACCGGGATATTTC	Pc24g01940 gene
31	Pc12g12190_f	GCCTTCCAGCTATGCCTACG	<i>PcflbC</i> gene
32	Pc12g12190_r	ACGCCCAGGTCTAGCGAAAG	<i>PcflbC</i> gene
33	Pc13g04920_f	TGAGCAACCAGCGCTCAATG	PcstuA gene
34	Pc13g04920_r	CTTGCGCCTAGTTCTCCTCC	PcstuA gene
35	RT-MAT1-2-1_f	TGCCTTTTGTTCAGGCTGATT	MAT1-2-1 gene
36	RT-MAT1-2-1_r	AGTGAAAGGGGGGAGAGAGTGG	MAT1-2-1 gene
37	RT_fphA_f	CGCTCCCCAGTATTCGGGTT	PcfphA gene
38	RT_fphA_r	TTCAGGATCGGGGTGTTCGG	PcfphA gene
39	RT_lreB_f	GGAACTACGGGGTGCAAGGT	PclreB gene
40	RT_lreB_r	CGACGGGTTGGCATAGGTGA	PclreB gene
41	RT_cryA_f	CGCAGCCCTATTTCCGCATC	PccryA gene
42	RT_cryA_r	GGCCTGGGGTAGCCATTCTT	PccryA gene
43	RT_PcbrlA_f	GTGACCCCTCCTTCTTCGTC	PcbrlA gene
44	RT_PcbrlA_r	GTCTGACCCTGAGGGAGTAC	PcbrlA gene
45	NcSSU1	ATCCAAGGAAGGCAGCAGGC	small subunit ribosomal
			RNA
46	NcSSU2	TGGAGCTGGAATTACCGCG	small subunit ribosomal
			RNA
47	Pc3-contig_24_f	ACTTGGTTGTGCCTGTGTTG	Chromosomal
			translocation
48	Pc3-contig_24_r	GGCTGTGGCGTAACTGTATG	Chromosomal
			translocation
49	Pc3-contig_35_f	AGTGGAAGTTCGGCCTGAAC	Chromosomal
			translocation
50	Pc3-contig_35_r	TCTACAGGACACGTGAGCAC	Chromosomal
			translocation
51	AS25_chrI_1_f	TTCCTTGTCGGGCTTGTACC	Verification of
			recombination
52	AS25_chrI_1_r	AGAGGATCGTGATGACCGAG	Verification of
			recombination
53	AS25_chrII_1_f	CCTACCAACCTTGTTCAGAC	Verification of
			recombination
54	AS25_chrII_1_r	AGTTACTCCACCGAGTCTGC	Verification of

			recombination
55	AS25_chrII_2_f	ATAGTCATCGGCAACCAGTC	Verification of
			recombination
56	AS25_chrII_2_r	ATGGGTCTCATGATTCCACG	Verification of
			recombination
57	SNP_check1_f	GACCAACACATCGCCAAACG	Verification of SNPs
58	SNP_check1_r	GGATGACAAGGTACCTGTGC	Verification of SNPs
59	SNP_check2_f	CTTCTGCATCCTGCGATACC	Verification of SNPs
60	SNP_check2_r	AGATCTGGCCATAGGAGTGC	Verification of SNPs
61	SNP_check3_f	AGTCAACGTCACCTCGACAG	Verification of SNPs
62	SNP_check3_r	CTACACCACGAACGAGAGTC	Verification of SNPs
63	SNP_check4_f	ACATTCCGGAACGAGGAAGC	Verification of SNPs
64	SNP_check4_r	CTCGGCATGTCAAAATCTGG	Verification of SNPs
65	SNP_check5_f	CATACCGCACCAAACACCTG	Verification of SNPs
66	SNP_check5_r	ACCCTCCTCCTCTTCAACTG	Verification of SNPs
67	SNP_check6_f	CTCTGCCATTCCTCTTGGTC	Verification of SNPs
68	SNP_check6_r	GCTGTGGATCAAAGGCAAGC	Verification of SNPs
69	SNP_check7_f	TATCTGGCATGGGCTCTTCG	Verification of SNPs
70	SNP_check7_r	TGCAAGTGCCATTCTGGGTC	Verification of SNPs
71	SNP_check8_f	ACGTTCCGATGACTCGCATC	Verification of SNPs
72	SNP_check8_r	ATTGCCTGCGGTCACAGATG	Verification of SNPs
73	SNP_check9_f	TCAAGGAGAAGGTCGACGAC	Verification of SNPs
74	SNP_check9_r	GAGGCAGCAACTGTTCCAAG	Verification of SNPs
75	SNP_check10_f	GTCGATACACCGTCAACGTG	Verification of SNPs
76	SNP_check10_r	GATACGGCCTTACCTTGTCC	Verification of SNPs
77	SNP_check11_f	GCGTATTGAATCCGCTTAGC	Verification of SNPs
78	SNP_check11_r	GATAGCTATAGCGGGACAGC	Verification of SNPs
79	SNP_check12_f	GAAGCTAGGATATGGGAGAG	Verification of SNPs
80	SNP_check12_r	CACCTCGCTTGTGAAATACG	Verification of SNPs
81	SNP_check13_f	GCAACATCTGGATAGGCACG	Verification of SNPs
82	SNP_check13_r	GCAATGTGGCGTGTATGACC	Verification of SNPs
83	5FMAT2inf_f	CGGTACCACGCATGCTGCAGGTTAAT	5' flank and MAT1-2
		TGAGCACGGAGAG	locus
84	5FMAT2inf_r	CACGAATTCTGGATCGCTGAGCCGAG	5' flank and MAT1-2


