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SUPPLEMENTARY METHODS 

Plasmids 

Vectors for expression of h9/14, h9/14A5, h9-3A/14 were described in (1,2). 

Plasmids encoding the eukaryotic translation initiation factors eIF1, 1A, 4A, 4B, 4G, 

5, 5B and Escherichia coli Met-tRNA synthetase were described in (3). pGL3R-βglo, 

pGL3R-βact, pGL3R-L1, pGL3R-HCV, pGL3R-EMCV, pGl3R-CrPV were the kind gift 

of Dr. Sergey Dmitriev (4). PCR fragments amplified from these constructs and 

containing the Firefly luciferase ORF fused to 5ʼ-UTRs of β-globin, β-actin, LINE-1, 

HCV IRES or CrPV IRES under the control of SP6 promoter was inserted to pUC18 

plasmid digested by HindIII and EcoRI to generate pUCβglo, pUCβact and pUCL1, 

and by PstI and EcoRI to generate pUCHCV and pUCCrPV. Vectors for in vivo 

expression of monocistronic mRNAs containing Firefly luciferase ORF fused to 5ʼ-

UTRs of β-globin, β-actin and LINE-1 were prepared by insertion of PCR fragment 

containing respective 5ʼ-UTRs to pGL3R-EMCV digested by AflII and NcoI to remove 

upstream Renilla luciferase ORF and EMCV IRES. Plasmid pCrPV-VHLM was 

constructed by insertion of T7 promoter, CrPV IRES nucleotides 6028 to 6216 

followed by a short ORF encoding Val-His-Leu-Met tripeptide, UAA stop codon and 

100 nt random sequence taken from β-glucuronidase (GUS) gene, into the pUC18 

vector. Plasmids pscAluYb8, pscAluYf2, pscAluYj4 were obtained from the plasmids 

pscAlu/α-feto and pSscAlu/LDL (1) using quick change protocol. pSAlu110 and 

pSAlu151 contained the Alu portion of 7SL RNA gene (nucleotides 1-74; 271-299 

and 1-99; 251-299, respectively) with a closing loop GATT following position 74 or 

99, preceded by the T7 promoter. 



 3 

The pDLscAlu construct for scAluYNF1 RNA expression in cell lines was 

obtained by removing the neoTet reporter gene, Alu right arm and the internal A-rich 

linker from Alu-neoTet plasmid (5). The pDLscAluG25C construct was derived from 

pDLscAlu using the quick change protocol. Vector control plasmid pDL7enh was 

generated by digestion of pDLscAlu plasmid at EagI/EcoRI sites to remove the 

scAluYNF1 RNA coding sequence, followed by treatment with DNA Polymerase I, 

Large (Klenow) Fragment (Promega, Madison, WI) and ligation with T4 DNA ligase 

(Promega). Constructs for in vivo expression of 4.5S RNA and 7SL RNA were 

obtained by digestion of pDLscAlu with EagI and SpeI and insertion of the PCR 

fragment amplified from pS4.5S and p7Sswt (1), respectively. 

In vitro transcription  

Run-off in vitro transcription reactions were performed as described in (6,7). For 

[32P]-MVHL-stop mRNA synthesis [32P]-UTP was added to the transcription reaction. 

Preprolactin and MVHL-stop mRNAs were synthesized with SP6 RNA polymerase 

from plasmids pSP-BP4 (8) and MVHL-stop (9) linearized with EcoRI and XhoI. 

Capped and uncapped RNAs encoding Firefly luciferase fused to various 5ʼ-UTRs 

were synthesized with SP6 RNA polymerase from plasmids pUCβglo, pUCβact, 

pUCL1, pUCCHV and pUCCrPV linearized with EcoRI. HCV-NSʼ and CrPV-VHLM 

mRNAs were synthesized with T7 RNA polymerase from plasmids pXL.HCV(40-

373).NSʼ (10) and pCrPV-VHLM linearized with EcoRI and SspI, respectively. The 

mRNAs were purified by LiCl precipitation, G50 sepharose chromatography, ethanol 

precipitation, and resuspended in water. Non-coding AluYA, scAluYA, scAluYL, and 

4.5S RNAs were synthesized with T7 RNA polymerase from plasmids pPAlu, 

pPscAlu/a feto, pSscAlu/LDL and pS4.5S (1) linearized with SspI, SpeI, SpeI and 
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DraI, respectively. SA110, SA151 and SA86 RNAs were synthesized in the same 

way from plasmids pSAlu110, pSA151 and pSA86 linearized with XbaI. Non-coding 

RNAs were purified on a preparative denaturing polyacrylamide gel as described 

(11).  

