Supplementary Information

Table S1: search for homologues of ^{put}Pt **MVD.** Sequences were searched with BLASTp (1) using the ^{put}Pt MVD amino acid sequence (GenBank (2) entry AAT43941) within nonredundant sequences database (July 2014). The E value cut off was 0.1 and among several resulting hits, the 47 most significant were aligned with MUSCLE (3). *Thermoplasmatales* proteins are in bold

	Organism	NCBI Reference	Identity (%)	Similarity (%)	E value
1	Picrophilus torridus	YP_024134	100	100	-
2	Ferroplasma acidarmanus	YP_008142696	58.02	76.23	2.00E-131
3	Thermoplasma volcanium	NP_110839	42.86	66.46	1.00E-83
4	Thermoplasma acidophilum	NP_394760	38.73	63.81	8.00E-70
5	Thermoplasmatales archaeon A-plasma	WP_021795407	53.7	75.93	3.00E-11
6	Lactobacillus versmoldensis	WP_010623536	22.47	43.99	8.00E-06
7	Lactobacillus iners	WP_006736906	22.29	42.52	3.00E-05
8	Streptococcus entericus	WP_018367392	22.92	40.86	4.00E-04
9	Encephalitozoon intestinalis	XP_003073009	24.76	40.84	5.00E-04
10	Candidatus Micrarchaeum acidiphilum	EET89942	23.2	43.89	9.00E-04
11	Halonotius sp.	WP_021040093	23.24	41.9	0.001
12	Salinarchaeum sp.	YP_008055205	19.57	43.48	0.002
13	Enterococcus faecium	WP_002351456	19.03	41.69	0.002
14	Streptococcus parauberis	WP_003104536	25.08	42.67	0.002
15	Marinilabilia salmonicolor	WP_010661914	24.63	44.83	0.002
16	Borrelia afzelii	YP_006931874	23.55	43.43	0.002

17	Helcococcus kunzii	WP_005398566	22.57	45.14	0.002
18	Borrelia garinii	YP_073129	25	45.67	0.003
19	Waddlia chondrophila	YP_003709481	25.47	47.2	0.003
20	Haloferax elongans	WP_008324111	22.26	40.85	0.003
21	Natronomonas moolapensis	YP_007486922	21.54	40	0.004
22	Haloferax gibbonsii	WP_004977100	21.54	41.85	0.006
23	Gardnerella vaginalis	YP_003373567	24.86	46.49	0.006
24	Lactobacillus plantarum	YP_007986982	20.8	40.67	0.008
25	Halorubrum lipolyticum	WP_008006049	24.38	39.67	0.009
26	Halorhabdus utahensi	YP_003129610	21.88	39.38	0.01
27	Borrelia bissettii	YP_004777918	30.19	47.17	0.012
28	Methanomassiliicoccus luminyensis	WP_019177897	21.89	42.42	0.016
29	Halococcus thailandensis	WP_007742266	22.39	40.8	0.016
30	Pneumocystis jirovecii	CCJ31570	22.71	43	0.017
31	Haloferax prahovense	WP_008093241	21.81	41.43	0.018
32	Halogranum salarium	WP_009374450	22.56	40.85	0.021
33	Acholeplasma palmae	CCV64523	21.45	44.16	0.022
34	Guillardia theta	XP_005819249	21.9	39.54	0.023
35	Halococcus morrhuae	WP_004055468	21.98	41.49	0.024
36	Haloferax larsenii	WP_007540006	21.6	41.05	0.028
37	Borrelia burgdorferi	YP_005806868	26.15	47.25	0.031
38	Halococcus hamelinensis	WP_007692401	21.47	40.49	0.032
39	Haloarcula vallismortis	WP_004518165	22.26	40.24	0.035
40	Haloferax volcanii	YP_003535463	21.28	41.03	0.035
41	Lactobacillus ruminis	YP_004832120	22.9	44.84	0.036

42	Lactobacillus vaginalis	WP_003716957	25.41	42.7	0.05
43	Streptococcus macacae	WP_003081606	22.04	41.45	0.055
44	Kazachstania africana	XP_003956599	23.45	42.41	0.059
45	Pneumocystis murina	EMR10307	21.81	42.68	0.072
46	Haloferax sulfurifontis	WP_007273787	21.54	41.85	0.086
47	Halobacterium salinarum	YP_001688719	21.9	39.68	0.098

Figure S2: gene sequence encoding ^{put}*Pt***MVD**. The gene sequence used was an optimized version for expression in *Escherichia coli*, already demonstrated to give higher expression yields (4).