		TCGAAATTG	locus
85	3FMAT2inf_f	GCCCATCTGAATTCGTCGAATGTCCC	3' flank MAT1-2 locus
		ATTCACAAT	
86	3FMAT2inf_r	CGAGAAGCTTGTCGATGTATCTTTCC	3' flank MAT1-2 locus
		CTCTTGGCT	

144 **Supplementary Figures**

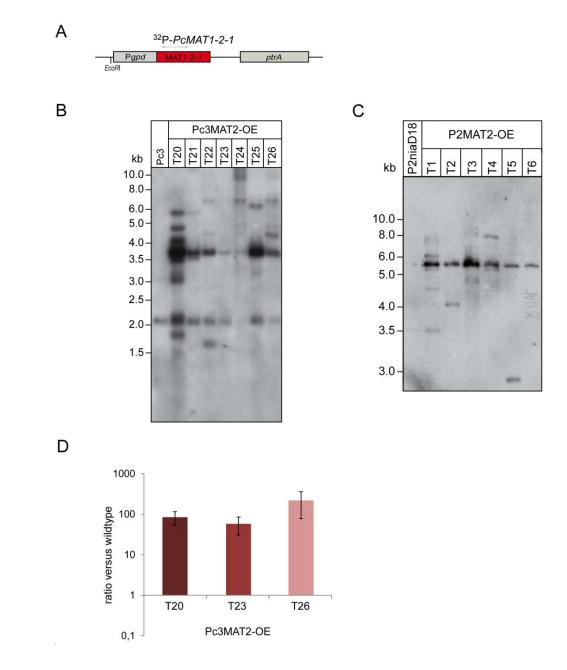

145 146

Fig. S1. Genomic organization of the MAT1-2 locus and a multiple alignment of the HMG 147 domain proteins. The MAT1-2 protein sequence of Pc3 is compared to HMG mating-type proteins from the Fleming isolate NRRL1249B21 and other ascomycetes. Red: the HMG-box 148 149 domain. Asterisks: DNA binding sites. Blue: the conserved isoleucine-serine motif, upstream 150 of the conserved intron.

153 Fig. S2. Construction of Δ MAT1-2-1 and complementation strains. A. Organization of the 154 MAT1-2 locus in the reference strain, Pc3, and the derived knockout strains. The corresponding Southern hybridization confirmed the knockout and the phleomycin resistance 155 cassette. B. Southern hybridization with MAT1-2-1-specific probes to verify successful rescue 156 157 of the deletion strain.

