AMBIO

Electronic Supplementary Material This supplementary material has not been peer reviewed.

Title: On the scope and management of pesticide pollution of Swedish groundwater resources: The Scanian example.

Authors: Maria Åkesson, Charlotte J. Sparrenbom, Peter Dahlqvist, Stephen J. Fraser

Well	³Н	Tritiogenic ³ He	³ H- ³ He age
	(TU)	(TU)	(years)
Ι	8.27	а	n.a. (but ³ H alone indicates predominantly modern water)
2	7.19	2.8	6
3	7.00	2.0	5
4	6.26	22.4	27
5	6.92	9.5	15
6	6.78	7.6	13
7	0.10	a	n.a. (but ³ H alone indicates old water)
8	0.02	a	n.a. (but ³ H alone indicates old water)
9	6.86	5.7	H
10	5.96	6.2	13
П	7.60	0.5	I
12	5.23	15	24
13	7.62	0.8	2
14	5.32	14.6	23
15	6.28	6.6	13
16	6.67	4.1	9
17	11.94	130.1	44
18	0.53	3.7	37 (but ³ H alone indicates predominantly old water)
19	0.30	a	n.a. (but ³ H alone indicates predominantly old water)
20	7.52	15.5	21
21	7.94	3.0	6
22	7.63	a	n.a. (but ³ H alone indicates predominantly modern water)
23	6.98	2.9	6

³H-³He analysis results. Tritiogenic ³He is calculated based on an estimated recharge temperature (8°C) and altitude (40 m a.s.l.).

^a Non-quantifiable

Table SI

Table S2

Substances included in the adjusted data set, with information of type (H = herbicide, I = insecticide) and use (N = prohibited and not in use, Y = permitted and in use at time of sampling).

Substance	Туре	In use
2,4-D	Н	Ν
Atrazine	н	Ν
Atrazine-desethyl	o	••
Atrazine-desisopropyl	0	•
BAM	н	Ν
Bentazone	н	Y
Cyanazine	н	Ν
Dichlorprop	н	Ν
Dimethoate	I	Ν
Ethofumesate	н	Y
Fenoxaprop	н	Y
Isoproturon	н	Y
MCPA	н	Y
Mecoprop	н	Y
Metamitron	н	Y
Metazachlor	н	Y
Metribuzin	н	Y
Quinmerac	н	Y
Simazine	н	Ν
Terbuthylazine	н	Ν

Table S3

Results of the pesticide analyses conducted as part of this study.

Well	Detection (concentration; μg L ⁻¹)		
I	atrazine (0.001ª), metalaxyl (0.002ª)		
2	atrazine (0.003), BAM (0.009ª), bentazone (0.069)		
3	atrazine (0.018), atrazine-desethyl (0.023), BAM (0.017), terbuthylazine (0.002), terbuthylazine-desethyl (0.005)		
4	atrazine (0.004), BAM (0.007ª)		
5	atrazine (0.002), atrazine-desethyl (0.009ª), BAM (0.024)		
6	atrazine (0.006), atrazine-desethyl (0.006ª), BAM (0.006ª)		
7			
8			
9	bentazone (0.008ª)		
10			
П	BAM (0.007 ^a)		
12	atrazine (0.003), atrazine-desethyl (0.004²), bentazone (0.15), terbuthylazine (0.006), terbuthylazine-desethyl (0.001²)		
13	bentazone (0.026)		
14			
15	bentazone (0.004ª), quinmerac (0.001ª)		
16	atrazine (0.001ª), atrazine-desethyl (0.002ª), metalaxyl (0.001ª), terbuthylazine-desethyl (0.005)		
17	atrazine (0.005), atrazine-desethyl (0.1), BAM (0.051), terbuthylazine-desethyl (0.001ª)		
18	atrazine (0.004), atrazine-desethyl (0.009³), BAM (0.008³), bentazone (0.04)		
19	BAM (0.003ª), mecoprop (0.006ª)		
20	atrazine-desethyl (0.008ª), BAM (0.065), terbuthylazine-desethyl (0.003)		
21			
22	atrazine (0.005), atrazine-desethyl (0.006ª), BAM (0.019)		
23	BAM (0.006ª), imidacloprid (0.067), simazine (0.001ª)		

Trace level detection