1	ATGGAGAACTATAATGTTAA	AACCCGTGCATTTCCGACCA	TTGGTATTATTCTGCTGGGT	GGCATTAGCGACAAAAAAAA
81	CCGTATTCCGCTGCATACCA	CCGCAGGTATTGCATATACC	GGCATCAATAACGATGTGTA	CACCGAAACCAAACTGTATG
161	TGAGCAAAGACGAAAAATGC	TATATCGATGGCAAAGAAAT	CGATCTGAATAGCGATCGTA	GCCCGAGCAAAGTGATCGAT
241	AAATTCAAACATGAAATCCT	GATGCGTGTGAATCTGGATG	ATGAAAACAACCTGAGCATT	GATAGCCGCAATTTTAACAT
321	TCTGAGCGGTAGCAGCGATA	GCGGTGCAGCAGCACTGGGT	GAATGCATTGAAAGCATCTT	CGAGTACAACATCAACATCT
401	TCACCTTTGAAAATGATCTG	CAGCGTATTAGCGAAAGCGT	TGGTCGTAGCCTGTATGGTG	GTCTGACCGTTAATTATGCA
481	AATGGTCGTGAAAGCCTGAC	CGAACCGCTGCTGGAACCGG	AAGCATTTAACAACTTTACC	ATCATCGGTGCCCATTTTAA
561	CATTGATCGCAAACCGAGCA	ACGAAATCCACGAAAACATC	ATCAAACATGAGAACTATCG	CGAACGTATTAAAAGCGCAG
641	AGCGCAAAGCAAAAAAACTG	GAAGAACTGAGCCGTAATGC	CAACATTAAAGGCATTTTTG	AACTGGCAGAAAGCGATACC
721	GTGGAATATCATAAAATGCT	GCATGATGTGGGGCGTTGATA	TTATCAATGACCGCATGGAA	AATCTGATTGAACGCGTGAA
801	AGAGATGAAAAACAACTTCT	GGAACAGCTATATTGTTACC	GGTGGTCCGAATGTTTTTGT	GATCACCGAGAAAAAAGATG
881	TGGATAAAGCCATGGAAGGT	CTGAATGATCTGTGTGATGA	TATTCGTCTGCTGAAAGTTG	CAGGTAAACCGCAGGTTATC
961	AGCAAAAACTTCTAATGA			

Figure S3: gene sequence encoding ScMVD. The gene sequence used was optimized for

expression in *E. coli* by the synthesizing company, Biomatik.

1	ATGACCGTTTACACCGCGTC	TGTGACTGCTCCGGTGAACA	TCGCAACTCTGAAATACTGG	GGTAAGCGTGATACTAAACT
81	GAACCTGCCGACCAACAGCT	CTATCAGCGTTACTCTGAGC	CAGGACGATCTGCGTACCCT	GACCTCTGCAGCTACTGCGC
161	CGGAATTCGAGCGTGACACC	CTGTGGCTGAACGGTGAGCC	GCACTCTATCGACAACGAAC	GTACCCAGAACTGCCTGCGT
241	GACCTGCGCCAGCTGCGTAA	AGAGATGGAATCCAAGGATG	CGAGCCTGCCGACTCTGTCT	CAGTGGAAACTGCACATCGT
321	TTCTGAGAACAACTTCCCGA	CCGCAGCGGGCCTGGCGTCT	TCTGCTGCGGGGTTTCGCGGC	ACTGGTTAGCGCGATTGCGA
401	AACTGTACCAGCTGCCGCAG	TCTACCTCTGAGATTTCTCG	TATCGCGCGCAAGGGCTCTG	GCTCTGCGTGCCGTTCTCTG
481	TTTGGTGGCTATGTTGCGTG	GGAGATGGGCAAAGCTGAGG	ACGGTCACGACTCTATGGCG	GTTCAGATCGCGGACTCTTC
561	TGACTGGCCGCAGATGAAAG	CGTGTGTTCTGGTTGTGAGC	GACATCAAGAAGGACGTTTC	TTCTACCCAGGGTATGCAGC
641	TGACCGTGGCGACCAGCGAA	CTGTTTAAGGAGCGTATCGA	ACACGTTGTTCCGAAGCGTT	TTGAGGTTATGCGTAAGGCT
721	ATTGTTGAAAAGGACTTCGC	AACCTTCGCTAAAGAAACCA	TGATGGACTCCAACTCCTTT	CACGCGACCTGCCTGGATTC
801	TTTCCCGCCGATTTTCTACA	TGAACGACACCTCTAAACGT	ATCATTTCCTGGTGCCACAC	CATCAACCAGTTCTATGGTG
881	AAACTATCGTTGCGTACACC	TTCGACGCGGGTCCGAACGC	TGTTCTGTACTACCTGGCGG	AAAACGAATCTAAGCTGTTT
961	GCATTCATTTACAAACTGTT	CGGTTCTGTTCCGGGCTGGG	ACAAAAAGTTCACCACTGAA	CAGCTGGAGGCGTTTAACCA
1041	CCAGTTTGAGTCTTCTAACT	TCACCGCGCGTGAGCTGGAC	CTGGAACTGCAGAAAGACGT	TGCGCGTGTTATCCTGACCC
1121	AGGTTGGTTCTGGCCCGCAG	GAAACCAACGAGTCCCTGAT	CGATGCGAAAACCGGTCTGC	CGAAGGAATAA