A

160 Fig. S3. Construction of MAT1-2-1 overexpression strains. A. Overexpression construct 161 generated to complement MAT1-2-1 deletion strains. The MAT1-2-1 gene is under the control 162 of the gpd promoter of A. nidulans. B. Southern hybridization verifies ectopic integration of the MAT1-2-1 gene into strain Pc3 with ³²P-labeled probes specific for MAT1-2-1. C. 163 Southern hybridization with ³²P-labeled probes specific for MAT1-2-1 verifies ectopic 164 integration of MAT1-2-1 in P2niaD18. D. qRT-PCR analysis of MAT1-2-1 in overexpression 165 166 strains. Transformants were grown in liquid shaking cultures for 72 h. Values represent 167 average expression ratios of at least two biological replicates from three MAT1-2-1 168 overexpression (reddish) strains (n = 2), relative to reference Pc3.

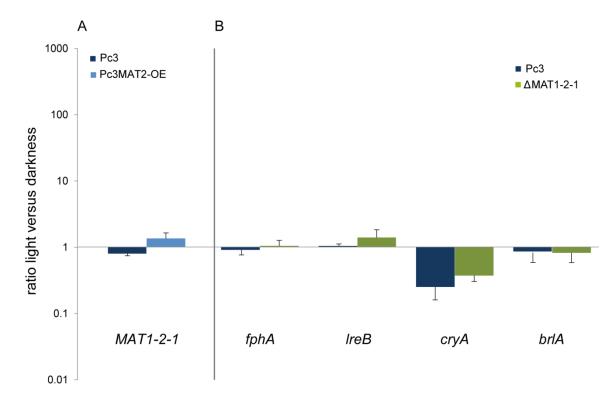
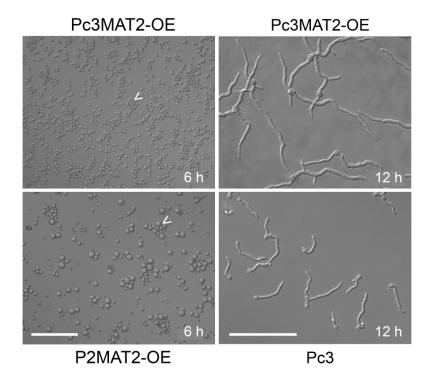
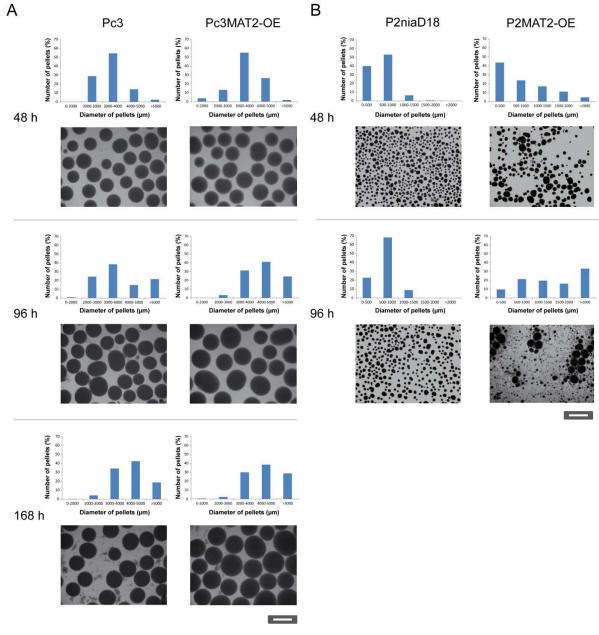
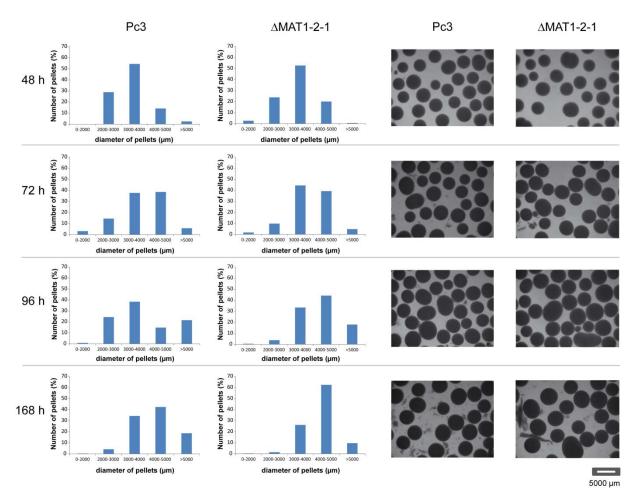
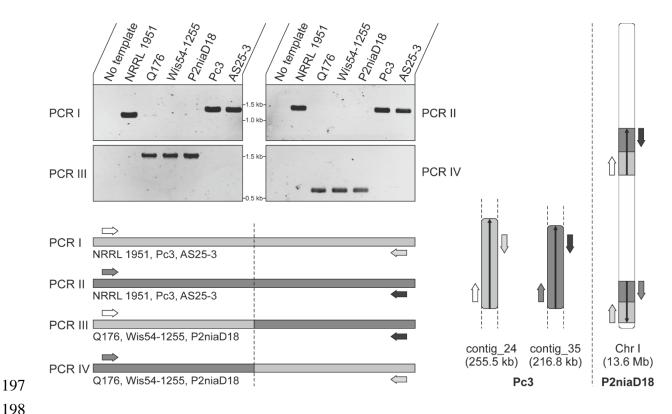




