
COMPUTATIONAL METHODS 

 

Latin Square Design 

Our Latin Square Design (LSD) for experimental planning of multiplexed studies is based on the 

principle of Latin squares51 and should more formally be called a binary semi-magic square. In order 

to fully understand the principles of this design, we first introduce some formal notations. We consider 

an experimental planning as a 𝑓×𝑟 matrix 𝑬 of binary integers, with 𝑓 ∈   ℝ being the number of 

available forward tagged primers and 𝑟 ∈   ℝ the number of reverse tagged primers. To simplify 

further computations, we also only consider square design matrix, i.e. 𝑓 = 𝑟. Each entry of this matrix 

𝑬 = 𝑒!" , 𝑖 ∈    1… 𝑓 , 𝑗 ∈    1… 𝑟  is a binary integer that indicates if the corresponding tagged 

primer combination is used to amplify a sample (𝑒!" = 1) or not  (𝑒!" = 0). We introduce here two 

terms that will be used for defining the constraints. First, the saturation of the experimental design can 

be computed as the ratio of samples multiplexed over the number of tagged primer combinations, i.e. 

𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑒!"!!
𝑓×𝑟  . The saturation is an indicator of the usage density of a design (and its 

sensitivity to mistagging) as 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ∈ 0,1  with a saturation of 1 being a fully saturated design 

(all tagged primer combinations are used). Second, the primer usage indicates for each tagged primer, 

the number of samples for which this particular tagged primer is used, i.e. 𝒫! = 𝑒!"!  (here for a 

forward primer). The goal of the LSD is to reduce the saturation while balancing the primer usage 

frequency. Hence, finding a solution can be seen as an integer optimization problem with the 

objective function being that we want to find a tagged primer combination for all of our samples 

𝑒!" = 𝒩!"#$%&!
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with the main constraints being that we want the sample to be equally distributed over all tagged 

primers, ie. each primer is used the same number of times 

𝑒!" =
!

𝑒!" =
!

𝒫! ,∀𝑖, 𝑗 

As we are fully aware, this problem can only be solved if the primer usage 𝒫! is an integer divisor of 

the number of samples 𝒩!"#$%&!, i.e. 𝒫! ≡ 0 𝒩!"#$%&! . In order to solve the particular cases where 

the number of samples is not an integer divisor, we simply take the design of superior saturation 

(being the next ceiling integer 𝒫!  of the primer usage frequency). Then we iteratively remove 

samples in the regions of the design with the higher local saturation until we obtain the required 

number of samples. 



Even with all these constraints, we can find a whole set of different matrix (and, therefore, designs) 

that fits these requirements. Therefore, in order to provide the best problem-dependent experimental 

design, we select the design matrix based on a set of constraints that depend both on the nucleotide 

sequence of the tag primers and the samples that are being sequenced. If we denote as ℒ the set of 

Latin Square Designs that fit the previous requirements, we select the design 𝑙!"#$ ∈ ℒ that minimize 

the proximity of tags with biggest sequence similarity, i.e. 

𝑙!"#$ = 𝑎𝑟𝑔𝑚𝑖𝑛
ℒ

𝒟!" 𝑝𝑟𝑖𝑚𝑒𝑟!
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with 𝒟!" being the Needleman-Wunsch distance between tagged primers 𝑖 and 𝑗. As we can see, 

the distance is accounted only if the two forward primers are used with a common reverse primer 𝑘. 

Finally, the samples can be distributed over the design by favouring that similar samples (in terms of 

composition) should be amplified preferably with a shared primer. 

 

ISU-Based filtering 

 

The ISU-Based filter is designed to discriminate biases (mostly stemming from non-random errors) 

from true sequences. The idea of this filter is to shift the focus of filtering process towards an ISU-

centred approach. 

Following the notations of the previous section (LSD), we still consider the matrix of multiplexing with 

each entry 𝑒!" , 𝑖 ∈    1… 𝑓 , 𝑗 ∈    1… 𝑟   displaying the use of a particular tagged primer combination 

in the experimental design. We also denote the set of sequences found with the tagged primers 𝑖 and 

𝑗 as 𝑠𝑒𝑞!". Following these notation, sequences are non-critical mistags if 𝐼𝑆𝑈! ∈ 𝑠𝑒𝑞!" with 𝑒!" = 0. 