Figure S4: Full ¹³C NMR spectrum of (R)-mevalonate. Six single peaks corresponding to the six carbons of (R)-mevalonate are shown. Spectra were acquired on a 500 MHz Bruker AV(III)500 spectrometer equipped with a cryoprobe. Data were processed and analysed using ACD/NMR Processor version 12.01

Figure S5: Full ¹³C NMR spectrum of (R,S)-mevalonate-5-phosphate. Doublet peaks are observed corresponding to carbons 4 and 5 of (R,S)-mevalonate-5-phosphate. Spectra were acquired on a 500 MHz Bruker AV(III)500 spectrometer equipped with a cryoprobe. Data were processed and analysed using ACD/NMR Processor version 12.01

Figure S6: Full ¹³C NMR spectrum of test reaction containing (*R*)-mevalonate and $^{put}PtMVD$ (*PtM3K*). Doublet peaks are observed corresponding to carbons 2 to 4 and 6. Additional peaks in the spectrum are from unreacted mevalonate, and phosphoenolpyruvate and pyruvate, which are present due to the system to regenerate ATP as previously described (5). Spectra were acquired on a 500 MHz Bruker AV(III)500 spectrometer equipped with a cryoprobe. Data were processed and analysed using ACD/NMR Processor version 12.01

Table S7: Search for homologues of the newly discovered mevalonate-3-phopshate-5-kinase from *T. acidophilum* (5).

Sequences were searched with BLASTp (1) using the amino acid sequence of newly discovered *T. acidophilum* Ta0762 (GenBank (2) entry CAC11895) within nonredundant sequences database (July 2014). A 40% identity cut off was set. The *P. torridus* homologue is characterized by a level of identity of 55.5% (in bold).

		NCBI	Identity	Similarity	
	Organism	Reference	(%)	(%)	E value
1	Thermoplasma acidophilum	WP_010901177	100	100	-
2	Thermoplasma volcanium	BAB60008	54.92	74.61	5.00E-72
3	Thermoplasmatales archaeon A-plasma	WP_021794774	52.88	68.06	2.00E-64
4	Picrophilus torridus	WP_011177280	55.49	72.56	2.00E-56
5	Ferroplasma sp. Type II	WP_021787503	46.56	69.31	4.00E-54
6	Thermoplasmatales archaeon E-plasma	WP_021792357	45.79	66.32	9.00E-53
7	Ferroplasma acidarmanus	WP_009886959	45.5	68.78	1.00E-51

References

- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.
- Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2013. GenBank. Nucleic Acids Res. 41:D36-42.
- 3. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. **32:**1792-1797.
- 4. **Marliere P.** January 2010. Production of alkenes by enzymatic decarboxylation of 3hydroxyalkanoic acids. Patent WO2010001078A2.
- Vinokur JM, Korman TP, Cao Z, Bowie JU. 2014. Evidence of a novel mevalonate pathway in archaea. Biochemistry 53:4161-4168.