Fig. S4. Analysis of light-dependent transcriptional expression. qRT-PCR was conducted to measure *MAT1-2-1* (A) or *fphA*, *lreB*, *cryA* or *brlA* (B) expression in strains as indicated. Values represent average expression ratios of at least two biological replicates from three independently derived strains (n = 3).



176 Fig. S5. Overview to demonstrate agglutination of conidiospores (Pc3MAT2-OE, P2MAT2-

- 177 OE) and formation of one or two biopolar germ tubes (Pc3MAT2-OE, Pc3). Arrowheads point
- 178 to agglutinated conidiospores. Scale bars correspond to $100 \,\mu m$ in all images.
- 179



181 Fig. S6. Pellet formation in liquid shaking cultures formed by reference and recombinant 182 MAT1-2 and recombinant MAT1-1 strains. A. Quantification of pellet diameters formed from 183 MAT1-2-1 overexpression strains in the Pc3 background in liquid shaking CCM cultures. 184 Measurements were taken at three different time points, as indicated. Error bars represent the 185 mean \pm SD of 240 random pellets from three independent strains. **B**. Quantification of pellet 186 diameters formed from MAT1-2-1 overexpression strains in the P2niaD18 background in 187 liquid shaking CCM cultures. Measurements were taken at two different time points, as 188 indicated. Error bars represent the mean \pm SD of 240 random pellets from three independent 189 strains.

190

Fig. S7. Pellet formation in liquid shaking cultures. (Left) Quantification of pellet diameters formed from *MAT1-2-1* deletion strains in liquid shaking CCM cultures. Measurements were taken at four different time points, as indicated. Error bars represent the mean \pm SD of 240 random pellets from three independent strains. (Right) The pellet phenotypes are illustrated with representative micrographs.

199 Fig. S8. Verification of a chromosomal rearrangement in wild-type and penicillin-production 200 strains by PCR analysis. The wild-type strains, NRRL 1951 and Pc3, and ascospore isolate, 201 AS25-3, show the same chromosomal structure; in contrast, all low- and high-penicillin 202 producers of the Wisconsin lineage (Q176, Wisconsin54-1255, and P2niaD18) have a 203 different chromosomal organization at this locus. Primers for PCR amplification are marked 204 by different shading, and binding sites are shown on chromosome I of P2niaD18 (Specht et al. 205 2014) and contig_24 and contig_35 of wild type Pc3.