Purification of proteins, RNPs, ribosomal subunits 

Expression and purification of recombinant translation initiation factors eIF1, 1A, 4A, 

4B, 4G, 5B, 5 and Escherichia coli Met-tRNA synthetase and purification of eIF2, 

eIF3, eEF1H, eEF2, 40S and 60S ribosomal subunits was performed as described in 

(3). Expression and purification of the recombinant eIF4GI738-1116 was done as 

described in (12). Human recombinant SRP9 and SRP14 proteins and their mutated 

forms were obtained as described previously (2) with minor modifications in 

purification procedure. Lysates of SRP9- and SRP14-overexpressing BL21pLysS 

cells were combined and SRP9/14 was purified by heparin-sepharose affinity 

chromatography, the eluted protein was dialysed against 50 mM Hepes pH 7.5, 300 

mM potassium acetate, 1 mM EDTA, 0.01% Nikkol, 10 mM DTT and further purified 

by ion-exchange chromatography on cation exchanger (MonoS 5/50 GL, GE 

Healthcare). Fractions containing SRP9/14 were pooled and dialysed against 20 mM 

Hepes pH 7.5, 500 mM potassium acetate, 0.01% Nikkol, 10 mM DTT, 10% glycerol.  

Alu RNPs were assembled in the buffer containing 20 mM HEPES, 500 mM 

potassium acetate, 5 mM magnesium acetate, 0.1% Nikkol and 4 mM DTT and 

purified on Superdex 200 column as described in (11). High salt concentration was 

used to ensure a 1:1 stoichiometry and to avoid nonspecific binding of an additional 

molecule(s) of SRP9/14 to Alu RNA. Resulting RNPs were then dialyzed against 

buffer (20 mM HEPES, 150 mM potassium acetate, 1.5 mM magnesium acetate, 
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0.01% Nikkol, 4 mM DTT and 10% glycerol). The concentrations of the RNPs were 

determined based on the optical absorption of the RNA at 260 nm and were 

confirmed electrophoretically by comparing the RNA and protein contents of the 

RNPs to equal amounts of RNA and protein alone. All RNPs were examined for RNA 

integrity by denaturing polyacrylamide gel electrophoresis and the formation of the 

stoichiometric complexes with h9/14 was confirmed by Western blot analysis using 

anti-h14 antibodies. 

Aminoacylation of the tRNA 

Total calf liver tRNA (Novagen) was purified by size-exclusion chromatography 

through Superdex 200 column (GE Healthcare) and aminoacylated with rabbit 

aminocyl tRNA synthases from RRL and a mix of 22 amino acids. tRNAi
Met from E. 

coli (a kind gift of Dr. Vasily Haurilyuk) was aminoacylated with methionine or [35S]-

methionine using E. coli methionyl-tRNA synthetase. Aminoacylation reactions were 

performed according to the previously described protocol (3).  

Toeprinting analysis of ribosomal complexes 

Translation complexes were analyzed by toeprint assay using fluorescently labeled 

DNA oligonucleotides: 5′ [6-carboxyfluorescein] (FAM)-GCATGTGCAGAGGACAGG 

3′ for MVHL-stop mRNA, 5′ (FAM)-GGGATTTCTGATCTCGGCG 3ʼ for HCV-NSʼ 

mRNA, 5′ (FAM)-TTAATGCGTGGTC 3ʼ for CrPV-VHLM mRNA.  

Ribosome binding assay 

Binding assays were performed in 30 µl by combining 3 pmols of purified ribosomal 

subunits or 43S complex with 3 pmols of scAluYA/SA110 RNP or h9/14 in the binding 

buffer containing 20 mM Tris-HCl pH 7.5, 150 mM potassium acetate, 1.5 mM 
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magnesium acetate, 2 mM DTT, 0.01% Nikkol. The mixtures were incubated for 10 

min. at 37°C, adjusted to 100 µl and centrifuged through 5-20% sucrose gradient 

containing 20 mM Tris-HCl pH 7.5, 100 mM potassium acetate, 5 mM magnesium 

acetate, 2 mM DTT at 60000 rpm for 2 hours at 4°C in a Beckman SW60 rotor. To 

reassemble 80S ribosomes from high-salt purified 40S and 60S the subunits were 

incubated in equimolar amounts for 10 min. at 37°C in buffer containing 20 mM Tris-

HCl pH 7.5, 150 mM potassium acetate, 1.5 mM magnesium acetate, 4 mM DTT. 

Then equimolar amount of scAuYA RNP or h9/14 was added and reaction was 

incubated for another 10 min. in the binding buffer before centrifugation through 10-

30% sucrose gradients at 40000 rpm for 5 hours in a Beckmann SW41 rotor. 

Fractions were analyzed for the presence of h14 and S15 or L9 by Western blotting 

and for scAlu or SA110 RNA by Northern blotting. 

Cell culture 

HEK293T cells were cultivated in DMEM supplemented with 10% fetal bovine serum, 

2mM L-glutamine, 100 units/ml penicillin and 100 μg/ml streptomycin. 