We denote here 𝐼𝑆𝑈!
!"  as being the read abundance of 𝐼𝑆𝑈! in sample 𝑖, 𝑗 . The idea behind the 

ISU-based filtering is to rely on the abundance of each sequence found as non-critical mistags as a 

baseline of abundance for the mistagging. Our rationale is that if a sequence is found in a true sample 

with a level of abundance identical to those in non-critical mistags, then there is a high probability of 

this sequence to be a critical mistag. Therefore, we gather for each sequence the distribution of non-

critical abundance in unused samples that share at least one primer with the current sample. More 

formally if we are trying to assess if a sequence 𝐼𝑆𝑈!
!" is a bias in sample 𝑖, 𝑗 , we compute the set 

𝒟!" = 𝐼𝑆𝑈!!" 𝑒!" = 0 ∧ 𝑙 = 𝑖 ∨𝑚 = 𝑗  

It should be noted that we collect only the abundance of non-critical mistags (without accounting for 

the same ISU in other true samples). Then, we need to define if the abundance of this ISU inside the 



current (true) sample is within the same range as all the non-critical mistags. This would indicate that 

the current ISU is only a part of the overall level of “noise” and, therefore, that this ISU is actually a 

critical mistag. However, if the abundance of the ISU in the true sample clearly deviates from the 

distribution of non-critical mistags, then it clearly points out to the current ISU being a true part of the 

current sample (and a fortiori that this ISU generated the corresponding non-critical mistags). In order 

to perform this discrimination, we rely on the Modified Thompson 𝜏 −Test. Hence, we compute the 

mean 𝜇𝒟! and standard deviation 𝜎𝒟!   of the distribution 𝒟! = 𝒟!"⋃ 𝐼𝑆𝑈!
!"  (distribution including 

the abundance of non-critical mistags and abundance of the current ISU). Then, we compute the 

deviation of the current ISU abundance to the mean abundance of the distribution 𝛿! = 𝐼𝑆𝑈!
!" −

𝜇𝒟! . Finally, we compute a rejection region based on the modified Thompson 𝜏 value 

ℛ = 𝜏.𝜎𝒟! =
𝑡!/!. 𝑛 − 1

𝑛 𝑛 − 1 + 𝑡!/!!
.𝜎𝒟! 

with 𝑡!/! being the critical student's t test value and 𝑛 = 𝒟! , the number of elements in the 

distribution. If the deviation of abundance of the current ISU is outside of the rejection region (𝛿! > ℛ), 

then it is an outlier and, therefore, is considered as a correct ISU. If the abundance is inside the 

rejection region (𝛿! ≤ ℛ), the ISU is discarded. It is very interesting to note, that we actually reverse 

the use of such tests. In our case, an outlier is a good sign (as it shows that the ISU “stands out” from 

the overall noise). The advantage of this test in our context is manifold. First, it is a parameter-free 

method, which allows bypassing the use of any subjective parameter. Moreover, it accounts for the 

distribution average as well as its standard deviation, which provides a statistically determined 

criterion for filtering sequences. The global workflow showing the algorithmic steps is displayed 

1. foreach read in rawFastQ 
2. % Filter the reads based on mean quality and ambiguous bases 
3. filterLowQualitySequences() 
4. filterAmbiguousBases() 
5. % Try to find the tagged primers in the read 
6. (curForward,curReverse) = findPrimersByAlignment 
7. if (curForward,curReverse) is in multiplexedSamples 
8. % Current sequence is part of a real sample 
9. putReadInRealSample(read, sample) 
10. else 
11.    % Current sequence is a non-critical mistag 
12.    putReadInNonCriticalSample(read, sample) 
13. % At the end, compute the abundance of each ISU in each sample 
14. dereplicateSetAndComputeAbundance(samples) 
15. % Now we process each of the real samples 
16. foreach sample in multiplexedSamples 
17. (curForward, curReverse) = tagCombination(sample) 
18. % We perform a decision for each ISU in the sample 
19. foreach ISU in sample 
20. % Find the abundances of current ISU tagged with the current forward 

tag and any reverse tag 
21. nonCriticalForward = findAbundances(ISU, curForward) 
22. % Same with the reverse tag (and any forward tag) 
23. nonCriticalForward = findAbundances(ISU, curReverse) 
24. allNonCriticalAbundances = [nonCriticalForward,nonCriticalReverse] 



25. % Perform the modified Thompson tau-test 
26. curAbundance = abundance(ISU, curForward, curReverse) 
27. totalAbundance = [curAbundance, allNonCriticalAbundances] 
28. % Properties of the distribution (mean, deviation, size) 
29. meanDistrib = mean(totalAbundance) 
30. devDistrib = std(totalAbundanceDistribution) 
31. n = length(totalAbundanceDistribution) 
32. % Deviation of current abundance to mean distribution 
33. curDeviation = abs(meanDistrib - curAbundance) 
34. % Rejection region 
35. r = ((tAlph*(n-1))/(sqrt(n)*sqrt(n-1+(tAlph^2))))*devDistrib; 
36. if (curDeviation <= reject) 
37.    % Current sequence is a critical mistag 
38.    dismissSequence 
39. else 
40.    % Current sequence is not a mistag 
41.    keepInFinalSet(ISU, sample) 