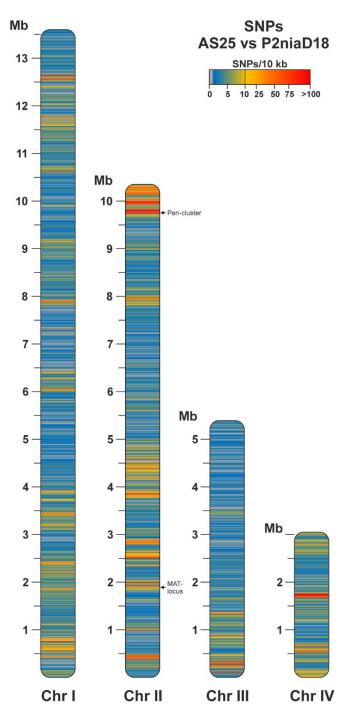
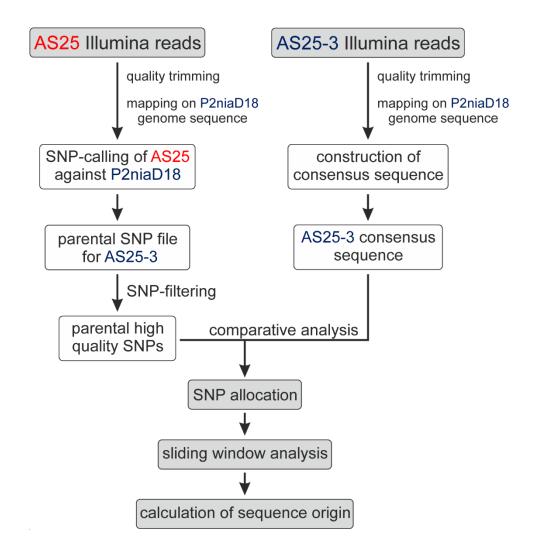



Fig. S9. Comparison of AS25 sequence to the published sequence of P2niaD18 (T. Specht *et al.* 2014). Genome sequencing of AS25 reveals a high number of single nucleotide polymorphisms (SNPs) compared to the industrial strain. The number of SNPs within 10 kb windows is indicated with color. Locations of genes of particular interest are highlighted.

212 213

214 Fig. S10. Flow chart of bioinformatic analysis to identify differently inherited genomic 215 regions in AS25-3. Illumina reads of ascospore isolates AS25 and AS25-3 were trimmed and 216 mapped on the P2niaD18 reference genome sequence (MAT loci are indicated by colors: blue 217 for MAT1-1, and red for MAT1-2). SNPs in the parental strains P2niaD18 and AS25, and the 218 AS25-3 consensus sequence were predicted. To clearly assign SNPs on the AS25-3 genome, 219 comparative analysis were performed using parental high-quality SNPs (quality score >50, 220 and allele frequency = 1.0). After SNP allocation, sliding-window analysis provides the basis 221 to calculate differently inherited genomic regions inside AS25-3.

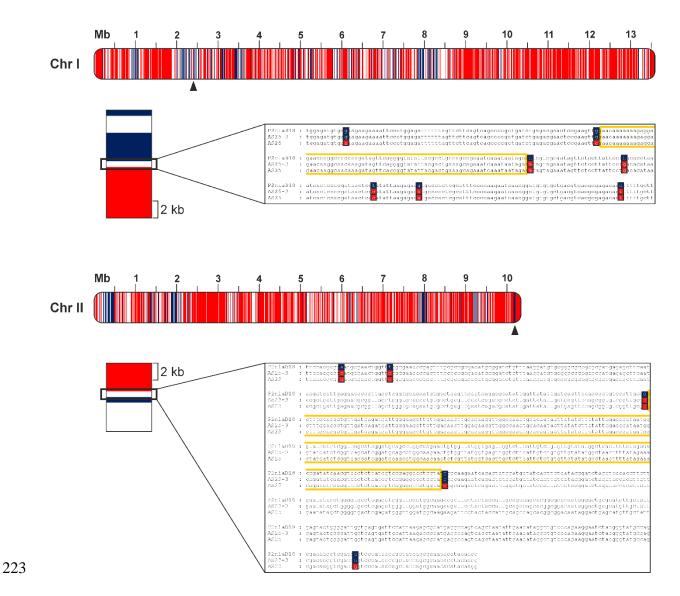


Fig. S11. Sequence validation of recombinant sites in the ascospore progeny AS25-3. Appropriate PCR amplicons from AS25-3, AS25, and P2niaD18 were used for Sanger sequencing and further comparison (positions are indicated by triangles). Differently inherited regions are indicated by colors: blue for P2niaD18, red for AS25. Yellow frames mark the recombination sites between two differently inherited SNPs.