Polysome fractionation 

HEK 293T cells were incubated 10 min. with 100 µg/ml cycloheximide and lysed in 

50 mM Tris-HCl (pH 7.5), 15 mM MgCl2, 100 mM potassium acetate, 0.5% NP-40, 2 

mM DTT, 100 µg/ml cycloheximide, spun at 10000 x g for 5 min. and loaded on 7-

50% linear sucrose gradients (50 mM Tris-HCl pH 7.5, 100 mM potassium acetate, 

12 mM MgCl2, 2 mM DTT) and centrifuged at 35000 rpm in a SW41 rotor for 3.5 

hours. Following centrifugation gradients were displaced with 60% sucrose solution 

through a flow cell recording absorbance at 254 nM.  
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Nothern blot 

Total cellular RNA was extracted using Tri-reagent (Sigma-Aldrich, St. Louis, MO), 

separated on 1% agarose-formaldehyde gel and transferred to Hybond-N membrane 

(GE Healthcare, Waukesha, WI). The following radiolabeled oligonucleotides were 

used for detection: 5ʼ ATCGGGTGTCCGCACTAAG 3ʼ for 7SL RNA, 5ʼ 

TCACCATGTTAGCCAGGATGGT 3ʼ for scAluY RNA, 5ʼ 

GGGCATCACAGACCTGTT 3ʼ for 18S rRNA, 5ʼ 

TCCCGAGTAGCTGGGACTACAGG 3ʼ for SA110 RNA, 5ʼ 

GCCCAGGCTGGCCTCGAACTCGTG 3ʼ for 4.5S RNA. 
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Fig. S1: Preparation of Alu RNPs 

(A) Schematic representation of the Alu RNP purification procedure with a typical OD260 elution profile of a 

Superdex 200 column. 

(B) Denaturing polyacrylamide gel electrophoresis of 150 ng of AluYA RNP and scAluYA RNP after proteinase K 

digestion. The concentration of RNPs was estimated by OD260 measurement. Same amounts of AluYA RNA and 

scAluYA RNA were loaded on the gel as a control of quantification.

(C) Immunoblotting of 50 fmols of AluYA RNP and scAluYA RNP with anti-h14 antibodies.

Fig. S1, Ivanova et al.
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Fig. S2: Alu RNPs dose-dependently inhibit 48S complex formation and do not affect assembly of the 80S 
and pretermination complexes. 

(A) and (B) Representative autoradiographs from experiments described in Figure 1B. Concentrations of RNPs 
and translation efficiencies of pPL mRNA are indicated below.

(C) Representative autoradiograph from experiments described in Figure 1C. RRL programmed with pPL mRNA 
was incubated 3 min. prior to addition of 0.5 µM edeine. Alu RNPs were added after 1 min. incubation with edeine. 

(D) Electropherograms of toeprint assays of the MVHL mRNA in the absence of 40S and initiation factors and upon 
the 48S assembly on it.
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Fig. S4.  Analysis of Alu RNPs containing mutated h9/14.
(A) Denaturing polyacrylamide gel eletrophoresis after proteinase K digestion (left panel) and Western blot analysis 
with anti-h14 antibodies (right panel) of scAluYA , scAluYA 14A5, scAluYA 9-3A RNPs. 
(B) Representative autoradiographs from experiments described in Figure 2E. Translation efficiencies of pPL mRNA 
are indicated below.
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(A) Representative autoradiographs from experiments described in Figure 4A. Translation efficiencies of 
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(B) Toeprint analysis of the CrPV-VHLM mRNA in the absence and in the presence of 40S subunits. No 

toeprints were observed at the position of the 48S complex in the absence of 40S.
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Fig. S6. Binding of h9/14 and scAlu YA RNP to 40S subunits. 

Two-fold molar excess of h914 (A) or scAlu YA RNP (B) was incubated with 3 pmols of high-salt purified 40S for 10 

min. at 37˚C and fractionated on 5-20% sucrose gradients. 40S-containing fractions were determined by probing for 

S15. 

h14
1 2 3 4 5 6 7 8 9 10 11 12 13 14

h14

scAluYA RNP + 40S

Fig. S6, Ivanova et al.

40S

h9/14 + 40S



Fig. S7. Representative autoradiographs from the experiments described in Figure 5C. Translation efficiencies of 

pPL mRNA are indicated below.
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Fig. S8. Expression of Alu RNA affects translation in HEK 293T cells.

(A) Northern blot analysis of luciferase reporter mRNAs in HEK 293T cells expressing ncRNAs.

(B) Representative autoradiograph (left panel) and coomassie blue staining (right panel) following SDS-PAGE 
of lysates of HEK 293T cells transfected with pDLscAlu or empty vector (Ctrl). Cells were harvested 48 hours 
post transfection.

(C) Polysome profiles from HEK 293T cells in the absence of arsenite treatment (left panel) and cells 
incubated with 0.5 µM sodium arsenite for 30 min. and allowed to recover for another 60 min. Cell lysates were 
fractionated on 7-50% sucrose density gradient.

(D) Northern blot analysis of transiently transfected HEK 293T cells after arsenite treatment. Cells were treated 
with 500 µM sodium arsenite for 30 min. at 48 hours post transfection and allowed to recover for the indicated 
times. 

(E) Northern blot analysis of transiently transfected HEK 293T cells after VSV infection for 6 hours.
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Fig. S9. Basic oligopeptides are found in many ribosome ligands and ribosomal proteins.
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